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We study sequential shortest path interdiction, where in each period an interdictor with incomplete knowl-
edge of the arc costs blocks at most k arcs, and an evader with complete knowledge about the costs traverses
a shortest path between two fixed nodes in the interdicted network. In each period, the interdictor, who
aims at maximizing the evader’s cumulative cost over a finite time horizon, and whose initial knowledge is
limited to valid lower and upper bounds on the costs, observes only the total cost of the path traversed by
the evader, but not the path itself. This limited information feedback is then used by the interdictor to refine
her knowledge of the network’s costs, which should lead to better decisions. Different interdiction decisions
lead to different responses by the evader, and thus to different feedback. Focusing on minimizing the number
of periods it takes a policy to recover a full information interdiction decision (that taken by an interdictor
with complete knowledge about costs), we show that a class of greedy interdiction policies requires, in the
worst case, an exponential number of periods to converge. Nonetheless, we show that, under less stringent
modes of feedback, convergence in polynomial time is possible. In particular, we consider different versions
of imperfect randomized feedback that allow establishing polynomial expected convergence bounds. Finally,
we also discuss a generalization of our approach for the case of a strategic evader, who does not necessarily

follow a shortest path in each period.
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1. Introduction

Background and Motivation. In the shortest path interdiction problem (SPI), an interdictor
blocks a subset of arcs on a network with the objective of maximizing the length (total cost) of
the path chosen by an evader, who in turn selects such a path so as to minimize its length (Smith
et al. 2013). Interdiction actions are limited by a budgetary constraint, typically expressed in

terms of the (weighted) number of arcs that can be interdicted simultaneously, and the evader
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is assumed to select paths between two fixed and known nodes in the interdicted network. SPI
arises naturally in various application areas (Smith and Song 2019), such as defense of critical
infrastructure, infectious disease, and hazardous materials transportation control, as well as
counter-terrorism, where two adversarial players compete in zero-sum games (see below for the
details on an application to smuggling interdiction).

The traditional single-period, full-information version of SPI, where the interdictor has complete
knowledge of the network’s structure and costs, has been studied extensively in the past. Fulkerson
and Harding (1977) model a variant of SPI where arcs can be partially blocked, via linear pro-
gramming, and Israeli and Wood (2002) develop a mixed-integer programming (MIP) formulation
of SPI, and develop decomposition algorithms for its solution. When the interdictor’s budgetary
constraint is expressed in terms of the number of arcs that can be blocked, SPI is also known as
the k-most-vital-arcs problem, see, e.g., Malik et al. (1989), Corley and Sha (1982) and Ball et al.
(1989), where k denotes the maximum number of arcs blocked. More recently, Morton et al. (2007)
study SPI in the context of nuclear material smuggling where the evader’s origin-destination pair
is random, and the interdictor focuses on maximizing the expected length of the chosen path.

Various extensions of the traditional setting have been studied. For example, Sefair and Smith
(2016) consider a setting where the interdictor selects her! actions as the evader traverses through
a path, and, as a response, the evader can alter such path in an adaptive fashion. Also, Song and
Shen (2016) study risk-averse SPI, where the network’s costs are stochastic and the interdictor
focuses on maximizing the probability that the length of the path chosen is above some threshold.

In the work above, the agents’ interaction is limited to a single period. In contrast, we focus our
attention on settings where the interdictor and the evader interact sequentially over time. This
setting is motivated in part by applications in smuggling interdiction, where an interdictor (e.g.,
a U.S. law-enforcement or military task force) has to periodically reallocate resources (e.g., ships,
helicopters, drones) to maximize the probability of detecting and capturing smugglers, minimize
the flow of illegal materials, among others; see, e.g., the discussion and references in Gift (2010).

In such settings, the interdictor typically is not initially aware of all possible options that evaders
may have at their disposal (e.g., smuggling routes). Moreover, the interdictor becomes aware of
said options only when the evader makes use of them, and even then, the information collected on
said options might only be partial (e.g., only a portion of a smuggling route might be revealed).
Thus, it can be argued that learning plays a key role in practical settings, where the interdictor
might (partially) observe the evader’s actions (e.g., by interpreting satellite images, or by obtaining

data from informants), but might not act upon them immediately (i.e., in the same period).

1 n the remainder of the paper, we refer to the interdictor and the evader as she and he, respectively.
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Sequential settings have been studied in the context of attacker-defender and defender-attacker
problems using game-theoretical approaches, see Hausken and Zhuang (2011), Xu and Zhuang
(2016), Zhuang et al. (2010) and the references therein. For example, Hausken and Zhuang (2011)
consider how the government should balance resource allocation between attempting to downgrade
a terrorist’s resources and defending against a terrorist attack in a multi-period attacker-defender
game. Zhuang et al. (2010) study multi-period attacker-defender games, where the defender can
be deceptive, while the attacker has incomplete information but may have learning capabilities.

In terms of the availability of information, the class of problems we consider can be viewed
as network interdiction with asymmetric information, as the decision-makers do not “have the
same perception of their problem data” (Smith and Song 2019). For example, Bayrak and Bailey
(2008) study the bilevel problem where the interdictor’s and the evader’s arc costs are different.
Salmer6n (2012) considers a setting, where the interdictor can be deceptive. In contrast, in our
setting, arc costs coincide for both decision-makers and all interdiction actions are known to the
evader; however, only the evader has full information about the underlying network, while the
interdictor’s initial information is limited, as also emphasized in our discussion above.

The key feature that separates our study from most of the extant literature in SPI is the inter-
dictor’s online learning ability to adapt as new information is collected by observing the evader’s
actions in multiple time periods. Indeed, the comprehensive survey by Smith and Song (2019) iden-
tifies only two other studies that involve some form of learning. The first study, Zheng and Castanén
(2012), focuses on information collection (e.g., by sensor placement) when the interdictor and evader
interact only once. The second study, Borrero et al. (2016), considers a setting with incomplete
knowledge and learning where the evader and the interdictor interact repeatedly over time.

The setting of Borrero et al. (2016) is close to ours in that the agents interact sequentially
over time, the evader has complete knowledge of the network, and the interdictor has incomplete
information about the network’s structure and costs. Borrero et al. (2016) assume that in each
period the interdictor observes the full path used by the evader, as well as the costs of all arcs
included in the path. There, performance is measured in terms of a policy’s time-stability, which
is defined as the number of periods until the interdictor’s actions coincide with those taken by an
interdictor with full prior knowledge of the network’s structure and costs. In Borrero et al. (2016),
the authors propose a class of greedy and pessimistic policies, where in each period the interdictor
(greedily) implements a solution to the k-most vital arcs problem? in the observed network, under
the worst-case realizations for the evader (pessimistic) of the currently unknown costs. In our work
we adopt such a setting (including the performance criterion) with one major distinction: we first

2 A set of k-most vital arcs in graph G consists of (at most) k arcs whose removal from G results in the greatest
increase of the length (total cost) of the shortest path between two specified nodes.
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consider the setting of standard feedback, where only the length of the chosen path is revealed
to the interdictor; then we consider the setting of imperfect feedback, where only some arcs in
the chosen path might be revealed with certain probability. In addition, we also depart from the
setting above by extending our analysis to settings where the evader might act strategically and

not necessarily choose a shortest path in every time period.

Incomplete Information and Limited Feedback. Borrero et al. (2019) extend the aforemen-
tioned framework to a general class of max-min bilevel linear mixed-integer optimization problems
that model the interactions between an upper-level leader (interdictor) and a lower-level follower
(evader). Along the way, it formalizes the notion of feedback, i.e., the information revealed to the
interdictor by the evader’s actions in each period. We use such a notion here.

Specifically, in the context of SPI, Borrero et al. (2019) define feedback as standard if in each
period the interdictor learns the total cost incurred by the evader; standard feedback is called
response-perfect if, in addition, the path chosen by the evader is revealed to the interdictor as
well, and value-perfect if the cost of each arc on said path is also revealed. In this regard, Borrero
et al. (2019) generalize the greedy and pessimistic policies of Borrero et al. (2016) (which assume
feedback is both response- and value-perfect) to be greedy and robust, under the assumption that
standard feedback is either value- or response-perfect. In practice, the notion of feedback being
either response- or value-perfect is rather strong. For example, in the context of smuggling inter-
diction, it implies that the interdictor observes the details of the smuggler’s route, along with the
itemized costs (per arc). In practice, only partial information might be obtained from interrogat-
ing smugglers if caught, and limited resources (e.g., satellite images) might reveal the passage of
smugglers only on a limited set of passage points.

The goal of this paper is to relax the rather stringent assumptions about feedback in sequential
SPI. Specifically, we consider settings with standard feedback, where the interdictor observes only
the total cost incurred by the evader in each period but neither the arcs used, nor their costs. In
addition, we introduce the notions of response-imperfect and value-imperfect feedback: under the
former notion, the interdictor learns only a subset of the arcs in the path chosen by the evader
with some probability; under the latter notion, the interdictor learns the costs of arcs on a further

subset of arcs, also with some probability. (See Section 2.2 for formal definitions.)

Contribution. The main contribution made by this paper consists of relaxing the assumption
of perfect feedback in the context of sequential SPI. In doing so, we generalize the greedy and
pessimistic policies of Borrero et al. (2016). Because the term “pessimistic” has already a known
connotation in bilevel optimization terminology (see, e.g., Sinha et al. (2018)) we use the term

“greedy and robust”, as in Borrero et al. (2019), and propose a family of greedy, robust and
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non-repetitive (GRN) policies. As in Borrero et al. (2019), GRN policies are greedy and robust
in that they implement a solution to the k-most vital arc problem in the observed network, by
assuming the worst-case cost realization for the evader. In addition, the policies make sure not to
repeat interdiction solutions implemented in previous periods if their observed costs do not match
the interdictor’s beliefs. This requirement has the effect of inducing exploration of alternative
solutions. Not surprisingly, under standard feedback, GRN policies are guaranteed to converge to
the full-information solution. However, we show that these policies have exponential time-stability
in the worst case. Considering this, we introduce the notion of imperfect feedback, a compromise
between perfect and standard feedback, and show that under such a feedback, time-stability for
GRN policies admits polynomial expected convergence bounds.

Our second contribution follows from noting that exact computation of GRN policies is hard
in general, even in settings where feedback allows for tractable (polyhedral) representation of
the interdictor’s knowledge. Hence, we provide an approximation to GRN policies, which we
show: preserves theoretical convergence guarantees; is exact for a particular type of uncertainty
representation; and can be computed by solving an MIP formulation using off-the-shelf solvers.

An additional noteworthy contribution made by the paper is the extension of the analysis to
settings where the evader does not necessarily respond by choosing to traverse a shortest path in
the interdicted network, and might instead react, for example, strategically. To do so, we generalize
the concept of time-stability, so as to account for the time periods in which the evader effectively
takes advantage of the interdictor’s initial uncertainty to increase her regret (and discards periods
in which the evader’s actions are clearly sub-optimal; see the details in Section 6).

The remainder of the paper is organized as follows. Section 2 outlines the mathematical model
for sequential SPI under limited feedback, including our key assumptions, the formal definition
of the feedback we consider, and the proposed GRN policies. In Section 3, we analyze conver-
gence of time-stability for GRN policies under standard feedback. Section 4 analyzes GRN polices
under imperfect feedback, and provides a polynomial upper bound on the expected time-stability
under value-imperfect feedback. Section 5 presents our approximate GRN policies, and the MIP
formulation for their computation; we also discuss special cases when our approximations coincide
with GRN policies. In Section 6 we present an extension that addresses possible strategic behavior
on the evader’s behalf. Section 7 presents a set of computational experiments that illustrate the
performance of the proposed policies. Finally, Section 8 presents concluding remarks and outlines

directions for future research. All proofs and supporting material are relegated to the appendices.

2. Mathematical Model and Interdiction Policies
This section introduces our model for sequential SPI with incomplete information and limited

feedback. First, we model the interaction between the interdictor and the evader and describe our
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key assumptions. Then we define different notions of feedback and introduce the GRN policies.

Table 1 below summarizes the main notation used in the paper.

Table 1 Brief Summary of Key Notation

tx

k Maximum number of interdicted arcs in a period 25 Cost that the GRN interdictor expects to see in period ¢

G(I) Subgraph resulting from removing the arcs in I zr(I') Approximate cost that a robust interdictor expects the evader to
S(I)  Set of all 1 —n shortest paths in graph G(I) incur using I

z(I)  Cost of the shortest 1 —n path in G(I) 2p(I') Approximate cost that a robust non-repetitive interdictor expects to
z* Optimal cost of the k-most vital arcs problem on G see using I*

T Time horizon 511?* Cost that the approximate GRN interdictor expects to see in period ¢
co Initial information about the cost vectors Zp(I') Cost that a robust non-repetitive interdictor expects to see using I*
(€a,u,) Lower and upper bounds on cost of arc a € A under general evader

ct Cost vectors consistent with information up to period ¢ 2;'-;,* Cost that the GRN interdictor expects to see in period ¢

P! Path chosen by the evader in period ¢ under general evader

P! Arcs learned in response-imperfect feedback R'™  Regret of policy 7 until period ¢

P! Arcs learned in value-imperfect feedback " Time-stability for policy 7

It Set of arcs blocked by the interdictor in period ¢ & Earliest time when the cost expected by the interdictor equals

i History up to period t under policy 7 the observed cost

2hT Cost incurred by the evader given interdiction decision I*™ i £™ adjusted by the approximate interdictor

zr(I") Cost that a robust interdictor expects the evader to incur using I' RY™  Generalized regret (for general evader) of policy 7 until period ¢
2gr(I') Cost that a robust non-repetitive interdictor expects to see using I 7" Generalized time-stability (for general evader) for policy 7

2.1. Problem Description

Preliminaries. Let G := (N, A) be a directed network with node and arc sets N and A, respec-
tively, and define n =|N| and m = |A|. Also, let ¢, denote the cost of traversing arc a € A, and
define ¢ := (c,: a € A). Assume for simplicity that nodes 1 and n are the evader’s fixed source
and destination nodes, respectively. For a set of arcs I C A, we define G(I) := (N, A\ I) as the
interdicted graph arising from G when the arcs in I are blocked. With this, we define z(I) as the
cost of the shortest 1 —n path in the interdicted graph G(I), i.e.,

z([) :=min an: Pisan 1—mn path in G(I) », (1)
acP
and S(I) as the set of all shortest 1 —n paths in G(I), i.e.,

S(I) :=argmin an: P is an 1 —n path in G(I)
acP

We assume that the evader has complete knowledge about the graph, including its arc costs. For
an example of settings where costs are uncertain to both the interdictor and the evader, see Song
and Shen (2016). We also assume that the interdictor knows the graph G, and that she knows ¢

only up to valid lower and upper bounds for its components. That is, she knows that ¢ € C°, where
Cl = {(61,62,...,ém) eERY: £, < <ug, Vae A},

and where ¢, and u, denote some finite lower and upper bounds of the cost for arc a, respectively.
We refer to C° as the initial information available to the interdictor, as it contains her initial

knowledge about the network’s cost vector.?

3 Note that, unlike in Borrero et al. (2016), we assume that the interdictor initially knows all arcs in the network.
The assumption is made without loss of generality, as one can always assume that the network is complete and
lower /upper bounds for unknown arcs are set at zero/a (sufficiently) large constant.
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In each period t € T :={0,1,...,T}, within a finite horizon of T" periods, the following sequence
of events takes place:
(i) For the duration of period ¢, the interdictor blocks the arcs in a set I' C A with |I*| < k, where
k denotes the interdiction budget.*
(@) After observing the interdictor’s action, the evader travels through a shortest path P* € S(I'),
incurring on a cost z' = z(I").
(7i) The interdictor obtains feedback F* from the evader’s actions (we define and discuss the notion

of feedback in the next section).

Note that, following prior work, (7i) above assumes that the evader acts greedily in each period,
thus preventing any strategic consideration on his behalf (see, e.g., Johnson et al. (2014) for a
setting with an adaptive evader). We keep such an assumption for now, so as to streamline the
exposition, and extend our analysis to more general settings in Section 6. Note that (i) also
assumes that the evader observes the interdictor’s actions: as outlined in Borrero et al. (2016), we
can interpret this assumption in the context of repeated interactions in a stochastic setting, where
such monitoring might arise naturally from a learning process of trial-and-error by the evader.

Finally, we assume there are no 1 —n cuts in G with k or fewer arcs, and hence, there is no trivial
solution to the interdictor’s problem; we also restrict our attention to policies with I° = ). These

two assumptions are rather technical and made to simplify our analysis, and thus the exposition.

2.2. Feedback
We define the notion of feedback F := (F*: t € T) as the sequence of information collected by
the interdictor when observing the follower’s evasion decisions in each period. We first consider the

notion of standard feedback in Borrero et al. (2019).

DEFINITION 1. [Standard feedback.] Feedback F is standard if for each period ¢t € T the

interdictor observes the total cost incurred by the evader, z'. |

Standard feedback might arise, for example, in the context of smuggling interdiction, when the
interdictor aims at maximizing (minimizing) the probability of detection (evasion). There, each arc
cost can be interpreted as (minus the logarithm of) the probability of evasion at different arcs (see,
e.g., details in Morton et al. (2007)), in which case standard feedback corresponds to observing
the overall probability of evasion. While such a probability can not be observed directly, it can
be inferred through repeated interactions between the evader and the interdictor by investigating

various types of available data (e.g., prices in illegal markets, enforcement and punishment records

4 This is, the maximum number of arcs that can be blocked in any period.
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Figure 1 Network G used in Example 1. The labeling of the arcs is given by [(q,us], cq.

from the law-enforcement agencies); see examples of the related studies in Buehn and Eichler (2009),
Gathmann (2008), Magliocca et al. (2019), Yiirekli and Sayginsoy (2010) and the references therein.

Hereafter, unless otherwise noted, we assume that feedback is always standard. In the sequel,
we argue that this form of feedback imposes a high toll in terms of time-stability convergence (as
defined later in this section). Thus, we define two additional types of feedback with somewhat

stronger assumptions on the amount of information collected.

DEFINITION 2. [Response-imperfect feedback.] We say standard feedback F is response-
imperfect if for each period t € T, the interdictor learns that the evader used arc a € P* with some

probability p, € [0,1], independently across all arcs and periods. |

DEFINITION 3. [Value-imperfect feedback.| We say response-imperfect feedback F is value-
imperfect if for each period ¢ € T, the interdictor learns the cost of arc a € P* with some probability

p. € [0, 1], independently across all arcs and periods. [

We assume that, for a given arc, the feedback above is nested, and let P! C P* and P! C P! denote
the sets of arcs that the interdictor observes and learns their costs under response-imperfect and
value-imperfect feedback, respectively. We note that while probabilities p, and p, are the same for
all arcs, one could consider arc-dependent probabilities at the expense of having a more convoluted
notation. Here, we opt to maintain simplicity of exposition and keep arc-independent probabilities.
Also, note that if p, = 1, then response-imperfect feedback reduces to response-perfect feedback
in Borrero et al. (2019), and if p, = p, =1, then value-imperfect feedback reduces to value-perfect
feedback in Borrero et al. (2019). The next example illustrates the difference between these notions.

ExaMPLE 1. Consider graph G depicted in Figure 1. Assume that kK =2 and T'= 2, and suppose
that the interdiction decisions are I° =0, I = {(1,4),(1,7)} and I* = {(1,7),(3,6)}. In such a
case, the evader’s decisions in each period are given by P°=1—7, P!'=1—+3 -6 — 7 and
P?2=1—4—17, with costs 2° =3, 2! =4 and 22 = 6, respectively. The information collected by

the interdictor from the evader’s actions under different feedback types is as follows.
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e Under value-perfect feedback, the interdictor observes the total cost and the arcs used by the
evader along with their costs in each time period. That is, in period ¢t =0 the interdictor observes
P cq 7y and 2% for t =1, the interdictor observes P', (1 3), ¢(3,6), C(6,7), and z'; and for ¢ =2, the
interdictor observes P2, ¢(1,4), ¢(a,7) and 2°.

e Under response-perfect feedback, in each period the interdictor observes the total cost along
with the arcs used by the evader, but not the individual arc’s costs. That is, for ¢t = 0, the
interdictor learns P° and 2°; for ¢t = 1, she observes that P! and z'; and for ¢ = 2, the interdictor
observes P? and 22

e Under standard feedback, the information revealed for the interdictor is limited to only the
costs of the evasion paths in each period. That is, in periods t =1, t =2 and ¢ = 3, the interdictor
observes 20, 2! and 22, respectively, but not the actual evasion paths taken.

e Under response-imperfect feedback, for ¢t = 0, in addition to z°, the interdictor observes that
arc (1,7) is contained in P° with probability p,; for t =1, in addition to z', the interdictor may
learn, for example, that (1,3), (3,6) and (6,7) are part of P' (each with probability p,).

e Under value-imperfect feedback, in addition to the costs of P°, P!, and P2, the arc cost
information of the evasion paths can be obtained by the interdictor. For example, for ¢t = 0,
the interdictor might observe that (1,7) is part of P° with probability p,, and given that the
interdictor observes (1,7), she also learns ¢(;,7) with probability p,. |

Next, we define the notion of an interdiction policy, and present the class of greedy, robust and

non-repetitive policies, which are the main focus of this paper.

2.3. GRN Policies
Preliminaries. An interdiction policy m:= (7': t € T) is a deterministic sequence of set functions
such that, for each t € T, I"™ := 7w'(F*7 : s < t) represents the set of arcs blocked in period ¢, where
F=7 represents the feedback obtained under policy 7 in period s € T (for notational convenience,
we include the interdictor’s actions within such a feedback).® For example, in the case of standard
feedback, we have that

Frr={z(I""),I""}, teT.

In order to measure the performance of a policy, we focus on minimizing the number of periods
that the policy takes to implement solutions that coincide with those taken by an oracle with

full-information on the network’s costs. Hence, we define time-stability of policy 7 as:
T i=min{t € T: 2" =2(I*7), for all s > ¢ },

51In the remainder of the paper whenever necessary we use the superscript 7 to denote the dependency on policy 7.
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where

z*:=max{z(I): ICAst. |[|<k}. (2)

Observe that z* is the maximum cost for the evader that can be induced by the interdictor. We use
25" to denote the cost incurred by the evader under interdiction I*™ in policy 7 at time ¢. Note that

because the evader solves for a shortest path problem in each time period, we have 2™ = z(I"7).

REMARK 1. In the online optimization literature, performance is typically measured in terms of
a policy’s regret, which is defined as the cumulative loss in cost incurred by the policy relative to
that achieved by an oracle decision-maker with complete prior information about the underlying
problem data, see Cesa-Bianchi and Lugosi (2006). In the network interdiction setting, regret of
policy 7 until time ¢ is given by R*™:=3__ (2" —2>7). The concept of time-stability is introduced
in Borrero et al. (2016), where it is observed that an upper bound on time-stability implies an

upper bound on regret, i.e., R®™ < 7™, where p is an upper bound for z* — z*™ for any s <t¢t. W

Information Update. For any ¢t € T, set C* denotes the interdictor’s belief regarding the possible
cost vectors (i.e., at ¢ the interdictor knows that ¢ € C*). Starting from C°, the interdictor updates

this belief set using feedback F*. For example, under standard feedback she could update C* as:

Ct“:Ctﬁ{éeRT: IP € S(IY) sit. Zeazz(ﬁ)}, teT\{T}, (3)

acP

where, in a slight abuse of notation, S;(I") refers to the set of shortest paths on the network G(I*)
when costs are given by vector ¢. Note that the update (3) implies that:

(i) For any ¢ € C', all the paths in the remaining graph have a cost of at least z(I'), i.e.,
Y wep Ca>2(I"), for all 1 —n paths P € G(I');

(7i) there is at least one 1 —n path with cost z(I").

While the update mechanism above is the “best” in settings with standard feedback (in the sense
that it reduces C* the most), we consider alternative mechanisms that are more tractable from an
algorithmic point of view. The underlying reason for considering less efficient updates follows from
the non-convex nature of the update (3), which we illustrate in the following example.

ExXAMPLE 2. Consider the instance in Figure 2(a). Let k = 1. Note that C°® = [0, 4] x [0, 5] x [5,5] X
[5,5]. Suppose that I° = (), so that P’ =1 — 2 — 4 and the interdictor observes z° = 6. Using update
(3) results in C' =C°N {12 =1 and éu3 > 1} U{¢12) > 1 and ¢35y = 1}. Figure 2(b) depicts
feasible values for ¢(;2) and ¢(; 3y in C! that form two line segments. Clearly, C! is non-convex. W

Unless otherwise specified, we refer to performance of policies with respect to a generic update
mechanism. The latter is assumed to satisfy the following properties:

Al :ceCtforallteT.
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s
i
0.5
0 0.5 1 15 2 25 3 35 4
C(1,2)
(a) Network G used in Example 2 (b) Tllustration of non-convexity of C' in Example 2

Figure 2  The labeling of arcs in Figure 2(a) is given by [{,, u,],c,. Figure 2(b) illustrates non-convexity of C* in

Example 2: the feasible values for ¢(; 5) and ¢(1 3 in C! form two line segments.

A2 :CTICClforall te T\ {T}.
Assumption A1 indicates that information updates do not rule out the actual cost vector, and A2
that “uncertainty” surrounding ¢ does not increase in time. Because update mechanisms do not
necessarily incorporate all relevant information in F*, the interdictor cannot rule out the possibility
of “getting stuck” on implementing a sub-optimal interdiction action. With these ideas in mind,
next we propose a family of policies that ensures that the interdictor does not “get stuck” in such

situations independent of the update mechanism used.

GRN Policies. In this paper we focus on greedy, robust and non-repetitive (GRN) interdiction
policies. These policies are greedy in the sense that, at each period, the interdictor seeks to maximize
the immediate cost for the evader; they are robust in that they assume the worst-case (for the
evader) arc costs realizations in C'; and are non-repetitive in a sense that their goal is to avoid
solutions implemented previously by the interdictor unless they are optimal.

In order to introduce the GRN policies, define zx(I*) as the cost that the interdictor would

expect to observe in the worst case scenario (for the evader) when interdicting the set I*. That is,

2r(I') ;= min {max{ Z Co éect} : P'is a 1 —n path in graph G(It)}, (4)

Pt a€Pt
REMARK 2. The right-hand side (r.h.s.) of (4) belongs to the class of robust shortest path
problem with absolute robust objective (Yu and Yang 1998). Initially, when C* =(C°, it belongs to
the class of robust shortest path problems with interval cost, and as such, its inner maximization

can be solved simply by setting ¢ = u. When C* is either finite or a polyhedron, the problem is
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N P-hard; see Buchheim and Kurtz (2018), Bertsimas and Sim (2003), Poss (2013). In our setting
C! is not necessarily convex (recall Example 2) and, to the best of our knowledge, such formulations
has not been studied so far, with the notable exception of Borrero and Lozano (2020). u

From the previous section, the information update mechanism determining C* might not neces-
sarily incorporate all available information on the cost vector. Thus, the interdictor’s expectations
should be corrected to account for the fact that, if I* has been implemented in the past, then
she should expect to see the cost z(I') if she implements I* again. Define Zz(I") as the cost the
interdictor would expect to see, accounting for the aforementioned correction. That is,

Sn(IY) = zp(Ih) i I"#1° Vs<t,
BT  2(10)  if It =I° for some s < L.

(5)

The proposed GRN policies are such that, in each period t € T, the interdictor greedily implements

a solution I' that maximizes Zr(I"). That is, the GRN policies implement a solution to the problem
2 i=max{Zg(I"): [I'|<k, I'"CA}, teT. (6)

For any policy 7, let £ denote the earliest time at which the interdictor’s expectations, as given

in (6), match the observed cost. That is,
M i=min{t € T: 23" = 2"}, (7)

where one needs to recall that 2™ := z(I"™), i.e., the cost incurred by the evader given interdiction
decision I*™. We are ready to define A, the set of the GRN policies.
DEFINITION 4. Policy A belongs to the class of GRN policies A if and only if

I'* e argmax{2p(I"): |I'|<k, I' CA} Vt<E&,

and It =" for all &» <t <T. ]

Computing a policy A € A requires solving (6) for each ¢ € 7. At first glance, such a formulation
is a bilevel optimization problem that is difficult to solve in general. However, in Section 5 we
show that for some class of update mechanisms, (6) can be either reduced to, or approximated
by, a single-level mixed-integer program, and hence, solved using standard MIP solvers.

Finally, we note that the GRN policies are similar to those proposed in Borrero et al. (2016, 2019),
where perfect feedback is assumed. In their setting all information from the (stronger) feedback can
be included into C* without compromising its convexity, while in our setting it is impossible to do so.
Therefore, GRN policies instead “penalize” the interdictor if she repeats a solution that is not opti-
mal (which amounts to a crude but easy way to implement “correction” on expectations). In Sec-

tions 3 and 4, we showcase the related properties of GRN policies under different types of feedback.
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3. GRN Policies under Standard Feedback

In this section, we analyze the GRN policies under standard feedback. In Section 3.1, we show
that time-stability of the GRN policies is guaranteed to converge. Then, in Section 3.2 we justify
the greedy, robust and non-repetitive nature of policies in A by showing that these qualities are

required in order to attain efficiency in a specific sense.

3.1. Convergence

Consider a setting with standard feedback so that, in each period, the interdictor only observes
the cost incurred by the evader. The following “sandwich” result, whose proof can be found in
Appendix A, provides a stopping criteria for the GRN policies by exploring the relationship between

what the interdictor expects to see and what she actually observes.
THEOREM 1. Fort €T \ {0} given and \ € A, one has that z'* < z* < 23",

Theorem 1 provides a certificate of optimality for policies in A. That is, whenever what the inter-
dictor observes matches her expectations, her decision is guaranteed to be optimal. Thus, from the
interdictor’s perspective, the decision-making process at period t € 7 under GRN policies A can
be described as follows:

(i) The interdictor uses ((z**,I°**): s <t) to formulate and solve (6), thus finding zj;* and I**.
(#i) The evader incurs on a cost z"*, which is observed by the interdictor.
(iii) The process is repeated until 253" = 2*, and I** gets implemented from there on.

By construction, the GRN policies do not repeat solutions unless there is a guarantee about

their optimality. This observation is formalized in the next corollary, whose proof follows directly

from (5) and (6) and thus is omitted.
COROLLARY 1. For any A€ A, if at time period t I** = I** for some s <t, then z** = 23"

The next result establishes that for any policy A € A, time-stability is reached in finite time. In
particular, it establishes an upper bound on time-stability that is a function of the number of arcs

in the network and the interdiction budget.

PRrROPOSITION 1. Consider A € A and standard feedback. Then,

P << <TZ>+1.

Proposition 1 shows that under standard feedback, policies in A (which do not necessarily update
the set C*) may need an exponentially large number of periods to find the full-information solution,
in the worst case. In Section 4 we show how different updating mechanisms can be used to improve

the performance of the proposed policies in A.
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(a) Network G (b) Network G2

Figure 3  Networks used in Remark 3, the labeling of the arcs is given by [(,, uq], cq

REMARK 3. The next example suggests that the bound in Proposition 1 is tight. Consider graphs
G and G5 depicted in Figure 3.

Consider k = 2, and note that in network G, a policy A € A satisfies 7% = 5. Indeed, when
t =0 we have that I°* = (), 2" = 2; then when ¢t =1, I'* = {(1,2),(1,3)}, 25" =5, 2" = 4;
t=2, I ={(1,2),(3,5)}, 25" =5, 22X =4; t =3, I ={(1,3),(2,5)}, 25" =5, 2% =4; t =4,
I**=1{(2,5),(3,5)}, 25" =5, 22 =4; t =5, I = {(1,2),(1,3)}, 25" =4, 2°* =4, and up to this
point, the optimal solution is obtained.

In network G5, on the other hand, time-stability is exactly the upper bound in Proposition 1,
which is (7,?) +1=16. (See Appendix B for the sequence of interdiction and evasion actions.) MW

The next result formalizes the tightness of the bound in Proposition 1.

PROPOSITION 2. For any k>0 and n > k+3, there exist a € (0,1], a graph G and information
update mechanism such that, if T > (7:), then 7 > a((f) +1).

3.2. Necessity of Being Greedy, Robust and Non-repetitive

In this section we argue that it is necessary for the interdictor to act consistently in a greedy,
robust, and non-repetitive manner. Our starting point here is a policy that is greedy, robust and
non-repetitive, all at the same time; we show that removing one of such features might deteriorate
policy performance. Formally, we say that a policy w € A is non-consistently greedy if for every
instance there exist time periods (which might depend on the instance) such that I*™ does not
solve (6). Define in an analogous way non-consistently robust and non-consistently non-repetitive
policies. Next, we give counter-examples showing that for any non-consistent policy 7 there exist

instances such that 7 < 77 for all A € A.

Necessity of Being Greedy. Assume 7 is a non-consistently greedy policy and consider an
instance where the upper bound and the real cost are the same for each arc. Thus, the optimal

solution is to directly block the k-most vital arcs, which is the solution for the GRN policies because
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U, = ¢, for all a € A. Consequently, the GRN policies can find an optimal solution in the first time
period, that is, 7* = 1. However, under 7 at time s the interdictor tries other non-greedy solution
which implies that a non-k-most vital solution is implemented at time s. In other words, 23" < z*

and hence, in this instance 77 > 7> =1 for any A€ A .

Necessity of Being Robust. Consider the network G, depicted in Figure 4(a) and let k=n—3
(n>4). Under any GRN policy, at time ¢ =1 the interdictor blocks I'* ={(1,2),(1,3),...,(1,n —
2)}, which coincides with the solution under full information I* of value n. Moreover, it follows
that 7* =1 for any \. Suppose next that the interdictor is not robust, and instead assumes that
at some time s > 1 the cost vector is a convex combination between the lower and upper bounds
such that 1™ # I**. For instance, assume that the interdictor uses the weight o € (0,1) to combine
lower and upper bounds, with ¢ such that o(n—1) <o(n—2)+1—o0,ie., 0<o < 3. Then we can
see that the path 1 — (n—1) — n is evaluated by a lower cost, and since 7 is greedy, we have that
Is™={(1,2),(1,3),...,(1,n—=3),(I,n—1}, 25" =0c(n—2)+1—-0c+o=0(n—2)+1, 25" =n—1.

It can be concluded that 77 > s>1=7", as desired.

(a) Network G (b) Network G2

Figure 4 Networks used in the discussion in Section 3.2, the labeling of the arcs is given by [(,, u.], ca

Necessity of Non-repetitiveness. Consider graph G, in Figure 4(b), and note that the cost for
every path is M — 1 except for that of path 1 — 2 — n, which is M + 1. The robust cost for every
path is M + 1 except for that of path 1 — (n — 1) — n, which is M + 2. Let k =n — 3. Thus, the
full-information optimal solution is I* = {(1,3),(1,4),...,(1,n—1)} and z*=M + 1.
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At t=0, I =0, P°=1— 3 — n, and the interdictor observes 2" =M — 1. At t =1, a GRN
policy interdicts paths 1 -2 —>n,1 -3 —n,...,1 > n —2 —n and expects to observe 211%’* =
M + 2. This decision results in P! =1 — (n — 1) — n and the interdictor observes z'* = M — 1.
Note that in the next time period, with (5) and (6), if the interdictor repeats I'**, then 2z?* =
2% = M — 1. However, there are other better solutions given by not repeating I'*; for example, if
P’ ={(1,2),(1,3),...,(1,n=3),(1,n—1)}, 25" = M +1 > z"*. Therefore, the solution is improved
by forcing the interdictor to explore different solutions.

Finally, we note that a non-consistently non-repetitive policy that solves (6), without the non-
repetitiveness constraints, always have I*™ = I'* ={(1,2),(1,3),...,(1,n —2)} for all ¢ > 2. This

solution is suboptimal under full information.

4. GRN Policies under Imperfect Feedback

In this section, we consider the properties of the policies in A under imperfect feedback. Recall
from Definition 2 that under response-imperfect feedback, the interdictor observes a set P’ C P?,
and that under value-imperfect feedback, the interdictor also learns the costs of the arcs in a
further subset P! C P!. Because there is uncertainty surrounding the feedback, we measure the
performance of the GRN policies using the expected time-stability criterion.

We begin analyzing how the feedback in each setting can be used to update the beliefs on the cost
vector. Let R denote the cost vectors at time ¢ that agree with the information of the response-
imperfect feedback. Recalling that P! is the subset of arcs in P* observed by the evader, we have that

Rt = {c €R™: IPES(I') 6. PPCPand Y ¢, = z(ﬁ)},
a€P
where we recall that Sz(I') refers to shortest paths in G(I') when costs are given by vector ¢. In
this case, the “best” (most informative) update mechanism is given by C**!' =C*NR".
Similarly, let V* denote the set of cost vectors in period ¢ which satisfy the additional information

given by value-imperfect feedback, i.e.,
Vii={eeR™: ¢,=c,, Yae P}, (8)

thus, we have that, in this setting, the best update mechanism is given by C*!:=C'NR! NV
The next result establishes an upper bound on the expected time-stability for the case when C?
is updated only with the information contained in V*. In particular, it shows that E(7*) = O(m)

for fixed values of p, and p,.

PROPOSITION 3. Let A € A and consider value-imperfect feedback, where p,. >0 and p, > 0. If
the interdictor updates the uncertainty set by C**' =C'N V! for allt € T, then

E(r) < .
p?"pU
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The upper bound for E(7%) in Proposition 3 may be loose. However, the next result establishes

a lower bound on the probability that the time-stability is of the same order as the upper bound.

COROLLARY 2. Let A€ A and consider value-imperfect feedback, where p, >0 and p, > 0. If the
interdictor updates the uncertainty set by C'™t =C! NV for all t € T, then there exists 0 < a <1
such that

Pr(T’\ > Yo m ) > (1—7)%a?/2,
PrDv

for any 0 <~y <1.

We end this section by noting that, just as in the case of standard feedback, updates involving
R! in settings under response-imperfect and value-imperfect feedback result in sets that are not
necessarily convex. Such non-convexity implies that problem (6) cannot be reformulated or approx-
imated in a straightforward way into a single-level MIP problem, which is a common approach to
solving multi-level optimization problems, see, e.g., Audet et al. (1997), Zare et al. (2019) and our
further discussions in Section 5.

With these considerations in mind, we explore the “weak” update R! (that is weaker than
R"). In particular, under response-imperfect feedback, because P' C P!, we consider the following

alternative update mechanism
CHl =Ct AR, ::ctm{éeRm: Zéagz“}. 9)
acP}
Similarly, we define a “weak” update mechanism under value-imperfect feedback as follows
ctt=c'nriNV!
:Ctﬂ{éeRm: Y gz“}ﬂ{éeRm: &0 = c, for aepj}

aeP}f (10)
:Ctm{éeR””: Z éagzt”\—an, Co = Cq foraEP]f}.
acPt\P} a€P}

Under these weak update mechanisms, the uncertainty set C* is a polyhedron, in which case the
r.h.s. of (4) belongs to the class of robust shortest path problems with a polyhedral uncertainty set,
which are N P-hard (see Remark 2). While, the three-level problem (6) remains computationally
difficult in general, it is better suited for approximation methods. For this reason, in Section 5 we
propose computing a certain approximation of (6) in each time period, which can be implemented

using an off-the-shelf MIP solver.



Yang, Borrero, Prokopyev and Sauré: SPI with Incomplete Information and Limited Feedback

18

5. Computing GRN Policies and Their Approximations

The ability to solve problem (6) depends on the update mechanism used: we know that under
the strongest update, uncertainty sets are not necessarily convex, and said problem is in general
intractable. Hence, in this section we focus on polyhedral uncertainty sets, which arise, for
example, when considering the weak updates introduced in the previous section. As mentioned in
Remark 2, robust shortest path problems with polyhedral uncertainty are also N P-hard in general
and require specialized solution approaches. Thus, we focus on the development of approximate
policies that are more tractable and can be implemented using off-the-shelf MIP solvers. Note
that the approximate nature of the proposed policies arise from approximately solving (6), in the
context of Definition 4, rather than from focusing on providing approximability guarantees with
respect to zfé*. We show that the resulting approximate GRN policies enjoy the same theoretical

properties as GRN policies, in particular, with respect to their convergence.

5.1. Preliminaries

Consider decision variable x* to denote the interdictor’s decisions in period t. That is,

T, =

. 1 if arc a is interdicted,
0 otherwise,

thus I' ={a € A: 2!, = 1}. (In the sequel we use "™ and I"™ interchangeably when it is clear from
the context.) We impose that z' € X, where X := {z' € {0,1}™: Y _, 2! <k}. For each node
i € N, we define the sets of outgoing and incoming arcs as 67 (i) and §~ (4), respectively. For a given
decision z!, the evader traverses through a 1 —n shortest path, which admits the following linear

programming formulation:

2(I') = myin cly (11a)
s.t. Yy, <1—2! Va€ A, (11Db)
1 i=1,
Z Yo — Z Ya=1< —1 i=mn, (11c)
a€dt (i) a€8~ (i) 0 ieA\{l,n},
Yo >0 Vac A (11d)

Constraints (11b) ensure that the evader cannot use interdicted arcs. Constraints in (11c) corre-
spond to a network flow formulation of the shortest path problem, see Ahuja et al. (1993). For
brevity, we write constraints (11c) as By = b, where B is the node-arc adjacency matrix induced
by the graph and b=1,0,...,0,—1]" € R".

Consider now reformulating (6). For s < ¢, define decision variable v* as:

s 0 ifz'=2z°
v =
1 otherwise.
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Note that by time ¢ > s, x° is known and fixed, as well as is z(I°). Then, defining zp(z") = zr(I"),

we can write (6) as follows:

25 = max f (12a)
b, fus
st f—2(I°) < Mwv* Vs <t, (12b)
f—zr(@) <MY (1-v%), (12c)
s<t
H:Ct—xs L, Snv*<n Hmt—azs . Vs < t, (12d)
'€ X,v° €{0,1} Vs < t, (12e)

where |||, denotes an ¢; norm, and M is a sufficiently large constant; for example, we can set M =
(n—1)max,eca{u,}. Constraints (12b)-(12d) encourage the interdictor to explore new solutions not
implemented previously. Formally, if 2* = * for some s < ¢, then v* =0 from (12d) and constraints
(12b) ensure that f is equal to z®. However, if v* =1 for all s <, then constraints (12c¢) force f to
take the value of zr(z").

Two observations are due. First, while constraints (12d) are nonlinear, they can be linearized
using standard techniques. Second, the term zz(z') in constraints (12¢) admit the following refor-
mulation:

zp(z") =min{max{(¢+ M z')"y: ¢€C'}: By=b, y{0,1}"}. (13)
y é

Note that this formulation has an additional penalty term (M ') in its objective function, so
that y, is forced to be 0 whenever a! =1 (see Israeli and Wood (2002) for more details on this

reformulation approach). Thus, a constraint similar to (11b) is not needed in problem (13).

5.2. Approximate GRN Policy under Polyhedral Uncertainty Sets

Consider settings where C* can be written as a polyhedron. In particular, assume that
C'={¢ceR}: G'¢<g'},

where C° = {¢ e RT : G'¢ < ¢°}, G° = [I; -1, ¢ = [wr,...,Upm,—01,...,—0,]" and I is the
identity matrix in R™*™, Polyhedral uncertainty sets arise, for example, when using the weak
update mechanisms (9) and (10) from Section 4, under response- and value-imperfect feedback,
respectively. In these settings, (13) is a robust shortest path problem with polyhedral uncertainty,
which is known to be NP-hard (Buchheim and Kurtz 2018). Furthermore, because of (13),
standard techniques in bilevel optimization that reformulate (12) as a single-level problem (see,
e.g., Audet et al. (1997), Zare et al. (2019)), cannot be applied. While it is customary to solve
such difficult problems using tailored decomposition methods (see, e.g., Zeng and Zhao (2013)),
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here we focus on policies that can be implemented using off-the-shelf MIP solvers. With that in

mind, consider a relaxation of (13), where we drop the integrality restrictions for y, i.e.,
zp(z") =min{max{(é+ M 2")"y: ¢€C'}: By=b, yeR}}. (14)
Yy é
We propose the use of approximate GRN policies that replace Zg(z') in (5) with

: (a) = {zR(art) if o' #£x° Vs <t, (15)

Zp(x
= z(I*)  if ' =2* for some s <t.
Thus, the approximate policy implements an interdiction solution z* that solves the problem
tyx A~ t\ . .t
zp =max{Zp(2’) 2" € X}

in each time period t. That is, the approximate GRN policies solve (12) after replacing zx(z")
in constraint (12c¢) with its relaxed version zp(z') as defined above, resulting in the following

optimization problem:

2y = max f (16a)
xzt, f,us
st. f—2°< Mv® Vs <t, (16Db)
f—zpla) <MY (1-0%), (16¢)
s<t
|2" — 2 L, Snv*<n H:Ut—:vsHl Vs <t, (16d)
'€ X,v°€{0,1} Vs < t. (16e)

Formally, we define the set of approximate GRN policies A as follows.
DEFINITION 5. Policy A belongs to the set of approximate GRN policies A if and only if z%*

solves (16) for ¢t < §’\, and zt* = 2£™ for all g <t <T, where for a policy A\ we define
& i=min{te T: 2y =2"}.

The robust nature of GRN policies can be interpreted as emanating from the assumption that
the follower implements a solution to the Stackelberg game in (13) between the follower and the
nature: once the follower selects an 1 —n path, the nature responds by selecting the cost vector
that is least favorable for the follower. Under this interpretation, approximate GRN policies can
be viewed as policies that allow the follower to commit to a mixed strategy; see, e.g. von Stengel
and Zamir (2010) for an analysis of Stackelberg games with mixed strategies.

We show next that the theoretical properties discussed in Sections 3 and 4 continue to hold for
the case of the proposed approximate GRN policies. For that, we first establish that the inequalities

in Theorem 1 continue to hold:
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PROPOSITION 4. Fort € T\ {0} given and X\ € A, one has that z'* < z* < 23"

This result implies that the convergence results (e.g., Propositions 1 and 3, and Corollary 2)
established for GRN policies also hold for their approximations in Definition 5.

Under the game-theoretic interpretation of approximate GRN policies, Proposition 4 says that,
while the follower’s commitment to mixed strategies should improve its position, it does not lead
to unattainable costs (in optimality). In this regard, the results holds more generally, independent
of the properties of C*, as long as A1 (c€C") holds (and nature’s problem is well defined).

Next, we reformulate (16) as a single-level MIP for the case of polyhedral uncertainty sets, which
enables implementation of approximate GRN policies using off-the-shelf solvers. Our starting point

is (14), which for polyhedral uncertainty sets becomes:
zp(z') =min{max{(é+ M z')"y: G'¢<g'}: By=b, yeRT}.
y é

For any given y, the inner maximization of the objective function above is a linear program. Thus,
we can use strong duality to obtain the following single-level reformulation:
zp(z') == min (¢") 'p+ (Ma")Ty
Y,p
st. (GY'p=y,
By =b,
t
yeR™, peRlL
Defining @ as the feasible region in the formulation above, we have that constraints (16¢) become
min{(g") p+ (Ma")Ty: (y.p)€Q}>F—M> (1-v°).
s<t
Noting that the formulation in the Lh.s. above is a linear program, we use strong duality once
again, and conclude that f and v® satisfy constraints (16¢) if and only if there exist vectors ¢ and
w satisfying the following constraints:
Vlw>f-MY (1-v*), G'ée<g, BTw-é< M,
s<t

Thus, summarizing the above, we have that for the case of polyhedral uncertainty sets, formu-

lation (16) admits the following MIP reformulation:

MIP(G", g") = max f (17a)
st f—2°< Mv* Vs <t, (17Db)
f=bTw< MY (1-v%), (17¢)

s<t
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G'ée<g' (17d)
B'w—¢é< M, (17e)
|2* — 2 L Snv'<n |* — 2 . Vs <t, (17f)
' e X,v° €{0,1} Vs <t. (17g)

Next, we show that under some conditions, approximate GRN polices coincide with GRN polices,

i.e., A=A, and the latter set can also be computed using single-level MIPs.

5.3. Special case: GRN Policies without Uncertainty Set Updates

Consider a setting without any uncertainty set update, i.e., C* =C° for all ¢t € T. Recall that
C'={¢ceRm: {,<é, <u, Ya € A}. Then the inner maximization problem of (13) admits an
optimal solution u := (uy,...,u,;,)", where u is the vector of arc costs’ upper bounds. Thus, problem

(13) reduces to the following single-level MIP:
zp(x') =min{(u+ Ma")"y: By=b, y€{0,1}"}.
Y

Moreover, recall that B is the node-arc adjacency matrix induced by graph G(N, A). Hence, B is

totally unimodular and zg(2") can be computed as the following linear program (LP):
zr(z") =min{(u+ M=z")"y: By=>b, yeR}},
Yy

where the integrality restrictions for y are relaxed. This observation also implies that approximate
GRN policies coincide with GRN policies whenever C* =C° for all t € 7.
Using strong duality of the above LP formulation, we can further rewrite constraint (12c) as
max{b’p: B'p<u+Mz'} > f— MZ(l — ).
p
s<t

Moreover, f and v® satisfy the above constraint if and only if there exists a vector p € R™ such

that b'p> f—M > _,(1—v*) and B"p <u+ Ma'. Therefore, formulation (12) reduces to:

MIP(C?) := max f (18a)
xt, f,v8,p
st f—2°< Mv* Vs <t, (18b)
f=bTp< M (1-vY), (18¢)
s<t
BTp<u+ Mz, (18d)

(12d) — (12e),

which is a single-level MIP model.

Finally, from the above discussion it is also clear that approximate GRN policies coincide with
GRN policies whenever only value-imperfect feedback with V', see (8), is used. For the latter,
the same MIP can be applied after replacing u, with the appropriate value of ¢, whenever it is

observed.
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6. The Case of a General Evader
In this section we analyze the implications of relaxing our assumption on the evader’s response,
namely that his response must be a shortest path in the interdicted network. Instead, we consider
settings in which such a response is constrained to be any valid 1 —n path. The latter implies that
the evader may commit to implement non-optimal responses to the interdictor’s actions indefinitely.
That is, the cost incurred by the evader and then observed by the interdictor after an interdiction
I'™ is not necessarily equal to the shortest path cost in G(I*™), i.e., 24" > 2(I*™) for any policy .
Thus, it is necessary to revisit the performance criterion used.
When the evader responds with a shortest path, time-stability provides a bound on a policy’s

regret. That is,
Rt,-rr — Z(Z* _ Zs,w) S /1/7_71"

s<t
where 1 is an upper bound on (z* — z%7) for each s; recall Remark 1.
Note that, when the evader’s response is instead a valid 1 —n path, there is no guarantee that
z* > 2%7™. Nonetheless, one can bound the regret by discarding periods on which the evader’s actions

are sub-optimal. Specifically, we have that

Rtnr — Z(Z* _ zs,ﬂ) S Rt,w = Z(z* _ Zs,ﬂ')-l— S lu7~_7r’ (19)

s<t s<t

where (-)* denotes the positive part of the argument, and we refer to Rb™ as the generalized regret.

Similarly, we define the generalized time-stability as:
Fl=14|{teT 2" >2""}. (20)

Note that the generalized time-stability: (i) coincides with the traditional time-stability when
the evader responds in a greedy fashion, for the proposed policies, as they both indicate the time
it takes the interdictor to achieve the full information solution; and (i7) accounts for the time
periods on which the evader effectively takes advantages of the interdictor’s initial uncertainty to
increase the regret.

Information Update. In this setting, information updates are weaker in the sense that only
the fact of the existence of a response can be incorporated, not its optimality (from the evader’s

perspective). For example, under standard feedback, the update in (3) becomes
c=ctn {ée]RT: IPESI') st Y e, < zt}, te T\T. (21)
a€P

Note however, that properties A1 and A2 continue to hold under this update. Also, as expected,

the update continues to be non-convex in general, as illustrated next.
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ExaMPLE 3. Consider the instance in Figure 2(a), and suppose that k= 1. Note that C° =
[0,4] x [0,5] % [5,5] x [5,5]. Suppose that I° =), so that P® =1 — 2 — 4 and the interdictor observes

2% =6. Using update (21) results in C' =C°N{é; 2 =1 or ¢, 3 =1}, which is non-convex. |

GRN Policies. The proposed policies operate as in the case of a greedy evader, i.e., the interdictor
assumes that the evader’s response is an 1 — n shortest path; hence, the expected cost zg(I")
continues to be given by (4). However, corrections to such an expectation on solutions implemented
in the past must account for the fact that said solutions might have not been 1 —n shortest paths.
With this, (5) is replaced by:

- I if I'#£1°5 Vs<t,

(1) = 4 1) DI Vs (22)

min{z*: s<t, I*=1I'} if I'=1I° for some s<t.

Moreover, we define

2 =max{Zp(I"): I' CA|I'| <k}, VteT

as the problem that the interdictor solves in each time period. Thus, we define the tailored GRN
policies (A%) as follows.

*

DEFINITION 6. Policy A € A® if and only if I** = I'"%* when 2/~%* > 205" and

I'* € argmax{Zz(I"): |I'| <k, I' C A},

otherwise. |
Convergence under Standard Feedback. As emphasized earlier, unlike in Section 3, the
observed costs do not necessarily provide a lower bound to the expected cost, as the evader might
act suboptimaly at any time. This observation is formalized in Lemma 1, which is the equivalent

of Theorem 1 in this more general setting.
LEMMA 1. Forte T\ {0} given and A\ € A, one has that z* < 33"

Note, however, that because the expected cost Zfé* is a valid upper bound to z*, if the observed cost
turns out to be not lower than Z;;é*, then this implies that the evader is acting suboptimaly. Hence,
such a period does not contribute to increasing the modified regret R"™. Thus, the optimality
certificate alluded in Theorem 1 still applies in the sense that, whenever the observed cost is
greater than the expected one, then the interdictor is sure that the regret is not growing. Similar
to Section 5, when the update mechanism used results in a polyhedral uncertainty set, we can
compute approximate GRN policies via the single-level MIP formulation (17) (see below).

As in Section 3, the non-repetitive nature of the proposed policies ensure the finiteness of the

generalized time-stability 7%, which is formalized next.
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PROPOSITION 5. Consider A € A9 and standard feedback. Then,

=X (T 1.
T _<k>+

The tightness of the bound above follows from Proposition 1, as the greedy evader is a particular
case of the general one.

One can see that information updates under different forms of imperfect feedback admit rather
straightforward extensions to the case of general evader. Also, the bounds derived in Section 4 hold
for the generalized time-stability and the weaker information updates from Section 5.2 are also
applicable for the case of a general evader.

MIP Formulations for approximate GRIN Policies. Relative to the case of greedy evader,
computation of approximate policies differ in that the cost expectations and information updates
ought to be adjusted differently. With respect to the the first of these issues, from Section 5 we see

that (6) can be written as

o= max ! (23a)
st. f—min{z(I"): u<t,I*=I°} < Mv® Vs <t, (23b)
(12¢) — (12e) hold. (23c)

Thus, similar MIP formulations for approximate policy computation can be derived, provided
that information updates maintain the polyhedral representation of the uncertainty set. This is
certainly the case when there is no update (see Section 5.3). As for the weak update mechanisms
explored for the case of imperfect feedback, as noted above, they are both compatible with the weak
feedback available for the general evader. Thus, the formulations in Section 5.2 still apply to this

more general setting with minor modifications to take into account that (17b) is replaced by (23b).

7. Computational Study

In Section 7.1, we describe our test instances and three benchmark policies, which are
compared against the GRN policies in Section 7.2. In Section 7.3, we explore to what degree
the performance of the approximate GRN policies depends on the information revealed to the
interdictor. Sections 7.4 and 7.5 perform sensitivity analysis of the approximate GRN policies
with respect to the quality of feedback and the initial information available to the interdictor. In

Section 7.6, we study the performance of our policies for a general evader.
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7.1. Test Instances, Benchmark Policies, and Implementation Details

Graph and cost structure. We test our policies on three different graph instances: uniform
random graphs (Erdos and Rényi 1959), layered graphs (Bastert and Matuszewski 2001), and
Watts-Strogatz graphs (Watts and Strogatz 1998). For brevity, we focus our analysis on the results
for uniform random graphs; the results for the latter two types of graphs are fairly similar and
thus, they are provided in Appendices D and E.

The uniform random graphs used in this paper are generated following the model of Erdos and
Rényi (1959).° Based on the cost structure we divide our instances into four categories: random,
right-skewed, symmetric and left-skewed. For the random cost structure, ¢,, ¢, and u, are three
integers randomly generated from [0, 50] for each arc a € A, and then sorted so that ¢, < ¢, <u,. For
the other types of the cost structure, for each arc a € A, we first generate ¢, and u, randomly from
uniform integer distributions U (0, 50) and U (¢,,50), respectively. Consequently, cost ¢, is computed
as U, + (v — £o)PBa, where 3, is drawn from a Beta(d, ) distribution. We set (9,60) to be (2,10),
(10,2) and (10,10) for the left-skewed, right-skewed and symmetric cost structure, respectively.
Benchmark policies. Similar to Borrero et al. (2016), for settings with no uncertainty set
updates, we consider three benchmark policies. For each of them, the interdictor is greedy and
non-repetitive, but does not consider a worst-case realization for the cost, but instead inputs a
(single) value for ¢ based on the known lower and upper bounds. Specifically:

o Lower bound policies I11: the interdictor assumes that the cost of each arc is given by
o=V, VacA.
e Mean bound policies 11,;: the interdictor assumes that the costs of arcs are given as
Co=ly+1u,)/2 YaeA.

e Random bound policies Il: for each arc a € A, the interdictor randomly chooses either lower
or upper bound of the arc as its real cost. That is,

Cq —

. {, with probability %,
u, with probability £.

Using the techniques in the previous sections, we reformulate the problem faced by the interdic-
tor each period as the single-level MIP (17) where ¢ is evaluated based on the above realizations
and this is no longer a decision variable. Note that when no uncertainty set update is implemented
(Ct=C° for all t € T), the problem faced by an interdictor implementing benchmark policies is

6 That is, a uniform random graph with n nodes is generated in a way that for each pair of nodes, there is an arc
between them with probability p. We use p=0.5 in all our experiments.
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(18) where u is replaced with above realizations of ¢. Note that as discussed in Section 5.3, when
we assume that C' = C° for all t € T, GRN policies reduce to upper bound policies where the
cost vector is composed with upper bounds; i.e. é, = u, for all a € A. However, when we have
more information in the update mechanism, e.g., R!, and V', approximate GRN policies are more
effective than the upper-bound policies.

Implementation details. The algorithms are coded in C4++ using CPLEX 12.6 as the MIP
solver. The experiments are performed on a Windows PC with 3.7 GHz CPU and 32 GB RAM.

Table 2 Performance of policies in A and benchmark policies without information updates (n = 15, uniform random

graph, greedy evader).

k=2 (T=500) k=4 (T=1000)
Graph A L M TR A L M TR
Time-stability 42.6 450.218 201.2%8  450.2'8 181.9' 950.1'° 501.0'° 1000.02°
MAD 55.9 89.6 239.0 89.6 189.4 94.8 499.0 0.0
) Relative difference 0.0% 21.2% 3.8% 21.6% 0.7% 23.6%  4.2% 18.6%
Right-skewed MAD 00% 135% 4.9%  104%  1.3%  142% 48%  7.4%
Total regret 104.9 4850.0 925.0 5081.5 727.4 13900.0 2350.0 10759.3
MAD 147.6 2835.0 1195.0 2323.4 956.7 8700.0 2655.0 4874.5
Time-stability 244.5%  350.6'* 74.72 400.416 871.4'7  800.4'7 232.3* 800.6'6
MAD 178.9 209.2 104.5 159.4 218.6 319.4 329.3 319.1
Symmetric Relative difference 7.3% 16.7% 0.3% 12.4% 17.5% 16.7% 1.0% 10.3%
MAD 9.3% 13.9% 0.6% 9.7% 10.0% 11.3% 1.6% 7.3%
Total regret 1498.2 3075.0 101.7 2698.4 6857.7 7300.0 442.3 4561.0
MAD 1254.9 2647.5 147.1 2206.9 3016.1 5060.0 656.9 2996.1
Time-stability 408.4' 176.37 24347 237.38 1000.02° 501.0'2 912.2'7 729.712
MAD 137.4 226.6 182.1 213.8 0.0 499.0 149.3 327.2
Left-skewed Relative difference 26.9% 4.3% 7.2% 10.2% 36.6% 4.5% 14.6%  18.7%
MAD 18.3% 5.6% 9.4% 12.5% 17.1% 4.9% 24.6% 22.3%
Total regret 3191.8 450.0 1255.9 1317.3 9715.2 1300.0 6268.1 7228.4
MAD 1983.8 585.0 882.2 1175.9 4479.9 1450.0 3309.9 5729.6
Time-stability 338.412 425.317 211.4% 401.1'6 1000.0%° 850.5'° 702.0'3 919.1'8
MAD 194.0 127.0 217.2 158.2 0.0 254.2 362.4 145.6
Relative difference 16.8% 274% 6.8% 17.5% 36.3% 29.5%  15.9% 21.0%
Random MAD 16.8% 17.5% 9.7%  15.0%  14.0% 17.2%  15.6%  14.9%
Total regret 3066.4 4825.0 1255.9 3210.0 14264.3 13400.0 6849.7 9478.0
MAD 2329.5 3190.0 1474.8 2822.2 5500.0 8440.0 4803.6 6237.4

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within T" time periods.

7.2. Comparison of Policies without Information Updates
In our first set of the computational experiments we compare the performance of the GRN
policies A € A against the benchmark policies when no information updates are used, i.e., C* =C°

for all periods t. We test the policy performance using the right-skewed, symmetric, left-skewed
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and random cost structures as outlined in Section 7.1. For each structure we randomly generate 20
instances with n = 15. Finally, we have k € {2,4}, and set either T'= 500 or T'= 1000, respectively.

We compare the policies’ average time-stability and average total regret, as well as their mean
absolute deviation (MAD). Also, we compute the relative difference between the cost returned by
the full information optimal solution, and the cost observed from the evader under a policy either
at time T or at the time period when the interdictor starts repeating the same solution, i.e.,

Zt,ﬂ' _ Z*

-100%,

where ¢ is the time period when zb™ = z+17 = | = 277 holds. We use the average relative
difference and its MAD to measure policy performance. Table 2 summarizes the performance of
policies A and the benchmark polices across all cost structures. There, A\, 7, my and 7w denote
the policies in A, IT, IT); and IIy, respectively.

It appears that policies A and 7, outperform the other policies in general as they perform
reasonably well in all of the scenarios and perform best in most of them. In particular, policy A
performs best in settings with right-skewed costs, and policy 7, performs best in settings with
symmetric and random costs. In contrast, policy w7 performs reasonably well only with left-skewed
costs which are arguably favorable to ny,.

Comparing among different settings, we see that for right-skewed costs, GRN policies perform
significantly better than all other benchmark policies, which is rather intuitive given its robust
nature. However, X loses its relative advantage for k = 4, especially for networks with left-skewed
and random costs. Furthermore, observe that the benchmark policies fail to find an optimal solution
in at least one of the instances for all cost structures within 7" steps, see the numbers in superscript
of Table 2. Recall that unless the interdictor performs in a robust manner (as in A policies), there
is no guarantee that a policy achieves an optimal solution, see our discussion in Section 3.2.

A similar setting as the one shown above is presented in Borrero et al. (2016). There, the
authors demonstrate that the greedy and pessimistic policies are better than the benchmark policies
and, moreover, that all the instances are solved to optimality. In contrast to our experiments,
in Borrero et al. (2016) the authors assume perfect feedback, which yields the worst-case time-
stability linear upper bound of |A|. Here, given the limited feedback, time-stability for the GRN
policies is exponentially bounded by the number of arcs. As we set T to be small for the sake
of computational tractability, there are some instances where the GRN policies take more than
T periods to find an optimal solution. However, for sufficiently large values T" the GRN policies
should outperform the benchmark ones, under standard feedback for at least some test instances.

To summarize the discussion above we conclude that the GRN polices demonstrate overall good

performance across all cost structures for sufficiently small values of k as shown by the results
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in Table 2 for £k =2. On the other hand, the benchmark policies fail to converge for at least one
instance in each of the considered cost structures. The performance of the GRN policies deteriorates
significantly as k increases as shown by the results in Table 2 for k = 4. These observations are
not surprising given the worst-case time-stability result derived in Proposition 2. In addition, the
observed results emphasize that with very limited feedback (i.e., only the total cost of the evader’s
shortest path is revealed to the interdictor) it is rather difficult to converge to a full-information
optimal interdiction solution, in particular, as the value of k increases. Similar results hold for

layered and Watts-Strogatz graphs, see Appendices D.2 and E.2, respectively.

7.3. Improvements When Information Updates Are Applied

In this section, we study the performance of approximate GRN policies under response-
imperfect (\,.) and value-imperfect feedback (A,) and compare their performance to that of policies
that assume standard feedback (\). Recall from Section 5.3 that under standard feedback, when
uncertainty sets are either not updated or updated only through value-imperfect updates with
V¢, then approximate GRN and GRN policies coincide. We implement the weaker versions of the
response- and value-imperfect updates, as defined in (9) and (10), respectively, due to the convexity
requirement for the uncertainty set updates in our MIP models, see Sections 2.3 and 5.2.

We consider graphs with a number of nodes n € {15,20,...,50} for all four cost structures. The
time horizon is set as T'= 500 and for each cost structure we randomly generate 20 instances. For
response-imperfect feedback we set p, = 0.5, and in value-imperfect feedback we set p, = p, = 0.5.
We measure policy performance using the average time-stability and MAD, see Table 3. Further-
more, because the mean-bound policy 7,; performs better than the other benchmark policies in
Section 7.2, we also choose to explore the performance of 7, with the value-imperfect updates,
see the results in the column denoted by m,(+)) in Table 3.

As expected, the performance of the policies improve as more information is revealed to the
interdictor, see the results for \,, A, and 7, (+)V) in Table 3. We also observe that policies in A,
and A, significantly outperform the other considered policies, which emphasizes the importance of
having sufficiently good information feedback.

Finally, we note that policies m,; are outperformed by policies A, and A, even when additional
information is used from value-imperfect feedback as in 7y;(4+V). More importantly, policies 7y,
and 7y, (+V) fail to converge for at least one test instances in all cost structures. These observations
are consistent with our theoretical derivations and negative examples discussed in Section 3. Similar

results hold for layered and Watts-Strogatz graphs, see Appendices D.3 and E.3, respectively.



Table 3 Average time-stability and MAD (in parenthesis) for A € A and 7y € II); policies when information updates are applied (k =6, T'= 500, uniform random graphs, greedy evader).

Right-skewed Symmetric Left-skewed Random
n A A AN T (V) A AN T (V) A A Ay v (V) A A A T (V)
178.5* 33.0' 6.4 350.6* 325.7'3 475.3'9 47.8' 13.7 134.3° 103.1* 500.02° 29.1 20.2 476.1'° 20.8 500.0%° 33.6 20.7 453.0'% 231.4°
15 (198.7) (46.7) (3.3) (209.2) (226.6)  (52.8) (45.3) (5.7) (182.9) (158.8)  (0.0) (7.5) (5.5) (45.5) (8.0) (0.0)  (11.0) (6.5) (84.7) (241.7)
20 307.9'% 11.9 7.1 350.6'4 350.6 500.0° 50.8' 16.5 196.87 129.8° 500.0%° 57.6' 20.8 500.0% 27.6 500.0%° 41.4 21.5 475.2'% 113.3%
(205.9) (6.1) (3.5) (209.2) (209.2) (0.0)  (45.1) (4.8) (212.3) (185.1) (0.0) (44.2) (7.6) (0.0) (8.3) (0.0)  (19.7) (4.5) (47.1) (154.7)
o5 317.3'2 11.7 6.0 350.6'* 350.6' 500.0%° 31.0 17.6 179.47 54.52 500.0%° 40.6 32.1 500.0*° 30.6 500.02° 40.2  24.7 500.02° 260.0'°
(219.3) (4.7) (2.9) (209.2) (209.2) (0.0)  (15.5) (3.7) (224.4) (89.1) (0.0) (12.1) (17.1) (0.0)  (9.4) (0.0)  (10.6) (7.1) (0.0)  (240.1)
30 362.1'* 156 8.8 375.5' 375.5' 500.0%° 30.1 16.2 205.8" 153.9% 500.0%° 44.3 27.5 500.0* 27.9 500.0° 359 23.8 500.0%° 96.7°
(193.1) (8.2) (3.3) (186.8) (186.8) (0.0)  (12.3) (6.0) (235.4) (207.7) (0.0) (10.7) (6.9) (0.0) (6.2) (0.0) (12.2) (5.7) (0.0)  (121.0)
35 314.5'2 18.3 8.4 400.4' 375.5' 500.0%° 36.0 15.3 111.17 55.62 500.0%° 40.3 27.3 500.0* 36.5 500.02° 39.2  23.3 500.0° 239.2°
(22.7)  (9.9) (7.2) (159.4) (186.8) (0.0)  (14.5) (5.6) (155.6) (88.9) (0.0) (86) (7.0) (0.0) (7.8) (0.0) (16.2) (5.4) (0.0) (234.7)
40 332.8'% 12,2 7.23 325.7'% 400.4'6 500.0° 29.8 16.8 242.9" 105.3% 500.0%° 66.1' 25.4 500.0%° 34.9 500.0%° 65.5! 29.2 500.0*° 167.7°
(217.4) (7.8) (4.7) (226.6) (159.4) (0.0)  (9.4) (3.8) (231.4) (157.9) (0.0)  (47.9) (7.0) (0.0) (8.6) (0.0) (45) (6.5) (0.0)  (199.4)
45 380.3'4 229 7.3 425.3'7 400.4'° 500.0%° 27.6 17.5 468.6'% 179.57 500.02° 69.5 27.0 500.02° 40.6 500.02° 42.3 28.4 500.0° 166.1°
(167.6) (13.9) (2.5) (127.0) (159.4) (0.0) (6.3) (4.1) (56.6) (224.4) (0.0) (46.3) (7.5) (0.0) (9.7 (0.0)  (19.9) (8.9) (0.0)  (200.3)
203.3'% 21.4 10.8 425.3'7 425.3'6 500.0° 34.5 17.7 366.2'2 130.6° 500.0%° 50.2 25.4 500.0%° 58.7* 500.0%° 50.2  27.3 500.0*° 195.17

50 (927.4) (13.9) (47) (127.0) (127.0)  (0.0) (9.8) (5.3) (166.5) (184.7)  (0.0) (22.5) (7.2) (0.0)  (44.1) (0.0)  (18.8) (9.3) (0.0) (213.4)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within 7" time periods.
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7.4. Policy Performance: Sensitivity with Respect to p, and p,

We now study the approximate GRN policies’ performance under response-imperfect and value-
imperfect feedback as a function of the probability of learning information. To this end, we set k =6
and n =50 for all the experiments and generate 20 instances with the different cost structures.

Figure 5 depicts the behaviour of time-stability for response- and value-imperfect updates with
the right-skewed costs (see Appendix C for the results with the symmetric and left-skewed costs).
As expected, the time-stability of both policies decreases as p, and p, increase. Note that A, policies
have better time-stability than A, policies; moreover, their time-stability also decreases faster than
that of A.. These observations show that the policies are highly sensitive to the availability of
information, and emphasize the importance of having access to a high quality information feedback.

For the results on layered and Watts-Strogatz graphs, see Appendices D.4 and E.4, respectively.

7.5. Policy Performance: Sensitivity with Respect to the Quality of the Bounds

Next, we study the performance of our approximate GRN policies with respect to the quality
of initial information, that is, the magnitude of u, — I, for all a € A. The value of ¢, is generated
uniformly from U(500,1000) and, as in Borrero et al. (2016), we divide the test instances into
three categories: (¢, — X5 ,¢a + XJF), (ca —5X,,¢a +5xF) and (¢, — 25X, ,¢a + 25X ), where x,
and x; are drawn uniformly from [1,20] for all a € A. We refer to these three sets of instances
as “I.17, “I.2” and “I.3”, respectively. Clearly, 1.1 has the best quality bounds, and 1.3 has the
worst quality bounds. We generate 20 instances for 1.1, 1.2 and 1.3, and set k=6 and T'= 200. We
consider uniform random graphs with n =50, and study policy performance for various values for
probabilities p, and p,. Table 4 summarizes the results. The results on layered and Watts-Strogatz
graphs can be found in Appendices D.5 and E.5, respectively.

The results show that policy performance is rather sensitive with respect to the quality of initial
information; particularly, as the width of the intervals increase, the time-stability increases. Note
that the effect is amplified under response-imperfect feedback. In addition, the effect that the
quality of bounds have on policy performance is smaller when p, and p, take larger values, i.e., when
the interdictor can learn more information from the evader’s actions. This behavior is indicative
of an important trade-off, namely, in order to improve the performance of the GRN policies, the
interdictor can either seek to improve the quality of the initial deterministic information, or seek

to improve the probabilities of observing real information from the evader.

7.6. Policy Performance for the Case of a General Evader
In this section we consider the generalization introduced in Section 6 for the case of a general

evader, who may implement a non-optimal response (i.e., a path that is not necessarily shortest)
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Figure 5  Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the right-skewed costs (7' =50, uniform random graphs, greedy evader).
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to the interdictor’s actions in each time period. In our experiments we assume that the evader’s

feasible solutions are contained in the path set:
S'=S8(I"YU{P: PeS(I'Ua) VYa such that IP" € S(I'), a € P'}, (24)

that is, St contains shortest paths in the interdicted network along with an additional set of evasion
paths generated in the following manner. For every shortest path in the interdicted graph, we
assume that at least one arc in the path cannot be used by the evader and then generate another
evasion path, namely, the shortest possible one, that does not contain the said arc in the interdicted

graph. We repeat this procedure for each arc in all shortest paths. By construction, the set St
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Table 4 Behaviour of policies in A with respect to the cost bound quality (¥ =6, T'= 200, uniform random graphs,

greedy evader).

Pr =Dy 0 0.1 0.2 03 04 05 06 07 08 0.9 1
Time-stability 122.511 76.02 274 20.5 99 6.9 53 49 3.8 3.3 2.8

11 MAD 85.3 58.0 13.6 100 52 34 22 28 1.3 1.1 0.6

. Relative difference 0.6% 0.1% 0.0 00 00 00 00 0.0 0.0 0.0 0.0
MAD 0.6% 0.2% 0.0 00 00 00 00 0.0 0.0 0.0 0.0

Time-stability 200.0%° 179.5'7 83.9' 444 26.4 16.8 11.7 85 7.0 6.4 5.2

Policy A, 19 MAD 0.0 349 371 167 103 44 45 20 1.3 14 06
Relative difference 7.1% 4.7% 02% 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MAD 1.4% 26% 05% 00 00 00 00 0.0 0.0 0.0 0.0

Time-stability 200.0%° 194.0*® 132.0®° 67.3 36.6 30.9 16.2 19.9 10.2 9.3 74

I3 MAD 0.0 10.9 42.3 149 115 174 3.4 105 1.6 1.5 0.8

- Relative difference 34.6% 28.2% 3.15% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAD 5.5% 9.0% 54% 0.0 00 0.0 00 0.0 0.0 0.0 0.0

Time-stability 130.4%2 58.51 23.8 11.7 &80 5.7 43 30 32 21 1.8

1 MAD 83.5 42.1 119 68 39 29 20 1.1 1.8 0.8 0.6

. Relative difference 0.6% 0.0 0.0 00 00 00 00 0.0 0.0 00 0.0
MAD 0.6% 0.0 0.0 00 00 00 00 00 0.0 00 0.0

Time-stability 200.0%° 161.41 63.2 259 174 13.8 9.0 6.0 59 4.6 4.1

Policy A, 1.2 MAD 0.0 44.1 19.0 98 52 45 28 1.7 15 0.8 0.6
Difference 7.1% 1.4% 0.0 00 00 00 00 0.0 0.0 00 0.0

MAD 1.4% 1.6% 0.0 00 00 00 00 00 0.0 0.0 0.0

Time-stability 200.0%° 197.318 90.9 43.5 27.1 199 13.7 102 7.7 6.6 5.7

13 MAD 0.0 5.0 33.1 141 71 40 26 21 1.2 0.8 0.5

. Difference 34.7%  16.4% 0.0 00 00 00 00 0.0 0.0 0.0 0.0
MAD 5.3% 10.4% 0.0 00 00 00 00 0.0 0.0 0.0 0.0

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the

corresponding policy failed to converge within 7" time periods

contains shortest paths and the second shortest paths in G(I*), along with some additional evasion
paths, which have at least one arc distinct from a shortest path.

Given St we consider three types of randomized evasion policies:

e “Random—0.9” policy: in each time period ¢ the evader chooses the shortest path from St with
probability 0.9 and the second shortest path from St with probability 0.1.

e “Random—0.5" policy: in each time period t the evader chooses either the shortest path from
St or the second shortest path from St with equal probability.

e “Random—All" policy: in each time period t randomly chooses one of the paths from St with

equal probability.
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As mentioned in Section 7.6, we compute the approximate version of GRN policies based on
its single-level MIP formulation. Because the mean-bound policies II,; are the only ones that
are comparable to our GRN policies, we compare the performance of tailored approximate GRN

G

policies \¢ € A9 (refer to Definition 6) and mean-bound policies 7§, € II,, under value-imperfect

feedback. Note that policies 1§, follow the same pattern of as those in A9 except for the calculation
of Z;", which evaluates ¢ with .

We summarize the policy performance under Random—All evader in Table 5. The results under
Random—0.9 and Random-0.5 evaders can be found in Table 6 and Table 7, respectively (see
Appendix C.2). Note that we set T'= 100 and calculate the generalized time-stability 7™ as defined
in (20) and generalized total regret RT™ as in (19). The results show that the approximate GRN
policies outperform mean-bound policies in many cases, for example, for the graphs with the
right-skewed, left-skewed and random cost structure, only lagging behind 7,; for some symmetric

instances. These results show that the GRN policies can retain their performance over strategic

evaders, outperforming ,; in this class of challenging instances.

8. Conclusions

This paper studies the sequential shortest path network interdiction problem in a directed
graph, where the interdictor has incomplete information about the arc costs and limited feedback
from the evader’s actions. By observing feedback from the evader’s actions, the interdictor adjusts
her decisions so as to maximize the total cumulative cost incurred by the evader.

We study settings with various forms of feedback and propose the GRN policies, a class of
policies that follow some rather simple rules, which can also be approximated by solving mixed
integer optimization programs, for a certain class of tractable uncertainty updates. With the
performance of a policy measured by time-stability, we show that such policies find an optimal
solution within O((T,:)) periods under standard feedback. If more information is available in
the feedback, then we show that the interdictor finds an optimal solution with the expected
time-stability that is linear in terms of the number of arcs of the network.

We also extend our analysis to settings where the evader does not necessarily respond optimally.
By generalizing the concept of time-stability, we show that GRN policies can be adapted so that
their theoretical guarantees are preserved. These results imply, for example, that the proposed
policies (and the principles behind them) are robust with respect to possible strategic behaviour
on the evader’s side, and that there is a limit on the advantage that the evader might have because
of the interdictor’s initial limited information.

Our theoretical results are supported by the numerical experiments. Relative to benchmark

policies, GRN policies are guaranteed to find optimal solutions across different types of graphs.
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Table 5

Average time-stability and MAD (in parenthesis) for \S € AY and 7§ € II§; policies (with

value-imperfect feedback) for the general evader (“Random-all” policy, see Section 7.6) on uniform

random graphs with k=6 and T'=100. Note that the “Random-all” evader randomly chooses a path

from the set of evasion paths given by S°, see (24).

Right-skewed Symmetric Left-skewed Random

" DY SACRY! AS 7 (+V) AS 7 (+V) AS 7 (+V)
Time-stability (7) 21.4 50.6 14.5 6.1 21.7 19.3 18.8 38.2
MAD R 23.9 39.6 7.5 5.7 6.1 8.6 6.1 26.1
15 Total regret (RT) 595.3 717.5 118.3 48.1 161.3  128.7 172.3  245.0
MAD 851.9 874.5 60.8 154 49.4 54.0 51.3 122.0
Time-stability (7) 29.6 48.8 17.0 19.0 22.0 25.0 18.9 33.8
2 MAD 35.2 33.5 5.1 18.9 6.6 7.2 7.4 20.6
Total regret (RT) 871.5 948.3 106.1 74.9 143.7 1273 161.1 1764
MAD 1200.9 1161.7 30.4 58.8 53.4 29.9 60.5 97.4
Time-stability (7) 17.2 40.2 14.8 6.9 22.9 23.0 22.9 35.8
925 MAD ~ 16.6 30.4 4.5 7.6 6.4 8.2 7.2 22.7
Total regret (RT) 290.7 364.3 91.8 40.0 129.1 108.1 159.9 2294
MAD 413.9 426.1 29.5 23.8 35.5 41.3 54.6 158.6
Time-stability (7) 35.8 60.9 25.1 254 20.8 30.6 21.3 27.5
30 MAD 38.6 39.2 15.7 27.5 5.3 8.1 4.8 12.6
Total regret (RT) 844.1 901.2 236.5 213.1 90.7 101.1 134.8 137.6
MAD 1092.7 1054.5 268.6  272.6 271 25.6 35.5 58.4
Time-stability (7) 25.8 63.1 16.1 10.7 23.9 28.6 21.2 42.9
35 MAD R 29.7 37.2 5.8 12.7 6.5 9.5 5.9 18.7
Total regret (RT) 597.9  674.6 88.3 33.4 110.2  119.3 145.0  166.5
MAD 859.6 794.7 32.0 21.0 39.5 49.8 61.6 75.7
Time-stability (7) 26.4 70.6 14.4 16.6 24.0 279 25.3 40.0
40 MAD 29.4 33.7 4.7 19.0 6.2 9.7 6.3 214
Total regret (RT) 445.1 610.2 71.5 43.2 93.6 98.4 138.9 1447
MAD 634.4  588.9 28.1 35.0 39.8 36.9 474 67.6
Time-stability (7) 37.1 619 209 207 234 260  23.1 385
45 MAD R 37.8 38.1 10.7 174 6.1 8.4 4.9 17.1
Total regret (RT) 647.3 705.6 126.1 50.4 89.7 87.9 1344 1773
MAD 831.9 769.7 109.4 28.1 35.2 32.2 43.8 96.6
Time-stability (7) 25.9 65.1 23.7 25.0 21.7 29.2 22.3 39.1
MAD 29.6 40.0 15.5 25.5 6.9 6.7 6.8 18.2
0 Total regret (RT) 3114 4177 209.2 1817  67.3 985 1220 175.7
MAD 412.2 382.1 242.3  249.9 30.0 36.9 44.3 100.6

Also, consistent with intuition and the theoretical results, GRN policies perform significantly better

when the probability of learning more information increases and the quality of bounds improves.

One the main conclusions of our analysis is that policies that ignore the repeated interaction

with the evader (and therefore act greedily in each period) and are optimistic to their own benefit,
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regarding the evader’s costs, are efficient, provided that: (i) previous feedback is incorporated
into the decision-making process in each period; (7i) results from optimization models are not
followed blindly and are contrasted against the actual feedback obtained from the evader in the
previous time periods. Surprisingly, this insight still holds in settings where the evader might act
strategically. This latter feature, and (7i) above distinguish our work from extant literature.

While the GRN policies focus on minimizing the number of opportunities an (strategic) evader
has to increase the regret, it is not clear that such policies are efficient in terms of minimizing said
regret. In this regard, designing policies that are robust with respect to regret minimization is an
interesting and promising direction for future research.

Our results show that implementing approximate policies is possible by solving a series of MIPs,
whenever policy updates maintain the polyhedral structure of the uncertainty set. Furthermore,
our results show that the strongest update does not necessarily maintain such structure. Thus, a
promising direction for future research amounts to propose tight approximations to this strongest
update that maintain such a polyhedral structure, and to study their practical performance.
Alternatively, it might be possible to propose non-linear approximations to the strongest update
that allows for implementation of the GNR-like policies by solving a series of structured (possibly
non-linear) MIP problems.
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Appendix A: Proofs for Theoretical Results

Proof of Theorem 1. The left-most inequality follows directly from the definitions, see equations (1) and
(2). For the right-most inequality, let I* € argmax{2g(I") : |[I'| < k,I* C A} and I* be an optimal solution
under full information, i.e., I* is such that z(I*) = z*. Then, according to (6), z%" = 2 (I*) > 25(I*). Using

(5) we have that

o ey I £, Ws<t
z® for some s < t, otherwise.
Next, we consider two cases: [* =I° for some s <t; and I* # I*® for all s <t. In the first case, we have that
25" > 2r(I*) = 2(I°) = 2(I*) = z*. For the second case, observe that z5;* > 25 (I*) = 2z(I*). Because c € Ct,

then z(I*) < zg(I*) from (4). Therefore, 2* = z(I*) < zz(I*). Accordingly, we have that zj;* > 2*. [ ]

Proof of Proposition 1. First, we show that 7* < £*. Suppose that ¢t = £*, then from equation (7) we have
that zt* = z3;*. Thus, by Theorem 1 we know that z** = 2*. We claim that 2** = 2* for s >t (note that this
would imply that 7* <t). We prove this claim by contradiction.

Suppose that z** < z*. By construction one has that I** = I** for all s >t. Thus, the shortest path P*?*
must satisfy that P** € S(I**). This in turn implies that z(I**) < z(I**) and thus, z** < z%* < z*, which
contradicts the assumption that z** = z*. Therefore, we conclude that 7> <t=£*.

The second inequality follows directly from noting that policy A does not repeat solutions unless an optimal
interdiction solution is found, and that there are (Z‘) different interdiction decisions. Thus, a solution is

repeated with certainty by period (Z’)—I—l. |

Proof of Proposition 2. Consider graph G, depicted in Figure 6, that generalizes graph G in Figure 3.
Note that G is such that m =2(k 4+ 1). We consider the worst possible update mechanism consistent with
Assumptions A1-A2, i.e. Ct =C° for all t € T. Also, without loss of generality we assume that k is odd.

In the first period, I°* =) and the evader uses path P® =1 — 2 — (k+ 3). Then the interdictor blocks
I'"*={(1,3),(1,4),...,(1,k +2)}, because this solution is optimal for problem (6) with z5;* = 2k 4 3. Con-
sequently, the interdictor blocks different combinations of the arcs from paths {1 -3 — (k+3),1 >4 —
(k+3),...,1— (k+2) = (k+3)} and each of them returns the same objective function value as z5*. Note
that there are 2% possible solutions corresponding to blocking paths {1 —3 — (k+3),1 -4 — (k+3),...,1 —
(k+2) — (k+3)}. Every time after these solutions are implemented, the evader traverses through the same
path P=1—2— (k+3) whose total cost is 2.

For t =2% + 1, due to (5) and (6), repeating the previous solutions returns an objective function value of
2, which is no longer optimal. Therefore, the interdictor explores a new solution that makes path 1 — 3 —
(k + 3) available to the evader, which gives zj;* = 2k + 2. Observe that there are two ways to make path
1— 3 — (k+ 3) available: either blocking paths {1 -2 — (k+3),1 -4 — (k+3),...,1 = (k+2) = (k+3)}
or blocking paths {1 —4— (k+3),1—>5— (k+3),...,1— (k+2) — (k+3)}. There are 2" and (*]")2"~2
possible solutions corresponding to the above two path sets, respectively.

Proceeding in this fashion, in the next period, the interdictor makes path 1 — 4 — (k4 3) available for the

evader. Then paths 1 -5 — (k+3),...,1 = (k+2) — (k+ 3) are available in the subsequent periods. Next,
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Figure 6 Network G used in the proof of Proposition 2. The labeling of the arcs is given by [(,, uq],cq-

we assume that the interdictor blocks exactly k arcs in each period. (Otherwise, other feasible interdiction

solutions may need to be explored which can only increase time-stability.) Thus, the process described above

k+1

ends when the interdictor makes >

paths available to the evader because, by blocking exactly k arcs,
she can make at most % paths open for the evader in order to maximize 2", see the graph structure in
Figure 6. The reason why the interdictor attempts to proceed through all of these aforementioned steps is
that all paths have their expected (by the interdictor) costs (based on the known upper bounds) strictly
greater than their actual costs.

Implementing all these interdiction solutions results on a time-stability of at least
kf1
22: <k+1) <k+1i>2k21+2 _ (2k+2>.
po i i—1 k
At this point, the interdictor repeats a solution corresponding to the maximum z** until time horizon T.

Therefore, 7* > (2'“2'2) -+ 1 and the result follows. [ |

Proof of Proposition 3. First, we show that the shortest path used by the evader in each period before
an optimal solution is found contains at least one arc whose cost is not known by the interdictor, i.e.,
|P*\ Uy P2 > 1 for t < 7. We prove this statement by contradiction.

Suppose that ¢t < 7> and that the interdictor knows with certainty the cost of all the arcs in P*. It follows
that ¢, = ¢, for all a € P*. Therefore, we have that

Gy = 2" (25)

Note that because P* C A\ I**, by (4) we have Y _,. & > zr(I"*). Moreover, from Corollary 1, we have

that zz (") = 2z(I"*) as t < 7* and there is no repetition until time ¢. Thus,
N ta = zp(I) = 2(I'") = 2"

According to Theorem 1, 23" > 2t =3
which contradicts (25).

wept Ca for all ¢ < 7>, Thus, we have that > .. ¢, > 23" > 2",
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Note now that before 7%, because in each period there is at least one arc whose cost has not been observed,
the probability of observing at least one new arc is lower bounded by (p, p,). Because the number of arcs

observed before 7% is at most m, we conclude that
Pr(r*>r)<Pr(m+X>7r), r>0,

where X denotes the number of trials until m arcs’ costs are learned. Note that X is a random variable with
a negative binomial distribution of parameters p, p, (probability of success, i.e., probability of learning an
arc’s cost) and m (number of successes). Therefore, m + X is greater than 7*, in the first-order stochastic
dominance sense. Given that the expected number of trials until learning m arcs’ costs is m(1 —p,p, )/ (DrPo)s
we conclude (see Shaked and Shanthikumar (2007)) that

E[r] <m+E[X]=m+m (1prpv> _m

Prpo PPy
This concludes the proof. |
Proof of Corollary 2. Given that E[m*| <m/(p,p,) from Proposition 3, there exists a constant « € (0,1]

such that E[7*] =

Zygmund inequality (Petrov 2007), we have that

(1= 7)’E[)?

Pr(7* > ~E[r?]) > B[y

for any 0 <~ <1. It follows that,

2R [,M2
Pr(7*>'ya m V)" Elr]

)z

pepo/ — E[(77)]

Now, from the proof of Proposition 3, we know that 7* is lower (in the first-order stochastic dominance
sense) than a m plus a random variable X with negative binomial distribution with parameters p, p, and

m. This implies (see Shaked and Shanthikumar (2007)) that

E[(r)?] < E[<m+x)2}
= E[m?] + 2mE[X] + E[X?]
—PrPu

=m?2+2m? ( ) +E[X
Pr Py
m2+2m2( prv)+Va +E[X]?
Dr Do
1— 1— 2
— m2+2m2( p?"pv) + ( prp;) +m2( prpv)
pr’l} p'f‘ 'U pr’L}
~ m*+m(l—-p,p,)
(prpy)? (prpv)

The first inequality above satisfies from the results in Shaked and Shanthikumar (2007)) given that m + X
is greater than 7* in the first-order stochastic dominance sense, and that ¢(x) = x? is an increasing function
with x > 0.

Because E[7%] = o>, we have that

m
Pr (T’\ > Yo
PrDv
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as desired. m
Proof of Proposition 4. The left-most inequality follows directly Theorem 1. For the right-most inequality,
let x' € argmax{Z,(z): > ,c1%a <k, x€{0,1}"} and 2* be an optimal solution under full information.

That is, z(x*) = 2*. Then, 23" = 2,(2') > 2(z*). Using (15), we have that

R . zp(x*) ifax*#x°, Vs<t
ZR<x):{R< ) #

z® for some s < t, otherwise.

Next, we consider two cases: * = x® for some s < t; and x* # z*° for all s <t. In the first case, following
from the proof of Theorem 1, we have 23" > 2. (2*) = z(2°) = 2(2*) = z*. For the second case, since z* # z°
for all s <t, we have 23" > 2, (2*) = z,(z*).

Note that real cost vector ¢ is never cut from our uncertainty set update C*™* =C*N'R!, N V!, that is,
celC, VteT.
Therefore, for any x* and y, we have
méax{(é—i— Mz")Ty: ¢eC'} > (c+Ma")Ty.
Now recall that
zp(zh) = myin {méax{(éJr Mz")"y: é€C'}: By=b, y> O} ,
and after the interdiction solution z* in each time period t € T, the evader solves for z(xt):
z(z") =min{(c+ Ma")"y: By=0b, y>0}.

Suppose yr € argmin{max{(¢ + Mz*)Ty: ¢€C'}: By=b, y >0} and y* € argmin{(c+ Mz*)Ty: By =
b, y >0}. Then we have

zp(@") =max{(¢+Ma")"yr: ¢€C'} > (c+Ma")"ygr > (c+ Mz")"y* = 2(z").

Thus, z,(z*) > z(z*). Hence, 25%* > (") = 25 (z*) > 2(z*) = 2. ]

Proof of Lemma 1. Let I* € argmax{Zz(I*) : |I*| < k,I* C A}, where Z5(I") is tailored for the general
evader as defined in equation (22). Also, let I* be an optimal solution under full information. That is,
2(I*) = z*. Then, 2" = 25(I*) > 2x(I*). Using (22) we have that

S zr(I%) if I*£1°, Vs<t

2e(l7) = {min{zS : I"=1I°, s<t} otherwise.
Next, we consider two cases: I* = I® for some s < t; and I* # I® for all s <t. In the first case, we have
that 23" > Zg(I*) =min{z*: I* =1°, s <t}. Note that the general evader can be suboptimal, thus the cost
observed by the interdictor is at least z* for all s € {s': I*=1T°}, that is 2° > z*. Therefore 25" > Z5(I*) =

min{z®: I*=1% s<t}>z*. The proof for the second case directly follows the proof of Theorem 1. |

Proof of Proposition 5. We define S, as the set of time periods where the cost observed by the interdictor

is less than the optimal cost, that is, Sgup = {t > 0: 2> < 2*}. Then we claim that for any two distinct time
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periods 51,83 € Ssup, We have that I°t* # I°2* In other words, under policy A, the solutions I** are all
distinct for ¢t € Ss,. We prove the claim by contradiction. Suppose that the interdictor repeats I°1* at time
S, that is, I°2* =

1, IS 40N

= I***. By Lemma 1, we have that z* < 74", Therefore, we have that 252" = min{z*"*: s’ <

= [*1*} according to (22). Putting this together, get the following contradiction:

52/\

’ g g
<2 <E2t=min{z" N 8 <5y, [T =T} <A <t < E

Because for all t € Squp, 22 < 2*, solutions I** are all suboptimal. Notice that the total number of solutions

is (’2) Then given that I** are distinct for all ¢ € Squ1,, we have the following results:

|Seun| = [{t>0: 2" <27} < (T;:) +1,

which implies the required result.

Appendix B: Decision-making process for network G5 in Figure 3

e Step 0: [9*=0), 20 =2;

e Step 1: I"* ={(1,3),(1,4)}, and the interdictor would expect the evader to traverse path 1 —2 — 5.
This implies that z* =7 and that the evader would go through path 1 —2—5, implying that 2z =

e Step 2: I** ={(1,3),(4,5)}, 23" =17, 22 =2;

e Step 3: I** ={(1,4),(3,5)}, 23" =17, 2% =2;

e Step 4: I** ={(3,5),(4,5)}, 25" =7, 24" =2;

e Step 5: I°* ={(1,2),(1,4)}, 25" =6, 25> =3;

e Step 6: 1% ={(1,2),(4,5)}, 25" =6, 20" =3;

e Step 7: I™* ={(1,4),(2,5)}, 25" =6, 27" = 3;

o Step 8: I®* ={(2,5),(4,5)}, 25" =6, z5* =3;

e Step 9: I%* ={(1,4),(4,5)}, 25" =6, 2% =2;

e Step 10: 1'% ={(1,2),(1,3)}, 25" =5, 219" =4;

e Step 11: I''* ={(1,2),(3,5)}, 25" =5, 211 =4;

e Step 12: I'**={(1,3),(2,5)}, 25" =5, 2'2* =4;

e Step 13: I'** ={(2,5),(3,5)}, 2z " =5, 23 =4;

e Step 14: I'"* ={(1,2),(2,5)}, z;;" =5, 214 =3;

e Step 15: I'®* ={(1,3),(3,5)}, 25" =5, 215} =2;

e Step 16: I'%* ={(1,2),(2,3)}, 25" =4, 219" =4
We can see that after 16 steps, the interdictor finally identifies an optimal solution for the full information

problem.

Appendix C: Supplementary Computational Results for Uniform Random Graphs

C.1. Policy Performance: Sensitivity with Respect to p, and p,

In Section 7.4, we test the performance of the approximate GRN policies on uniform random graphs
with right-skewed costs. For left-skewed and symmetric cost structures, we use the same graph size as in

Section 7.4, i.e. n =50 and probability of having an arc between any two nodes is 0.5. We set T = 50.
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Figure 7  Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the symmetric costs (7" =50, uniform random graphs, greedy evader).
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The results for symmetric and left-skewed costs are shown in Figure 7 and 8, respectively. We observe
that for both response-imperfect and value-imperfect feedback, GRN policies obtain optimal solutions in less
time steps as p, or p, increases. Moreover, under value-imperfect feedback, the policies converge faster than

under response-imperfect feedback.

C.2. Performance under a General Evader

In Section 7.6, we test policy performance when we relax the assumption on the greedy nature of the
evader and consider the setting introduced in Section 6, where the evader’s response is constrained to a
1 —n (not necessarily shortest) path on the interdicted graph. Policy performance under Random—0.9 and

Random—0.5 in depicted in Tables 6 and 7, respectively. The definitions of Random—0.9 and Random—0.5
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Figure 8  Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the left-skewed costs (7' =50, uniform random graphs, greedy evader).
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evader can be found in Section 7.6. Observe that with less randomness, for example under Random—0.9

evader, there are more cases where the approximate GRN policies outperform the mean-bound policies.

Appendix D: Computational Results for Layered Graphs
D.1. Graph generation

We generate layered graphs using parameters (0, ¢), where ¢ and 6 denote the number of layers and
nodes in each layer, respectively. We add a source node before the first layer and a destination node after
the last layer. Thus, the total number of nodes is 6 x ¢+ 2. There is an arc from source node to all the nodes
in the first layer and from all the nodes in the last layer to the destination node. Moreover, there is an arc

with probability 0.5 from every node in layer i to nodes in layers i +1,i42,..., ¢.
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Table 6

Average time-stability and MAD (in parenthesis) for \S € AY and 7§ € II§; policies (with

value-imperfect feedback) when evader type is Random—0.9 on uniform random graphs with ¥ =6 and

T =100. Note that a Random-0.9 evader chooses the shortest path with probability 0.9 and the second

shortest path with probability 0.1.

Right-skewed Symmetric Left-skewed Random
n DY SACRY! AS 7 (+V) AS 7 (+V) AS 7 (+V)

Time-stability (7) 20.2 70.9 13.7 23.5 20.0 19.0 20.6 59.7
MAD R 23.9 35.0 5.5 31.7 6.9 8.0 5.2 41.6
15 Total regret (RT) 580.8 806.8 106.6 62.5 166.5  140.3 221.0 310.6
MAD 895.8 850.1 35.1 29.2 47.3 45.7 61.5 154.7
Time-stability (7) 32.9 71.3 19.8 21.6 18.9 244 19.5 34.7
20 MAD 40.1 35.2 7.7 28.7 7.1 8.0 6.5 30.5
Total regret (RT) 1065.5 1189.9 132.4 54.8 118.8 130.5 164.8 181.1
MAD 1438.0 1334.1 50.5 36.6 39.0 43.4 67.6 117.1
Time-stability (7) 15.3 70.6 15.2 12.9 25.3 22.3 21.8 60.8
925 MAD ~ 17.0 34.8 4.9 16.4 7.1 7.7 4.4 38.8
Total regret (RT) 315.4  549.0 96.3 42.0 149.3  115.2 168.7  314.5
MAD 491.4 529.7 28.4 26.1 39.0 35.9 53.9 210.8
Time-stability (7) 34.8 77.0 19.8 35.9 24.9 28.0 20.3 38.8
30 MAD 39.2 30.4 9.7 41.3 5.8 12.4 4.4 25.7
Total regret (RT) 965.0 1091.0 122.3 2534 1189 118.6 144.8 178.2
MAD 1290.7 1190.3 68.3 3325 36.7 49.0 39.1 76.4
Time-stability (7) 24.6 78.2 13.9 21.2 20.1 28.0 28.7 57.4
35 MAD 30.2 30.8 5.8 29.1 5.4 7.7 10.5 37.3
Total regret (RT) 676.4  824.5 87.4 44.9 103.7  140.8 225.7 2164
MAD 1023.0  965.9 31.6 34.1 47.2 76.2 128.0 112.6
Time-stability (7) 24.6 86.5 15.3 22.3 28.6 28.4 22.8 42.9
40 MAD 30.2 17.6 4.0 29.0 8.8 6.3 7.8 31.9
Total regret (RT) 473.8  754.8 80.7 53.8 1189 101.8 137.8  165.0
MAD 699.4  631.7 20.5 50.3 46.3 27.9 45.6 77.6
Time-stability (7) 36.1 86.6 15.5 358 23.0 305 25.3  46.8
45 MAD R 38.4 17.0 5.2 40.8 7.4 11.0 6.9 30.6
Total regret (RT) 739.2  942.7 74.5 69.4 91.1  104.9 163.1  206.0
MAD 979.6 873.2 24.0 60.9 31.9 43.3 62.1 125.1
Time-stability (7) 29.4 777 24.3 34.8 24.6 28.5 22.4 53.1
MAD 34.3 30.7 15.5 40.9 7.4 9.4 5.6 32.9
50 Total regret (RT) 506.4 636.6 2224 197.1 74.9 96.5 122.0 1794
MAD 708.0  595.1 263.5  265.9 25.5 39.2 41.0 68.9

D.2. Comparison of Policies without Information Updates

We compare policy performance when no information updates are used, i.e., Ct = C° for all periods

t. We test policy performance using the right-skewed, symmetric, left-skewed and random cost structures

on layered graphs. For each structure we randomly generate 20 instances with (6,¢) = (7,3). Finally, we
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Table 7

Average time-stability and MAD (in parenthesis) for \S € AY and 7§ € II§; policies (with

value-imperfect feedback) when evader type is Random—0.5 on uniform random graphs with ¥ =6 and

T =100. Note that a Random-0.5 evader randomly chooses from the shortest path and the second

shortest path.

Right-skewed Symmetric Left-skewed Random

" DY SACRY! AS 7 (+V) AS 7 (+V) A wG(+V)
Time-stability (7) 20.9 57.0 13.5 14.5 20.1 19.1 17.7 45.3
MAD R 23.7 30.9 6.3 19.1 5.6 5.8 5.2 33.2
15 Total regret (R7) 5705  738.6  99.1  49.0 1634 1344 1771 241.2
MAD 855.2 820.1 36.2 18.1 56.9 42.4 66.7 120.2
Time-stability (7) 30.7 58.5 17.1 16.6 20.9 26.6 19.0 28.2
2 MAD 34.7 29.1 6.8 17.5 5.6 7.9 5.4 22.2
Total regret (RT) 912.0 1022.5 113.0 55.1 124.0 135.0 153.3 163.1
MAD 1285.0 1223.6 42.9 31.3 36.7 44.1 61.8 97.3
Time-stability (7) 16.3 47.6 17.0 8.0 23.8 269 23.4 429
925 MAD ~ 16.8 24.8 5.5 8.6 6.1 8.2 5.6 27.9
Total regret (RT) 327.6  421.3 109.9  36.8 132.7  146.6 165.1  268.4
MAD 474.2 468.4 42.5 19.8 34.2 47.5 44.3 184.2
Time-stability (7) 35.2 68.8 24.9 28.8 25.4 30.7 20.6 36.2
30 MAD 38.9 34.4 16.6 32.1 6.4 7.6 4.8 214
Total regret (RT) 844.7 932.0 232.5 214.1 109.9 118.3 136.8  165.3
MAD 1096.3  1056.8 261.8 274.0 31.6 35.2 49.7 93.3
Time-stability (7) 25.7 67.9 16.0 15.3 24.9 31.0 22.2 45.5
35 MAD R 29.7 35.3 5.0 20.0 7.0 9.4 5.6 23.2
Total regret (R") 594.5  703.0 86.2  44.9 122.2 1384 158.3  195.6
MAD 871.4 829.1 28.7 36.8 56.4 52.7 65.6 80.0
Time-stability (7) 25.1 68.2 15.3 20.0 24.1 27.2 21.7 45.9
40 MAD 30.0 31.8 4.3 23.3 5.4 10.1 7.0 25.7
Total regret (RT) 435.2 602.3 68.8 514 98.2 108.1 1279 172.0
MAD 632.7 574.8 17.7 42.5 34.2 46.4 48.2 80.0
Time-stability (7) 37.3 71.3 17.5 25.6 25.3 33.0 24.7 39.5
45 MAD R 37.7 31.6 5.2 25.6 8.5 9.9 5.7 214
Total regret (RT) 643.5  768.0 73.5 57.2 104.2 1185 135.9 180.1
MAD 832.5 771.3 18.1 38.2 474 45.3 54.1 98.2
Time-stability (7) 26.2 68.1 29.9 28.9 23.3 28.2 24.6 37.5
MAD 29.5 35.1 14.3 314 7.7 6.1 7.6 20.1
0 Total regret (RT) 372.2 4827 2395 1923  77.6  89.2 1318  150.3
MAD 518.8 459.0 240.2  258.5 31.5 27.3 49.0 76.3

use k € {2,4}, and set either T'= 500 or T' = 1000, respectively. Table 8 summarizes the results, which are

similar to those for uniform random graphs, see Table 2.
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D.3. Improvements When Information Updates Are Applied

We consider layered graphs with 7 nodes (6 =7) in each layer and number of layers ¢ € {3,4,...,10}
for all four cost structures. We set T'= 500 and for each cost structure we randomly generate 20 instances.
For response-imperfect feedback we set p, = 0.5, and for value-imperfect feedback we set p, = p, = 0.5. Note
that in this section and the following two sections, since we have polyhedral cost update mechanism, the
approximate GRN policies are implemented. We measure policy performance using the average time-stability
and MAD, see Table 9. As in Section 7.3, we observe that policy performance improves as more information
revealed in the feedback. However, note that there is no significant improvement for policies in II, even if
the interdictor learns more information. On the other hand, GRN policies outperform mean bound policies

under response- and value-imperfect feedback.

D.4. Policy Performance: Sensitivity with Respect to p, and p,

We set (6,¢) = (7,10) for all the experiments, and generate 20 instances with different cost structures
(right-skewed, symmetric and left-skewed). Interdictor’s resource limit and time horizon are set as k =6
and T ={0,1,...,50}. Figure 9, 10 and 11 depict the behaviour of time-stability for response- and value-
imperfect updates with the right-skewed, symmetric and left-skewed costs, respectively. As in the case of
uniform random graphs in Section 7.4, performance of policies A, and A, improves as p, and p, increase.

We observe that time-stability of policies A, decreases faster than that of A,.

D.5. Policy Performance: Sensitivity with Respect to Quality of Arc Cost Bounds

We generate 20 instances for 1.1, 1.2 and 1.3 as in Section 7.5, and set k = 6. Test instances are layered
graphs with (0, ¢) = (7,10) and we set T'= 200. We test policy performance for various values of probabilities
p, and p,. Table 10 summarizes the results obtained. There, we observe similar results to those presented in

Section 7.5, which indicate that the quality of the initial bounds has a significant affect on policy performance.
Appendix E: Computational Results for Watts-Strogatz Graphs
E.1. Graph generation

We generate Watts-Strogatz graphs following the model in Watts and Strogatz (1998), using parameters
(n,d, ). Mean degree of nodes and rewiring probability are denoted as d and 3, respectively. Note that
denotes the graph instances’ degree of randomness. Through all the experiments, we set 8 =1.
E.2. Comparison of Policies without Information Updates

For each structure we randomly generate 20 instances with (n,d) = (15,8). Finally, we have k € {2,4},
and use T' € {500,1000}. Table 11 summarizes the results, which are similar to those for uniform random

and layered graphs, see Table 2 and Table 8, respectively.
E.3. Improvements When Information Updates Are Applied
We consider Watts-Strogatz graphs with

(n,d) € {(15,8),(20,15), (25,14), (30, 16), (35, 22), (40, 22), (45, 28), (50, 30)},

for all four cost structures. We set T'= 500 and for each cost structure we randomly generate 20 instances.

For response-imperfect feedback we set p, = 0.5, and in value-imperfect feedback we set p, = p, =0.5. Note
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that similar in Appendix D, in this section and the following two sections, since we have polyhedral cost
update mechanism, the approximate GRN policies are implemented. Table 12 depicts our results, which are

similar to those obtained for uniform random and layered graphs.
E.4. Policy Performance: Sensitivity with Respect to p, and p,

We set (n,d) = (50,30) for all the experiments, and generate 20 instances with different cost structures
(right-skewed, symmetric and left-skewed). Interdictor’s resource limit and time horizon are set as k =6
and 7 ={0,1,...,50}. Figure 12, 13 and 14 depict the behaviour of time-stability for response- and value-
imperfect updates with the right-skewed, symmetric and left-skewed costs, respectively.

E.5. Policy Performance: Sensitivity with Respect to Quality of Arc Cost Bounds
We generate 20 instances for 1.1, 1.2 and 1.3 as in Section 7.5, and set k= 6. We set (n,d) = (50,30) and

T = 200. We test policy performance for various values of probabilities p, and p,. Table 13 summarizes the

results obtained, which are similar results to those in Section 7.5 and Appendix D.5.

Table 8 Performance of policies in A and benchmark policies without information updates (7 x 3, layered graphs,

greedy evader).

k=2 (T = 500) k=4 (T = 1000)
Graph A L M TR A L M TR
Time-stability 82.01 450.2'8 201.2%8 450.218 445.37 900.2'® 600.8'2 950.2'8
MAD 116.1 89.6 239.0 89.6 420.3 179.6 479.0 94.7
i Relative difference 0.2% 18.5% 3.7%  18.2% 2.9% 199% 5.6% 17.0%
Right-skewed MAD 0.3% 11.9% 4.4% 12.6%  2.6%  91%  56%  9.5%
Total regret 242.3 4925.0 1025.0 5082.5 2002.4 12700.0 3650.0 11103.4
MAD 360.4 3167.5 1237.5 3575.8 1973.0 5140.0 3680.0 6306.9
Time-stability 381.6'2 350.6'* 133.4* 378.5'% 946.4'7 900.2'® 153.23 691.214
MAD 142.1 209.2 167.2 182.3 91.1 179.6 246.5 401.5
Symmetric Relative difference 10.6% 11.9% 0.5% 10.6% 17.4% 15.3% 0.3%  10.5%
MAD 9.5% 12.2% 0.8% 10.8% 8.4% 11.3% 0.6% 9.5%
Total regret 2343.3 2450.0 146.8 22594 10055.2 7750.0 382.7 5945.2
MAD 1516.7 2580.0 185.5  2249.0 3969.8  6025.0 641.3 4763.7
Time-stability ~ 411.9' 151.45 337.5° 324.4°  978.6° 351.37 867.6'° 876.0%°
MAD 132.2 209.2 146.3 165.7 40.8 454.1 206.9 198.5
Left-skewed Relative difference 27.4% 3.5% 14.1% 9.1% 34.4% 3.2% 194% 22.2%
MAD 19.2% 4.9% 15.8% 10.0% 13.5% 4.3% 15.7% 18.8%
Total regret 4085.8 425.0 2247.8 2334.9 10635.1 1050.0 7860.9 8042.5
MAD 2592.7 595.0 1377.0 1811.9 3858.9 1370.0 3827.3 5773.4
Time-stability 425215 226.1° 290.6° 350.9'4 974.1'9 850.3'7 781.2'* 950.5'8
MAD 115.3 246.5 189.9 208.7 49.3 254.5 306.3 94.1
Relative difference 29.5%  9.0% 8.1% 14.8% 32.0% 22.3% 18.6% 25.9%
Random MAD 18.9% 10.4%  92%  12.6% 15.4% 13.6% 14.3% 17.5%
Total regret 4912.9 1850.0 1719.5 2895.8 16014.8 11600.0 9979.1 14468.1
MAD 2889.4 2170.0 1587.4 2365.4 7935.9 7500.0 6205.8 9943.2

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within 7" time periods.



Table 9 Average time-stability and MAD (in parenthesis) for A € A and 75, € IIx policies when information updates are used (k =6, 7= 500, layered graphs, greedy evader).
Right-skewed Symmetric Left-skewed Random
Size —y A A mn () A A A () A A A T () AN A m ()
341.6* 127 7.3 3257 325.7%° 5002  31.3 19.2 226.97 128.5° 50020  43.8  24.7 489.49% 27.0 500 37.5 23.0 330.1'7 329.16'
=3 (195.8) (5.6) (2.4) (226.6) (226.6) (0.0) (12.0) (6.2) (232.7) (185.8) (0.0) (19.9) (6.7) (20.2) (6.0) (0.0) (14.9) (5.3) (208.6) (222.2)
74 383.2% 114 8.5 375.5'° 375.5'° 5002  33.1 16.7 155.05  176.67 500%  39.1 33.6 5002 31.6 500 40.9 22.6 500 282.3%
(175.2) (5.6) (3.3) (186.8) (186.8) (0.0) (12.0) (6.0) (207.0) (226.4) (0.0) (17.1) (15.7) (0.0) (7.7) (0.0) (13.8) (4.9 (0.0) (239.5)
75 383.6° 154 8.4 300.82 300.8'2 500 29.8  43.4 281.9! 153.35 500  43.2  50.0' 500%° 29.7 500 35.2 24.4 500 212.8%
(174.7)  (8.5) (3.4) (239.04) (239.0) (0.0) (15.4) (45.7) (239.91) (208.0) (0.0) (16.7) (45.0) (0.0) (8.9) (0.0) (9.7) (6.4) (0.0) (229.8)
7% 6 3457 13.5 11.6 350.6% 350.6'* 500 60.1' 67.9° 308.5'! 228.1° 500 68.9' 36.1 500%° 34.1 500 74.6* 52.1' 500 283.3%
(200.7) (7.6) (7.2) (209.2) (209.2) (0.0) (45.1) (86.4) (229.9) (244.8) (0.0) (44.5) (10.4) (0.0) (9.5) (0.0) (44.9) (47.5) (0.0) (238.4)
v 43026 17.9 14.7 400.4'6 400.4'6 500 55.9' 45.7%  259.8° 106.4% 500  77.21  76.82 500%° 37.5 5002 73.28 29.1 500 307.8'?
(117.3)  (6.9) (9.1) (159.4) (159.4) (0.0) (47.0) (45.8) (240.2) (157.4) (0.0) (53.5) (84.7) (0.0) (10.0) (0.0) (46.7) (5.5) (0.0) (230.7)
7%8 38251 38.9 9.2 350.6° 400.4'¢ 50020 122.8% 93.5% 335.7'% 231.4° 500 53.6 28.1 500% 36.0 5002 128.9° 30.6 500%°  190.67
(176.3) (46.1) (3.4) (209.2) (159.4) (0.0) (150.9) (122.0) (213.6) (241.7) (0.0) (15.8) (9.1) (0.0) (11.7) (0.0) (117.2) (6.3) (0.0) (216.6)
7%9 453217 22.8 11.5 325.7'3 300.8'2 500 101.4° 46.2 295.1'% 8243 500 83.81 31.6 500% 38.1 500 41.8 53.0 500 214.58
(84.2) (11.0) (3.3) (226.6) (239.0) (0.0) (119.6) (45.4) (225.4) (125.3) (0.0) (50.3) (7.3) (0.0) (9.0) (0.0) (10.5) (44.7) (0.0) (228.4)
379.01° 11.1 8.4 400.4'° 400.4'¢ 50020 114.9° 69.2%2 299.0° 155.65 5002 138.4* 77.62 500 107.5° 500  46.5 52.0' 500  166.9°
7x10 (181.6) (4.7) (4.5) (159.4) (159.4) (0.0) (115.5) (86.2) (221.2) (206.7) (0.0) (144.6) (84.5) (0.0) (117.8) (0.0) (9.7) (44.8) (0.0) (199.9)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within 7" time periods.
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Figure 9

Time-stability

Time-stability

Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the right-skewed costs (7' =50, layered graphs, greedy evader).
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Figure 10  Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the symmetric costs (7' = 50, layered graphs, greedy evader).
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Table 10 Behaviour of policies in A with respect to the cost bound quality (k =6, 7'= 200, layered graphs, greedy evader).

Pr=p0 0 0.1 02 03 04 05 06 07 08 09 1
Time-stability 150.3 107.1 44.4 19.0 10.5 82 6.1 50 4.1 7.8 2.7

MAD 547 608 368 83 39 38 29 20 17 93 06

Total regret  6102.0 5447.0 3063.7 126.4 56.3 32.7 26.6 17.3 19.7 43.2 7.5

MAD 51129 5995.8 4908.5 1428 525 343 259 170 231 651 7.2

Policy »,  Timestability 1933  181.0 1127 536 313 153 124 140 118 156 49
[y MAD 128 305 580 269 144 66 40 103 97 180 1.1

Total regret  13827.2 12069.3 8212.0 28221 1632.5 658.1 5752 5825 610.3 567.9 183.2

MAD 9674.3  7633.7 6920.5 2336.6 1251.9 460.8 446.1 4229 601.8 621.1 113.1

Time-stability ~ 200.0 1981 1551 70.2 544 304 27.6 137 144 9.0 7.1

g MAD 0.0 36 443 203 302 88 175 37 95 13 0.1

 Total regret 330188 21630.7 11753.0 5899.6 4605.6 25155 2334.1 1109.2 981.0 772.8 546.4

MAD 12001.0 76965 5683.3 2858.8 2406.5 1113.8 15759 412.2 648.2 360.3 208.9

Time-stability 161.5 75.4 28.8 13.1 6.6 6.2 49 43 44 3.5 3.2

L Map 578 552 165 70 27 27 20 17 13 13 11
 Totalregret 12643.3 3461.0 361.0 53.2 38.5 28.6 17.0 187 19.7 17.7 16.6

MAD 121711 45134 4177 584 396 271 166 198 200 194 178

Policy \, ~ Timestability 1933 1639 8.6 308 17.6 203 95 81 157 54 49
T, MAD 128 490 512 155 65 180 34 29 184 13 12
Total regret  13894.5 9782.2 5209.3 1174.7 6915 968.0 317.4 327.8 573.2 189.0 171.3

MAD 8683.5 5049.2 5479.6 934.9 380.5 11815 196.9 238.3 667.4 119.4 102.0

Time-stability ~ 200.0  197.3 1233 492 201 306 157 219 99 86 7.l

g MAD 0.0 50 298 120 60 180 35 178 14 09 0.1

 Total regret  33589.3 22066.9 11660.3 4200.6 2533.7 2043.9 1333.5 1285.0 795.4 637.6 546.4

MAD 13519.1  9613.6 4940.6 1440.0 1143.8 956.6 6119 809.8 345.0 2624 208.9

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding

policy failed to converge within 7' time periods
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Table 11 Performance of policies in A and benchmark policies without information updates (n =15,

Watts-Strogatz graphs, greedy evader).

k=2 (T =500) k=4 (T = 1000)
Graph A L TMm TR A L M TR

Time-stability 28.4 325.7'% 101.6° 400.4'6 280.0° 850.3'7 311.8% 850.6'7

MAD 37.8 226.6 159.4 159.4 303.2 254.5 412.9 254.1

) Relative difference 0.0% 13.8%  3.4% 17.9% 1.4%  232% 1.9%  21.0%
Right-skewed MAD 0.0% 12.6% 53% 11.8% 24%  11.3%  21%  12.4%
Total regret 90.9 3775.0 875.0 49784 1629.1 17050.0 1772.4 15650.2

MAD 145.2  3425.0 1350.0 3328.4 1997.1 8255.0 1949.6 9414.9

Time-stability 182.0* 375.5'° 87.3% 195.27 843.9'% 800.4'6 178.5% 690.0'2

MAD 143.2 186.8 135.3 220.7 234.2 3194 267.5 412.4

Symmetric Relative difference  2.6% 14.1% 0.6%  4.7% 14.9% 13.9% 1.0% 10.2%
MAD 4.2% 13.2% 1.0% 6.1% 11.2% 9.0% 1.7% 8.9%

Total regret 749.2 3025.0 155.4 1048.9 83479 7350.0 655.9 5715.5

MAD 622.0 2935.0 247.1 1263.6 4912.7  4985.0 973.4  4588.0
Time-stability 315.419 176.37 246.27 88.6! 1000.0%° 401.2% 702.2'3 723.713

MAD 184.6 226.6 191.8 99.4 0.0 479.0 387.2 359.2

Left-skewed Relative difference 12.4%  4.9% 76% 0.5% 33.9% 5.2% 18.6% 13.1%
MAD 13.2% 6.3% 9.9% 1.0% 13.2% 6.6% 14.3% 13.3%

Total regret 2362.7 850.0 1543.6 646.0 14373.8 2150.0 7452.3 6734.9

MAD 1687.4 1105.0 1373.7 798.4 6177.3  2710.0 4383.1 4523.3
Time-stability 281.4% 350.6'7 216.67 301.62 940.9'® 900.2'® 342.26 751.1'°

MAD 196.8 209.2 206.0 238.1 106.4 179.6 404.1 373.4

Relative difference 10.7% 15.8% 4.5% 11.4% 31.6% 20.3% 5.0% 15.1%

Random MAD 12.8% 88%  6.1% 121%  10.9% 10.9% 7.1%  13.9%
Total regret 2715.5 3250.0 1293.3 2540.2 16614.3 11900.0 2985.4 9675.5

MAD 2411.5 1925.0 1442.2 2825.9 4588.5 7190.0 3706.1 8355.2

Notes: Entries in bold denote the best policy in each setting; the numbers in superscript of time-stability denote

the number of instances out of 20 for which the corresponding policy failed to converge within 7" time periods.



Table 12 Average time-stability and MAD (in parenthesis) for A € A and ma; € IIy; policies when information updates are used (k =6, T'= 500, Watts-Strogatz graphs, greedy evader).

Right-skewed Symmetric Left-skewed Random

n A Ar Ay M 7TM(+V) A Ar Ay M 7TM(+V) A Ar Ay T 7!'M(+V) A Ar Ao M TI'M(+V)

_ 2186 366 203 2154 2510 5000 663 151 742 1230 5000 821 68.6 500.0 157.0  500.0 89.8 20.8 3647  337.6
15 (2112) (11.0) (26.5) (243.9) (249.0)  (0.0) (8.5) (3.6) (12..7) (170.0)  (0.0) (4.8) (79.5) (0.0) (196.0)  (0.0) (9.1) (8.4) (193.3) (208.8)

363.4 415 32.8 251.0 251.0 500.0 123.5 18.8 152.0 103.5 500.0 72.5 48.9 500.0 202.4 500.0 94.6 53.0 410.1 354.5

20 (191.3) (54.3) (46.7) (249.0) (249.0)  (0.0) (149.2) (5.1) (208.8) (158.6) (0.0) (47.6) (45.1) (0.0) (208.3)  (0.0) (34.0) (54.8) (143.9) (203.7)

3472 431 11.1  251.0 251.0 500.0 59.5 45.0 2209 61.1 500.0 61.6 26.8 500.0 143.3 500.0 584 52.6 476.8 333.3

25 (200.3) (45.8) (4.1) (249.0) (249.0)  (0.0) (45.9) (45.5) (231.2) (87.8)  (0.0) (21.4) (49) (0.0) (1563) (0.0) (22.3) (44.7) (44.2) (216.7)
50 4758 413 9.9 2759 2759 5000 434 19.7 1207 1531 5000 634 26.7 5000 1285  500.0 617 28.2 4521 3540
(46.1) (47.9) (2.9) (246.5) (246.5)  (0.0) (23.1) (5.6) (185.2) (208.1)  (0.0) (27.2) (6.0) (0.0) (148.6)  (0.0) (2L.7) (7.7) (81.5) (204.4)
g5 4289 210 101 3506 3755 5000 Gl4 21.2 2571 1794 5000 728 37.4 5000 180.8  500.0 50.5 29.6 4796 2533
(121.0) (10.7) (4.0) (209.2) (186.8)  (0.0) (44.1) (5.1) (242.9) (224.5)  (0.0) (34.3) (9.1) (0.0) (191.5)  (0.0) (18.9) (7.2) (38.9) (233.8)
40 4274 737601 3755 3506 5000 382 25.6 1505  80.9 5000 90.1 56.4 500.0 2238  500.0 98.0 75.9 500.0  236.2
(123.5) (85.3) (88.0) (186.8) (209.2)  (0.0) (9.8) (6.4) (204.3) (125.7)  (0.0) (53.2) (44.4) (0.0) (221.0)  (0.0) (82.5) (84.8) (0.0) (237.4)
45 3779 467 103 3506 3506 5000 65.6 48.3 3040 832 5000 93.6 62.7 5000 2711  500.0 949 35.5 500.0 2881

(183.2) (47.0) (3.4) (209.2) (209.2)  (0.0) (48.8) (45.4) (235.3) (125.0)  (0.0) (53.7) (45.8) (0.0) (228.9)  (0.0) (49.4) (6.7) (0.0) (233.1)

4030 17.0 11.5 4004 4004  500.0 70.3 21.4 2056 2769  500.0 93.1 34.0 5000 270.9 5000 111.7 31.2 500.0  358.0
50 (155.2) (5.7) (3.1) (159.4) (159.4)  (0.0) (50.4) (4.8) (235.5) (245.5)  (0.0) (51.7) (7.6) (0.0) (229.2)  (0.0) (78.5) (7.9) (0.0) (198.9)

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding policy failed to converge within 7" time periods.
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Figure 12 Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the right-skewed costs (7' =50, Watts-Strogatz graphs, greedy evader).
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Figure 13  Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6
and the symmetric costs (7' =50, Watts-Strogatz graphs, greedy evader).
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Figure 14

Average time-stability for policies in A for different types of feedback as p, and p, increase for k =6

and the left-skewed costs (7' =50, Watts-Strogatz graphs, greedy evader).
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Table 13 Behaviour of policies in A with respect to the cost bound quality (k =6, T'= 200, Watts-Strogatz graphs, greedy

evader).
Dr=Do 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
Time-stability 105.5  77.2 31.6 16.3 124 6.4 5.8 3.6 3.6 27 25
11 MAD 70.1 65.3 17.3 7.7 7.8 3.0 2.5 1.4 1.4 08 0.6
. Total regret 1572.6 909.9 390.3 236.4 151.6 19.6 18.0 10.7 6.7 7.1 5.2
MAD 2193.9 1306.2 600.4 3384 2175 270 253 154 91 101 71
7.7
Policy A, Time-stability  200.0 151.6 84.6 415 21.3 17.3 9.0 7.8 63 51 43
12 MAD 0.0 48.2 44.2 21.7 6.5 12.3 2.7 24 1.6 1.2 0.8
Total regret  10297.9 9986.2 5490.7 1881.5 832.8 852.7 350.9 268.7 202.4 1585 126.2
MAD 6342.5 7238.2 4813.5 1731.2 490.5 946.4 265.6 190.0 139.6 98.0 76.3
7.7
Time-stability 200.0  200.0 1389 816 462 297 226 201 116 8.1 7.0
I3 MAD 0.0 0.0 39.7 314 187 134 11.9 104 21 0.7 0.0
"~ Total regret  27668.4 20968.8 14129.3 7069.2 3950.6 2552.3 2177.5 1744.6 797.9 591.7 502.2
MAD 10027.8 10213.1 5741.8 3264.7 1774.7 1528.0 1648.3 1211.4 253.4 173.5 129.0
Time-stability 109.1  60.5 22.3 154 6.2 6.1 3.4 3.8 3.1 2.6 25
11 MAD 74.1 36.5 8.5 9.7 2.6 2.7 1.0 1.5 06 06 05
" Total regret 2244.2 1163.8 46.1 23.3 154 13.3 9.0 10.0 5.7 5.2 5.2
MAD 3268.4 1874.0  64.4 329 220 19.0 12.8 139 77 71 7.1
7.7
Policy A\, Time-stability  200.0 144.5 58.4 224 151 9.7 8.3 6.0 56 47 43
12 MAD 0.0 38.7 28.6 7.7 6.2 3.8 3.1 1.6 1.4 1.1 07
Total regret 10785.2 6594.4 3361.4 7421 517.2 341.1 228.6 180.5 156.7 142.6 132.9
MAD 6942.5 4936.1 3504.3 549.0 409.9 2639 1381 1069 951 894 843
7.7
Time-stability  200.0 198.0 108.6  68.7  29.1 20.3 15.0 11.7 104 84 73
I3 MAD 0.0 3.5 314 33.2 8.0 3.6 2.4 1.9 1.3 09 05
. Total regret  27200.2 20596.5 9600.6 5408.1 2264.0 1610.5 1214.1 844.4 753.8 578.3 513.7
MAD 11068.9 64879 43434 2991.2 1072.0 372.5 4144 300.8 2351 133.8 129.9

Note. The numbers in superscript of time-stability denote the number of instances out of 20 for which the corresponding

policy failed to converge within 7" time periods



