
Adaptive Open-pit Mining Planning under Geological Uncertainty

Abstract

This research project developed an adaptive stochastic optimisation approach for multi-

period production scheduling in open-pit mines under geological uncertainty, and compared it

to an existing two-stage optimisation method. This new rolling-horizon optimisation approach

updates the geological model each time period as new information becomes available. Numerical

tests carried out earlier on open-pits of different sizes showed that, on average, the rolling-horizon

adaptive policy gave better results than the non-adaptive two-stage approach. The metric used

was the percentage gap between the results for each policy and those that would be obtained if

the true block grades were perfectly known.

This paper extends this earlier work in two ways: firstly, by introducing a second metric —

the dollar-value difference between the NPV generated with perfect knowledge of the orebody

and those given by the other two optimisation methods. The rolling-horizon approach is still

better on average than the two-stage approach, but not for all of the geostatistical simulations

used to model the geological uncertainty. The second innovation in this paper is to analyse when

the new rolling-horizon approach outperforms the non-adaptive one. This depends on the drill-

hole spacing. For widely spaced grids, the rolling-horizon approach statistically outperforms

the two-stage approach at the 95% confidence level. For very close spacings, both approaches

converge toward the results for perfect knowledge.

Keywords: Stochastic optimisation, adaptive algorithms, learning, geostatistical simulations.
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1 Introduction

This paper continues a research project initiated by the authors of Lagos et al. (2020) which

developed an adaptive stochastic optimisation approach for multi-period production scheduling

in open-pit mines under geological uncertainty, and compared it to the non-adaptive two-stage

optimisation method developed by Moreno et al. (2017). The new approach is a rolling-horizon

optimisation that updates the orebody block model each time period as new information becomes

available as mining advances. Geological uncertainty on the grades in the deposit was modelled,

as is usual, by generating geostatistical simulations (i.e. equally likely realisations of the deposit

given the available data). As we used a very efficient updating algorithm described in Section 2.5,

we can afford to use a large number of simulations (100, in our case) and still have a reasonable

computation time.

In earlier work Lagos et al. (2020) showed that this rolling-horizon adaptive policy gave better

results, on average, than the non-adaptive two-stage approach but this does not mean that it

was always better. The aim of this paper is to study this in more detail for different sized pits

and for different drill-hole spacings and to introduce a second metric for comparing the results

— one that is more relevant in the mining industry, namely, the dollar-value difference between

the net present value (NPV) generated with perfect knowledge of the orebody and that given

by the other two optimisation methods. The metric used earlier in Lagos et al. (2020) was the

percentage gap between the results for each policy and those that would be obtained if the true

grades had been perfectly known as this is the standard metric used in operations research. Using

the new dollar-value metric, we show that the rolling-horizon approach is still better on average

than the two-stage approach, especially for wide drill-hole spacings, but it is not better for all

of the simulated orebody block models used to model geological uncertainty. The percentage of

cases where the rolling-horizon optimisation outperforms the two-stage optimisation depends on

the drill-hole spacing. For widely spaced grids, the rolling-horizon approach is better more often.

For closely spaced drill-holes (20m × 20m or 40m × 40m), both approaches converge toward the

results for perfect knowledge.

The paper is structured as follows. In Section 2 we review the literature on mine planning

optimisation, focusing on two approaches that are similar to ours: the work by Moreno et al. (2017),

and the one by Dimitrakopoulos and Jewbali (2013) and Jewbali and Dimitrakopoulos (2018). We

also review how geostatistical simulations are being used to model geological uncertainty. Section 3

presents the two methods compared here (Moreno’s two-stage optimisation and our rolling-horizon

one). In Section 4 the five case studies considered are described. The numerical results are presented

in Section 5 which is divided into three subsections. In Section 5.1, after showing that the gaps for

both policies converge to zero as the grid mesh shrinks, we used a one-sided paired t-test show that

the rolling-horizon policy is statistically better (at the 95% confidence level) than the two-stage

policy for the wider spaced grids, except for the 20 × 20m grid. In Section 5.2, we use the concept

of integral range to explain how variable the NPVs are for the perfect knowledge case for widely
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spaced grids. In Section 5.3, the NPV of the rolling-horizon policy divided by the NPV of the

corresponding perfect knowledge case is compared to that of non-adaptive policy. Section 6 gives

our conclusions and perspectives for future work.

2 Literature review

The aim of stochastic mine planning is to optimally schedule mining activities over time while still

complying with precedence and resource usage constraints (see Hustrulid et al. (2013) and Stone

et al. (2018) for details on the constraints that impact open-pit mines) and while taking account

of uncertainty, sometimes on the commodity price but usually on the orebody block model.

2.1 Modelling uncertainty in mining projects

As the annual cashflow of a mine equals the revenue (i.e. the quantity of the product sold times the

sales price) minus the fixed plus variable costs, there are two main types of uncertainty: uncertainty

on the costs and the commodity price, and uncertainty on the ore grades, material types, geomet-

allurgical properties, etc. Despite the importance of costs and commodity prices, few papers have

modelled financial uncertainty. One exception is Richmond (2018) who used a two-factor Pilipovic

model for copper prices and Black and Scholes model for extraction and mining costs. Others

include Henry et al. (2005), Meagher et al. (2010), Asad and Dimitrakopoulos (2013), Kizilkale

and Dimitrakopoulos (2014), Chatterjee et al. (2016), Mokhtarian Asl and Sattarvand (2018) and

Rimélé et al. (2020).

Far more effort has been focused on modelling uncertainty on ore grades, typically by using

geostatistical simulations of the deposit given the information available. These numerical models

are possible realisations of the deposit (see Section 2.5 for details). Since the 1990s the effect of

different drilling patterns and mine plans has been tested on them (Ravenscroft, 1992; Dowd, 1994;

Khosrowshahi et al., 2018; Godoy, 2018; Tahernejad et al., 2018; Vallejo and Dimitrakopoulos,

2019; Maleki et al., 2020). Tavchandjian et al. (2018) used conditional simulations to choose the

most appropriate mining method and mining equipment and Dowd and Dare-Bryan (2018) used

them to study blast design and to model ore dilution.

In this paper, we compare two policies for multi-period production scheduling under geological

uncertainty but do not consider financial uncertainty. The main reason is that, except for oligopolis-

tic markets, the latter uncertainty is exogenous to the mining project and equally affects the two

policies under consideration. What makes the difference between both policies is the way they

handle geological uncertainty. Unlike financial uncertainty, geological uncertainty is endogenous

to the production scheduling problem: it affects the decisions taken on which blocks to extract in

a given time period and these decisions affect how the orebody is mined and make it possible to

reduce the uncertainty locally as the extracted blocks provide knowledge of the true ore grades.
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2.2 Review papers

Two excellent reviews of optimisation applied to mining planning were published in 2008 and 2010,

namely Osanloo et al. (2008) and Newman et al. (2010). Both start out by presenting the early

deterministic approaches (Lerchs and Grossmann, 1965; Gershon, 1987) and go up to the early

uncertainty-based approaches. Whereas Osanloo et al. consider only open-pit mines, Newman et

al. also discuss underground mining. Readers interested in developments up to 2010 can consult

these two papers. We shall concentrate our attention on more recent publications. In addition

to these two review papers, the book edited by Dimitrakopoulos (2018) presents an overview of

state-of-the-art practices in the mining industry.

2.2.1 Two 2-stage production scheduling models with geological uncertainty

As our research follows on from work by Moreno et al. (2017), and by Dimitrakopoulos and Jewbali

(2013) and Jewbali and Dimitrakopoulos (2018), we describe them in detail. All three developed

two-stage production scheduling models for open-pit mine planning under geological uncertainty

and used a set of conditional geostatistical simulations to model that uncertainty. Both tested their

approaches on a real deposit: Moreno et al., on a copper deposit and Jewbali and Dimitrakopou-

los, on a producing gold mine. However there are some important differences between the two.

Firstly whereas Moreno et al. maximised the expected net present value, the objective function

in the other work also contained penalty terms for producing more or less than in the production

plan. Moreno et al. addressed the proposed integer programming model by reformulating it as a

large-scale precedence constrained knapsack problem that can be solved (nearly optimally) using

a modified version of the Bienstock-Zuckerberg decomposition (Bienstock and Zuckerberg, 2010).

The procedure in Moreno et al. can be summarised as follows:

• Stage 1: The scheduling decision is made; this assigns the time when each cluster (bench-phase

or similar) will be extracted.

• Stage 2: When the true ore grade is revealed (from blast-holes or by grade control drilling),

the model decides how to treat each individual block in that cluster (i.e. whether to send it

to the processing plant or the waste dump).

In contrast to Moreno et al. who assumed that the ore block grades were perfectly known once

the blast-hole data were available, Jewbali and Dimitrakopoulos (2018) considered that the grade

control drilling merely gave much more accurate predictions of the grades of blocks to be extracted.

So they needed to update the conditional simulations based on sparse exploration drilling, to

incorporate the new grade control data. This was the key innovative feature of their work. Their

optimisation process is divided into four stages:

• Stage 1: Generate a set of high density future grade control data for incorporation into the

production scheduling process by using sequential Gaussian co-simulation and a joint spatial
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correlation model between exploration data and grade control data available in previously

mined out parts of a deposit.

• Stage 2: Update the pre-existing simulated orebody models based on the simulated future

grade control information, by using conditional simulation by successive residuals (Jewbali

and Dimitrakopoulos, 2011).

• Stage 3: A stochastic programming mine scheduling formulation handles multiple simulated

orebody models from Stage 2. The objective function maximises NPV while minimising

deviations from production targets.

• Stage 4: The risk in the produced schedules generated is quantified and the schedules are

compared.

2.3 Recent papers

Two broad streams can be distinguished in recent papers: those by specialists in operations research

which focus on optimal solutions for large sized mines, and those which focus on modelling the

mining system in more detail (multiple pits, complex processing plants, blending and stockpiles,

etc). The latter usually have recourse to meta-heuristics to solve the systems (Lamghari, 2017). One

exception is Rezakhah et al. (2020): after having found that the linear programming relaxation of

their objective function is unimodal, they adapted an existing linear program to an operational gold-

copper open pit where a stockpile is used to blend materials based on multi-block characteristics.

2.3.1 Meta-heuristics

Most mine planning optimisation papers, including this paper, assume that once material is ex-

cavated it is sent either to the waste dump or to the processing plant. In practice stockpiles are

often included for blending or to store excess material or low-grade material that will be processed

later. The fact that newly arrived material is mixed with the rest of the stockpile complicates the

optimisation because it leads to quadratic constraints. Bley et al. (2012) studied several solvers for

mixed integer quadratically constrained programs and tested them on two case studies, one with

8513 blocks aggregated into 85 panels and the other with 96,821 blocks aggregated into 125 panels.

Paithankar et al. (2020) used three heuristics (a genetic algorithm, a maximum flow algorithm

and a cut-off grade algorithm) to solve a complex non-linear problem with stockpiling and grade

uncertainty, applied to copper and gold operations.

In export supply chains consisting of mining, ore processing, transportation to the port, stock-

yard management and vessel loading, the different subsystems are usually studied in isolation with

little consideration for their interactions with upstream and downstream subsystems (Bodon et al.,

2018). Balzary and Mohais (2018) used simulation models supported by metaheuristic optimisation

techniques to develop decision support systems for supply chains for bulk materials such as coal

and iron ore.
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Goodfellow and Dimitrakopoulos (2016) modelled a copper-gold deposit with six possible des-

tinations for material: the sulphide mill, the sulphide heap leach, the sulphide waste dump, the

transition heap leach, the oxide heap leach and the oxide waste dump. They considered uncertainty

on grades of both the primary metal and the secondary elements, and on the material types (oxides,

sulphides and transition material). They proposed a two-stage stochastic optimisation that involves

three combinations of metaheuristics including simulated annealing, particle swarm optimisation

and differential evolution.

As sustainable development is becoming an increasingly important topic for the mining industry,

companies are concerned to reduce the environmental impact of waste dumps and stockpiles. When

the deposit consists of low dip layers with a long strike, waste can be dumped in the pit (Zuckerberg

et al., 2007). Rimélé et al. (2018) and Spleit (2018) have developed a stochastic integer program

for these types of deposits and have tested it on iron-ore deposits.

2.3.2 Near-optimal solutions for larger pits

Solving the mathematical programming model for the strategic open-pit mine planning problem

originally proposed by Johnson (1968), has been dauntingly difficult for real mines because their

block models contain millions of blocks and production continues over decades. Block aggregation

techniques, grouping blocks into larger mining units (Tabesh and Askari-Nasab, 2011; Jélvez et al.,

2016; Mai et al., 2019), or decomposition approaches based on sliding time-windows and block

preselection (Jélvez et al., 2019; Maleki et al., 2020), can be used to reduce the size of the opti-

misation problem. Boland et al. (2008) tackled the difficult case of stochastic programming with

endogenous uncertainty (Goel and Grossmann, 2006). They considered uncertainty in the block

grades and used wait and see decision schemes, where some of the decisions are taken only after

the actual grades are revealed.

Advances in stochastic programming and robust optimisation over the last two decades (Shapiro

et al., 2009; Ben-Tal et al., 2009) have also allowed the development of approaches with good

theoretical properties. In particular, Lagos et al. (2011) compared the risk-hedging performance

of three approaches for optimisation under uncertainty: Value-at-Risk, Conditional Value-at-Risk

and a proposed robust optimisation approach, and tested them on a vein-type deposit. These

developments have made it possible to get closer to the optimal solution for real deposits. Canessa

et al. (2020) considered a risk-averse ultimate pit problem under geological uncertainty and derived

conditions for generating a set of nested pits by varying the risk level instead of using revenue

factors. They developed a two-stage stochastic programming formulation of the problem and an

efficient approximation scheme to solve it. The approach was tested on a section of the Andina

mine, in Chile.

Goycoolea et al. (2015) proposed an MIP model for scheduling the blocks in each of a set

of predefined push-backs using the Bienstock-Zuckerberg algorithm and tested it on six different

cases with up to 4 million blocks that produced for up to 60 time periods. The data for two of

these studies are freely available to the public (Espinoza et al., 2013). For more information on
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the Bienstock-Zuckerberg algorithm, see Bienstock and Zuckerberg (2009, 2010) and Muñoz et al.

(2018).

2.4 Updating

As far as adaptive optimisation or optimisation with learning is concerned, Powell and Ryzhov

(2012) is a a fairly comprehensive reference extending mostly from Bayesian approaches for the prob-

lem of ranking and selection. More recently, Frazier (2018) deepened in the direction of Bayesian

optimisation with Gaussian process regression.

From the late 1980s on, Bayesian analysis has been combined with geostatistics (Omre, 1987;

Christakos, 1990; Omre and Tjelmeland, 1997; Benndorf, 2015), but it was used mostly to model

uncertainty on the parameters of the spatial covariance or to obtain improved spatial predictions.

More recently, McKinley et al. (2014) used geostatistical Bayesian updating to integrate airborne

radiometrics and soil geochemistry to improve maps for mineral exploration. Willigers et al. (2014)

combined geostatistics and Bayesian updating to continually optimise drilling strategies in shale-gas

plays.

As will be seen in the next section, different models and algorithms exist for generating geosta-

tistical simulations and the algorithms based on multivariate Gaussian models are more suitable

for updating. For example, in the oil industry, they are used for history matching, that is, up-

dating reservoir models as production figures become known, see Oliver et al. (2008) and Oliver

and Chen (2011). Coming back to mining, Goria (2004), working in a real option framework, used

geostatistical simulations to determine the value of additional drilling for a gold deposit.

2.5 Geostatistical simulations

There are many different methods for constructing realisations of ore grades, such as sequential

approaches (Gómez-Hernández and Journel, 1993; Soares, 2001; Dimitrakopoulos and Luo, 2004),

spectral approaches (Lantuéjoul, 2002; Chilès and Delfiner, 2012; Emery et al., 2016) or high-order

simulations (Mustapha and Dimitrakopoulos, 2010; de Carvalho et al., 2019), but most are not

suitable for updating orebody block models as new information becomes available. Our updating

method uses the good properties of the multivariate Gaussian distribution and requires holding the

original Gaussian unconditional simulation and conditioning it with the new data as well as the

old. The main steps are:

• The raw data (ore grades) are converted to their Gaussian equivalents.

• The experimental spatial covariance function (or equivalently the variogram) of the Gaussian

equivalents is computed and a theoretical covariance or variogram model is fitted.

• The required number of unconditional realisations are generated.

• These are “conditioned” to the available data (drill-hole data or block grades), by means of

a post-processing step based on kriging.
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• Finally these are back-transformed to grades in the raw scale.

For more information on geostatistical simulations readers can consult Goovaerts (1997), Lantuéjoul

(2002) or Chilès and Delfiner (2012). Some code for generating these unconditional and conditional

realisations is given by Emery and Lantuéjoul (2006).

Our rolling-horizon policy requires being able to generate many orebody realisations (in our

case 100) in each time period, conditioned not only to the drill-hole data, but also to the observed

grades from the blocks extracted in previous periods. Instead of computing these realisations

from scratch in each time period, it is much more efficient to use the same set of underlying

unconditional realisations and to update them to the newly available data. This is possible because

each conditional realisation is built on the basis of an unconditional realisation that, by definition,

does not need to be updated when new data becomes available. In other words, the same set of

100 unconditional realisations is used for all the time periods and one just needs to recalculate the

kriging weights in order to convert the unconditional realisations into conditional realisations (in

a post-processing step). Further computational simplifications are possible if one takes account of

the relationships between the kriging weights calculated by using a set of data and those calculated

by using a subset of these data (Chevalier et al., 2015).

3 Optimisation models

Now we present the basic mixed integer programming model for the two policies considered in this

work, the non-adaptive two-stage (2S) and the adaptive rolling-horizon (RH) policies. We proceed

as follows: in Table 1 we define the elementary sets, the basic parameters, and the variables

considered in the mathematical model, then we present the mixed integer two-stage stochastic

model, and finally we explain in detail the aforementioned policies.

The model is the following:

max
∑
t∈T

1

|S|

 ∑
b∈B, s∈S

vsb,t y
s
b,t −

∑
i∈C

wi,t θi,t


s.t.

∑
t∈T

θi,t ≤ 1 ∀ i ≤ m (1a)

θi,t ≤
∑
s≤t

θj,s ∀ (i, j) ∈ P, t ∈ T (1b)

∑
i≤m

θi,t k
ex
i ≤ Kex ∀ t ∈ T (1c)

ysb,t ≤ θi,t ∀ i ∈ C, b ∈ Bi, t ∈ T, s ∈ S (1d)∑
b≤n

ysb,t k
pr
b ≤ K

pr ∀ t ∈ T, s ∈ S (1e)

θi,t ∈ {0, 1} ∀ i ∈ C, t ∈ T (1f)

0 ≤ ysb,t ≤ 1 ∀ b ∈ B, t ∈ T, s ∈ S. (1g)
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B Index set of blocks, each b ∈ B represents a production unit in the mine

C Set of clusters of blocks, each i ∈ C contains several blocks

Bi ⊆ B Set of blocks contained in cluster i ∈ C
T Set of time periods considered for the exploitation and processing of the material

from the mine

P ⊆ C × C Precedence set between clusters of the mine, each element (i, j) ∈ P defines a prece-
dence. Cluster i must be exploited not later than cluster j

S Finite set of scenarios of the ore content of blocks. Each scenario determines a
possible realisation of the ore content of all blocks b ∈ B

Kex Maximum extraction capacity for each time period

kexi Extraction rate for extracting cluster i ∈ C
Kpr Maximum processing capacity for each time period

kprb Rate for processing the ore content of block b ∈ B
wi,t Total cost incurred by extracting cluster i ∈ C at time period t ∈ T, discounted by

the difference of number of periods with respect to period 1

vsb,t Profit obtained by the processing a unit of block b ∈ B at time period t ∈ T, under
scenario s ∈ S, brought to present value with respect to period 1

θi,t ∈ {0, 1} Binary variable that is equal to 1 if and only if all blocks in Bi, i ∈ C are excavated
in time period t ∈ T

ysb,t ∈ [0, 1] Continuous variable that denotes the portion of block b that is processed in period
t ∈ T, under scenario s ∈ S

Table 1: Sets, parameters, and variables considered in the mathematical model, partitioned by
double lines, respectively.

The two-stage mixed integer stochastic program of Model (1) maximises the net present value

given by the extraction and processing decisions. Constraint (1a) ensures that each cluster is

extracted at most once; Equation (1b) requires that the optimal solution must respect the prescribed

precedence given in set P, (1c) limits the extraction capacity of each time period; while (1d) requires

the solution to allow to process blocks that belong to a cluster extracted in the same time period

in which the block is processed, Equation (1e) limits the processing capacity for each time period

and Constraints (1f) and (1g) impose the support for the variables in the Model.

Both policies presented in this section follow a similar framework. First, a set of scenarios of

block grades is generated using the available data from drill holes samples. Then, in each time

period the policy determines the extraction decisions and subsequently executes the processing

decisions by optimally solving a very simple continuous knapsack problem. The frame can be

outlined as follows:

• Generate the next geostatistical simulation of block grades conditioned on drill-hole data, out

of a set of S simulations.

• For t ∈ T :

1. Set extraction decisions, θi,t for period t according to the solution of the model, where

θi,t = 1 if and only if cluster i ∈ C is extracted.
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2. Set processing decisions for period t according to the solution to

max

 ∑
i:θi,t=1

∑
b∈Bi

vb,t yb :
∑

i:θi,t=1

∑
b∈Bi

yb k
pr
b ≤ K

pr, 0 ≤ yb ≤ 1 ∀ b ≤ n

 .

Now we present the first policy considered in this study, the 2S policy. It follows the extraction

decisions given by the solution of Model (1), that is, for any time period t ∈ T, we extract cluster

i ∈ C if and only if θi,t is equal to one. The second policy, RH, updates the set of S geostatistical

simulations of block grades in each time period before the extraction is executed (except in period

1). More specifically, in the first time period the extraction executed and the set of scenarios

considered are the same as in the 2S policy, then, in subsequent periods, the set of scenarios

considered is conditioned on observed grades from blocks already extracted and on drill-hole data,

then it proceeds by reformulating and solving Model (1) with the extraction decisions for periods

s < t fixed.

4 Set-up for computational experiments

4.1 Layout of the drill holes relative to the blocks.

In our model, blocks are 10m × 10m × 10m and drill hole samples are 10m long. The average grade

of each sample or block is situated at its center. Different drill-hole grids were considered: 20m

× 20m, 40m × 40m, and so on. If the grid spacing is halved, the number of drill holes is quadrupled.

Figure 1 illustrates the layout for the top bench for two of the cases considered (Nos. 7 and

10), which is 320m × 320m. It contains 1024 (i.e., 32× 32) blocks with black dots indicating their

centers. Drill holes located at the corners of the blocks are shown in red or blue depending on the

spacing. The blue circles represent drill holes on a 40m × 40m grid, while the red ones are on a

20m × 20m grid and some red ones are covered up by blue ones.
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Figure 1: Layout of Drill holes relative to Blocks: a zone 320m × 320m containing 1024 (i.e.,
32× 32) blocks each 10m by 10m with black dots indicating their centers. Drill holes shown in red
or blue depending on the spacing are located at the corners of the blocks. The blue circles are on
a 40m by 40m grid while the red ones are on a 20m by 20m grid and some are covered up by blue
ones on the wider spaced grid.

Presenting the set-up more formally. We tested the performance of two policies, Moreno et

al.’s two-stage approach (2S) and the new rolling-horizon approach (RH), in addition to perfect

knowledge (PK), in which the true ore grades are known at the outset and so there is no uncertainty.

The PK policy provides an unattainable upper bound on performance.

Our aim is to study the impact of the number of drill holes and the number of blocks on the

extraction policy π, for each π ∈ {PK, 2S, RH}. To do this, we parameterise the mine by constants

m and ` with m ≥ 2. The set XDH defines the locations of samples in drill holes as follows:

XDH =
{

(x1, x2, x3) = (20i, 5 + 20(j − 1), 5 + 10(k − 1)) ∈ Z3 : i, j ∈ {1, . . . 2m−1}, k ∈ {1, . . . , `}
}
.

(2)

Accordingly, there are 2m−1 × 2m−1 = 22(m−1) drill holes in the horizontal (x1, x2) plane, each

containing ` samples aligned vertically. In some of the experiments, we took a smaller subset of 22r

points in XDH (r = 0, . . . ,m− 1) in such a way that points were equally spaced on the horizontal
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plane. Similarly, the set of blocks X̃Block, is defined as follows:

X̃Block =
{

(x1, x2, x3) = 5 + 10(i− 1, j − 1, k − 1)) ∈ Z3 : i, j ∈ {1, . . . 2m}, k ∈ {1, . . . , `
}
. (3)

The total number of blocks in X̃Block is 2m×2m×` = 22m`. Because of the slope stability constraint,

not all blocks in X̃Block are feasible for extraction. Let XBlock ⊂ X̃Block be the set of blocks that

can be extracted.

Next we define the precedence constraints. In open pits, a block cannot be extracted until

the blocks above have been removed. For that, we index blocks in XBlock with the set B :=

{1, . . . , |XBlock|} from the top to down, so that if block b1 is closer to the surface than block b2,

then b1 < b2. We first define precedence constraints at the block level as follows:

PBlock =
{

(b1, b2) : |xb11 − x
b2
1 | ≤ 10, |xb12 − x

b2
2 | ≤ 10, xb23 = xb13 + 10, 1 ≤ b1 < b2 ≤ |B|

}
. (4)

With these constraints, we defined the set P by using a bench-phase design (see, e.g., Moreno et al.

(2017)) considering precedence constraints for adjacent clusters in the North-South and West-East

directions, and also in the top-down direction.

4.2 Values of key parameters

We set the extraction capacity as

Kex =
1

|T |+ 1

∑
b∈B

weightb, (5)

where weightb denotes the weight of block b. The processing capacity Kpr is half of that amount.

The numerical values of the parameters taken from Moreno et al. (2017) are listed in Table 2.

Commodity (copper) price 2.1 USD/lb Discount factor 10%

Mining cost 2.5 USD/ton Processing cost 10 USD/ton

Table 2: Key costs and technical parameters used to run numerical tests: These values
come from Moreno et al. (2017)

.

4.3 Geostatistical simulations

For each study, 100 geostatistical simulations (scenarios) were constructed using the turning bands

method (Matheron, 1973; Emery and Lantuéjoul, 2006). The spatial covariance of the Gaussian

equivalents of ore grades consisted of the sum of an isotropic spherical structure with a correlation

range of 100m and a sill of 0.45, an isotropic exponential structure with a practical range of 100m
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(scale parameter 100/3) and a sill of 0.45 and nugget effect of 0.1.

C(h) =


0.45(1− 3

2
|h|
100 + 1

2

(
|h|
100

)3
)1{|h| < 100} (spherical)

+0.45 exp
(
−3 |h|100

)
(exponential)

+0.11{h = 0} (pure nugget),

(6)

where 1{·} denotes the indicator function, h is the separation vector between data and |h| is the

norm of h. The low nugget effect (only 10% of the total sill) and the long range relative to the size

of the deposit mean that the Gaussian equivalents of the ore grades show good continuity. The

function used to back-transform the Gaussian values to grades was close to an exponential, i.e., the

ore grades have a distribution close to lognormal. This covariance model and back-transformation

were those used by Moreno et al. (2017) and are typical of copper deposits.

4.4 Cases considered

In this research project the performance of the policies was tested numerically using a HP ProLiant

SL230s Gen8 computer with 20 cores available (2 × Intel Xeon E5-2660 10 cores each). With five

of these machines, we were able to parallelise all 100 realisations (scenarios) for each instance.

Lagos et al. (2020) carried out numerical tests for 14 cases ranging from artificially small to

realistically-sized mines with more than 100,000 blocks, and for a variety of drill-hole spacings.

Here we re-visit five of the realistic-sized cases studied in that paper, namely Nos. 7, 10, 12, 13 and

14. Table 3 lists the number of blocks (each 10m by 10m by 10m) along the three axes, together

with the total number of blocks considered. As we assumed that the walls were inclined at 45o to

ensure the slope stability of the open pit (Eq. (4)), there are fewer blocks at lower levels.

Case Along X Along Y Along Z
# Total Number

of Blocks.

# Instances Solved

to optimality.

7 320m 320m 60m 4444 100

10 320m 320m 80m 5168 98

12 640m 640m 140m 37,324 92

13 1280m 1280m 60m 90,844 99

14 1280m 1280m 80m 117,926 61

Table 3: Parameters used to run numerical tests: columns 2, 3 and 4 give the number of
blocks along X, Y and Z, in the orebody. The fifth column gives the total number of blocks, taking
account of the slope stability angle, 45o. The last column has the number of instances solved out
of 100 within a 3 hour time limit.

Table 4 gives the number of blocks, the extraction capacity, the number of precedences, the

number of clusters and hence the average number of blocks per cluster, for the five cases considered

in this paper.
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Case
Number

of Blocks

Extraction

Capacity

Number of

precedences

Number of

clusters

Av No Blocks

per Cluster

7 4444 740.67 104 48 92.58

10 5168 861.33 144 64 80.75

12 37,324 6220.67 264 112 333.25

13 90,844 15,140.67 104 48 1892.58

14 117,296 19,549.33 144 64 1832.75

Table 4: Key parameters used to run numerical tests: the number of blocks, the extraction
capacity, the number of precedences, the number of clusters and hence the average number of blocks
per cluster, for the five cases considered in this paper.

4.5 Two criteria for measuring policy performance

In the operations research community, the standard measure of the performance of an optimisation

method is the gap between the actual performance and the optimum, expressed as a percentage.

This is possible either when the optimum is known theoretically, or when working with synthetic

cases where the “true” ore grades are known by construction. In our case, we computed this as

1 − RH/PK and 1 − 2S/PK where RH, 2S and PK refer to the results given by these methods.

The averages were computed over the 100 out-sample simulations in each case.

However, in the mining industry, new methods are usually tested on real deposits by comparing

the percentage improvement in the cumulative discounted cash flow or the NPV generated by the

new approach compared to industry standards, e.g. Moreno et al. (2017), Menabde et al. (2018),

and Maleki et al. (2020). In addition to computing the improvement in the NPV, Jewbali and

Dimitrakopoulos (2018) also evaluated the increase in ore mined and the metal produced. In our

case we computed the average NPV for the policies in million USD.

5 Results of the computational experiments

5.1 Average results over geostatistical scenarios

Tables 5 to 9 give the averages of the two criteria, the gap and the NPV, for the two policies and

also the average NPV for perfect knowledge, PK, for the various drill-hole spacings, for the five

cases considered. The number of drill holes acts as a proxy for the amount of knowledge policies

have a priori. The results confirm that both policies converge to the perfect knowledge results as

the drill-hole spacing decreases, i.e., as the amount of information increases. For both large and

small mines, the 2S and RH policies lead to gaps of less than 5% of the upper bound given by the

PK policy for the closest drill-hole spacings. Note the value for perfect knowledge PK does not

change with the drill-hole spacing. As expected, the RH policy produces even smaller gaps than

those obtained with 2S. Overall, both policies give very good results on average for large and small

orebodies, even when there are very few drill holes, because the spatial covariance is well-structured
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(low nugget effect and long correlation range). Having said that, in the next section we will see

that there is considerable variability in the results from one simulation to another, especially for

Cases 7 and 10.

Drill-hole

Spacing

Number

Drill holes

1-Gap

2S

1-Gap

RH

NPV

2S

NPV

RH

NPV

PK

20m × 20m 256 0.995 0.995 868.15 868.08 872.19

40m × 40m 64 0.993 0.993 866.37 865.87 872.19

80m × 80m 16 0.982 0.986 856.97 859.84 872.19

160m × 160m 4 0.963 0.977 839.76 851.73 872.19

Table 5: Mean values of the gap and the NPV for the rolling-horizon policy (RH) and
the two-stage policy (2S) for Case No 7. The NPVs are in millions USD.

Drill-hole

Spacing

Number

Drill holes

1-Gap

2S

1-Gap

RH

NPV

2S

NPV

RH

NPV

PK

20m × 20m 256 0.997 0.997 898.35 898.50 901.03

40m × 40m 64 0.996 0.996 897.06 897.41 901.03

80m × 80m 16 0.985 0.991 887.06 892.85 901.03

160m × 160m 4 0.961 0.981 864.42 883.53 901.03

Table 6: Mean values of the gap and the NPV for the rolling-horizon policy (RH) and
the two-stage policy (2S) for Case No 10. The NPVs are in millions USD.

Drill-hole

Spacing

Number

Drill holes

1-Gap

2S

1-Gap

RH

NPV

2S

NPV

RH

NPV

PK

20m × 20m 1024 0.998 0.998 913.91 914.47 915.82

40m × 40m 256 0.997 0.997 913.36 913.86 915.82

80m × 80m 64 0.992 0.994 909.14 911.04 915.82

160m × 160m 16 0.979 0.985 896.96 902.65 915.82

320m × 320m 4 0.964 0.980 883.37 897.57 915.82

Table 7: Mean values of the gap and the NPV for the rolling-horizon policy (RH) and
the two-stage policy (2S) for Case No 12. The NPVs are in millions USD.
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Drill-hole

Spacing

Number

Drill holes

1-Gap

2S

1-Gap

RH

NPV

2S

NPV

RH

NPV

PK

20m × 20m 4096 0.999 0.999 882.68 883.08 883.81

40m × 40m 1024 0.998 0.999 881.54 882.69 883.81

80m × 80m 256 0.997 0.997 881.20 881.51 883.81

160m × 160m 64 0.989 0.991 874.07 875.93 883.81

320m × 320m 16 0.980 0.986 865.54 871.66 883.81

640m × 640m 4 0.976 0.984 862.01 869.65 883.81

Table 8: Mean values of the gap and the NPV for the rolling-horizon policy (RH) and
the two-stage policy (2S) for Case No 13. The NPVs are in millions USD.

Drill-hole

Spacing

Number

Drill holes

1-Gap

2S

1-Gap

RH

NPV

2S

NPV

RH

NPV

PK

20m × 20m 4096 0.999 1.000 899.44 899.82 900.13

40m × 40m 1024 0.999 0.999 898.93 899.64 900.13

80m × 80m 256 0.996 0.997 896.54 897.54 900.13

160m × 160m 64 0.989 0.991 889.90 892.16 900.13

320m × 320m 16 0.981 0.987 882.98 888.13 900.13

640m × 640m 4 0.977 0.984 879.72 885.43 900.13

Table 9: Mean values of the gap and the NPV for the rolling-horizon policy (RH) and
the two-stage policy (2S) for Case No 14.The NPVs are in millions USD.

Note that the computations were carried out in a do-loop: a new geostatistical scenario was

generated then the two policies were evaluated. Consequently, as the values of the two-stage policy

and the rolling-horizon policy were computed for the same scenarios, the values are paired. So it

is possible to test the difference between their NPVs using a paired t-test. Secondly we are only

interested in a one-sided test to determine whether or not the RH policy improves the 2S policy.

Table 13 gives the results of the paired t-tests for the various drill-hole spacings. It shows that the

NPV of the rolling-horizon policy is significantly higher, at the 95% confidence level, than that of

the two-stage policy for the grids except for the 20m × 20m spacing and the 40mx40m spacing for

case 7. These exceptions are not important from a practical point of view because with such closely

spaced drill-holes, the NPVs of both policies are very close to that of perfect knowledge. However

we have demonstrated that the new method is statistically better for widely spaced grids.
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No Drillholes 4 16 64 256 1024 4096

Case 7 Mesh 160m×160m 80m×80m 40m×40m 20m×20m - -

Case 7 Mean 11.97 2.87 -0.05 -0.07 - -

Case 7 StDev 21.75 11.93 6.54 3.40 - -

Case 7 t-value 5.50** 2.41** -0.77 -0.21 - -

No Drillholes 4 16 64 256 1024 4096

Case 14 Mesh 640m×640m 320m×320m 160m×160m 80m×80m 40m×40m 20m×20m

Case 14 Mean 5.70 5.15 2.26 1.00 0.70 0.38

Case 14 StDev 14.51 10.31 7.80 3.98 1.79 1.93

Case 14 t-value 3.93** 4.99** 2.90** 2.51** 3.93** 1.95

Table 10: Results of a one-sided paired t test of whether the rolling-horizon policy
outperforms the two-stage policy as a function of the number of drill-holes and the
mesh of the drill-hole grid. The asterisks indicate statistically significant t-values.

5.2 Variability of perfect knowledge NPVs between geostatistical scenarios.

So far, the mean values of the two criteria were computed by averaging the results over the 100

realisations generated. This masks the variability amongst the realisations. In fact, there is con-

siderable variability in the NPVs from one realisation to another, even for the NPV for perfect

knowledge. Table 11 shows the basic statistics of the perfect knowledge NPVs for all five cases.

The variability is especially marked for cases Nos. 7 and 10. This is due to a lack of ergodicity of

the random field representing the ore grades in the geostatistical model, because the orebodies are

small relative to the range of the variogram.

Case Minimum Maximum Mean Max/Min Coeff Var

7 497 1610 872.19 3.24 0.256

10 520 1530 901.03 2.94 0.251

12 669 1450 915.82 2.17 0.155

13 761 1030 883.81 1.35 0.071

14 755 1070 900.13 1.42 0.089

Table 11: Statistics for perfect knowledge for the five cases. The minimum, maximum and
mean are in millions of USD

The lack of ergodicity can be seen by computing the integral range (Lantuéjoul, 1991; Lantuéjoul,

2002). If Z(V ) is the average value of a spatial variable (ore grade) over region V , the integral

range, IR, is defined as

IR = lim
[V ]→∞

[V ]
V arZ(V )

σ2
(7)

where [V ] is the volume of V and σ2 = C(0) i.e. the variance of the variable at a point support.

This limit exists for all the usual covariance functions (Yaglom, 1987). Their integral ranges are
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given in Table 12.

Covariance 1D 2D 3D

Spherical 3/4 π/5 π/6

Exponential 2 2π 8π

Table 12: Integral Ranges. For the the unit-range spherical model and the unit-scale parameter
exponential model, in 1D, 2D and 3D spaces. Source: Lantuéjoul (2002, Table 2)

As the integral ranges of the unit-range spherical model and the unit-scale parameter exponential

model are π/6 and 8π, respectively, see Table 12), the integral range in our case (Eq. (6)) is:

IR = 0.1× 0 + 0.45× 1003 × π

6
+ 0.45×

(
100

3

)3

× 8π = 654, 479. (8)

The volume of the deposit in Case No 7 is 320×320×60 = 6, 144, 000 m3, that is, 9.39 times the

integral range. Despite its apparent size, the volume only “allows for 9.39 independent repetitions”,

which is clearly not enough to get a spatial average with little fluctuations across the realisations.

We advise readers to compute the integral range of their covariance/variogram and compare it to

the volume of the deposit being considered in order to be aware of expected statistical fluctuations.

5.3 Comparing the NPV of the rolling-horizon policy with that of the two-stage

policy.

Next we compare the NPV of two-stage policy with that of the rolling-horizon policy for increasing

numbers of drill holes for the two extreme cases: No 7 and No 14. In order to filter out the

variability between scenarios, the NPVs were divided by the NPV for the perfect knowledge (PK)

case. This ratio was plotted as a function of the number of drill holes expressed as a power of

4 because the number of drill holes quadruples each time the drill-hole spacing was halved. For

example, for case 7 (Figure 2) there were 4, 16, 64 and 256 drill holes, corresponding to grids with

meshes 160m × 160m, 80m × 80m, 40m × 40m and 20m × 20m. The upper and lower panels

are for the two-stage policy and the rolling-horizon policy, respectively. The solid line shows the

average of the ratio. Similarly for Figure 3 for Case 14, except that 6 grid spacings were considered.

Looking at these two figures, we see two things: firstly, the NPVs of both policies converge to that

of perfect knowledge PK, which is hardly surprising given that the closest data are on a 20m ×
20m grid. Secondly for the widely spaced grids, the NPVs for the rolling-horizon policy are higher

on average and less dispersed than for the two-stage policy.
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Figure 2: Comparing the NPV of two-stage policy divided by NPV for PK (above)
with the NPV of the rolling-horizon policy divided by NPV PK (below) for increasing
numbers of drill holes (from left to right, 4, 16, 64 and 256) for Case 7, with the solid line showing
the average of the ratio.
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Figure 3: Comparing the NPV of two-stage policy divided by NPV for PK (above)
with the NPV of the rolling-horizon policy divided by NPV PK (below) for increasing
numbers of drill-holes (from left to right, 4, 16, 64, 256, 1024 and 4096) for Case 14, with the solid
line showing the average of the ratio.

In Figure 4 the NPV of two-stage policy divided by NPV for PK was plotted against the NPV

of the rolling-horizon policy divided by NPV for PK, for the widest spaced grid, for each of the 100

realisations for Case 7 (left) and Case 14 (right). The solid red line is at 45o; so for points above

the line, the NPV for the rolling-horizon policy is higher than that for the two-stage policy. Note

how much more dispersed the values are for Case 7 (the smaller zone). Table 13 gives percentage of

geostatistical scenarios (simulations) for which the rolling-horizon policy outperforms the two-stage

policy as a function of the number of drill-holes and the mesh of the drill-hole grid.

20



No Drillholes 4 16 64 256 1024 4096

Case 7 66% 55% 36% 24% - -

Case 7 Mesh 160m×160m 80m×80m 40m×40m 20m×20m - -

Case 14 55.7% 67.2% 55.7% 41.0% 36.1% 24.6%

Case 14 Mesh 640m×640m 320m×320m 160m×160m 80m×80m 40m×40m 20m×20m

Table 13: Percentage of geostatistical scenarios (simulations) for which the rolling-horizon policy
outperforms the two-stage policy as a function of the number of drill-holes and the mesh of the
drill-hole grid.

Figure 4: Cross-plot the NPV of two-stage policy divided by NPV for PK with the
NPV of the rolling-horizon policy divided by NPV for PK, for the widest spaced grid
for Case 7 (left) and Case 14 (right)

6 Conclusions and perspectives

This paper presents the second phase of a research project in which we developed an adaptive

stochastic optimisation approach for multi-period production scheduling in open-pit mines under

geological uncertainty, and compared it to an existing two-stage optimisation method and to the

optimisation given perfect knowledge. This new approach is based on a rolling-horizon framework

that updates the geological model each time period as new information becomes available. That

is, we incorporate the fact that, as the deposit is mined, the true ore grades of mined-out material

can be used to update the block model and re-optimise the production schedule of the remaining

parts of the mine still to be exploited.

Numerical tests were carried out on synthetic open-pits of different sizes where, by construction,

we knew the “true grades” and hence the perfect knowledge NPV. The metric used in the first phase
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of this work (Lagos et al., 2020) was the percentage gap between the results for each policy and

those that would be obtained if the true block grades were perfectly known. This showed that the

rolling-horizon adaptive policy gave better results, on average, than the non-adaptive two-stage

approach. However, while it is reassuring to know that the new approach is better on average, we

need to know whether this happens for all geostatistical scenarios or just some of them, and in that

case, which ones.

This paper extends earlier work in two ways, firstly by giving an in-depth statistical analysis of

the results, and secondly, by introducing a second metric — the dollar-value difference between the

NPV generated with perfect knowledge of the orebody and those given by the other two optimisation

methods. The main contributions of this new analysis are:

• The average NPVs for the two-stage policy and the rolling-horizon policy converge to the

average NPV for perfect knowledge as the grid mesh shrinks; likewise the average gaps for

both policies converge to zero.

• Using a one-sided paired t-test we showed that the rolling-horizon policy is statistically better

(at the 95% confidence level) than the two-stage policy for the wider spaced grids, but not

for the 20m × 20m grid.

• This work highlighted the importance of the size of the deposit under study relative to the

covariance structure. The values of the NPV for perfect knowledge turned out to be highly

variable for the smallest two of the deposits considered. While their dimensions (320m ×
320m × 60m and 320m × 320m × 80m) seem reasonable, the coefficients of variation for the

NPVs were surprisingly high. This is due to ergodicity problems. We recommend computing

the integral range before carrying out geostatistical simulations, to avoid surprises like this.

• Comparing the NPVs of the two policies showed that even though the rolling-horizon approach

gives better results on average, this is not true for all geostatistical scenarios. The percentage

of cases where the rolling-horizon optimisation outperforms the two-stage optimisation varies

from about 25% to 65% depending on the drill-hole spacing. For very close spacings, both

approaches converge toward the results for perfect knowledge. For widely spaced grids, the

rolling-horizon approach is better more often.

6.1 Future Work

6.1.1 Moving beyond the assumption of a homogeneous rock mass

At the outset of this work, we made some simplifying assumptions about the orebody and the

mining. Following Froyland et al. (2018), we assumed that the infrastructure is fixed throughout

the mine life, the selling price of the product is known and the grade control is perfect. That is,

once a block has been blasted, its contents are known perfectly.

As far as the orebody is concerned, the deposit was assumed to be part of a homogeneous

rock mass, and secondly that the geostatistical parameters were perfectly known. The question
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of parameter uncertainty, in particular the covariance or variogram model, has been addressed

by several authors (Ortiz and Deutsch, 2002; Marchant and Lark, 2004; Emery and Ortiz, 2005;

Pardo-Iguzquiza and Chica-Olmo, 2008; Olea and Pardo-Iguzquiza, 2011). As for the assumption

that the orebody is part of a homogeneous mass, new Gaussian-based simulation techniques such

as plurigaussian simulations (Armstrong et al., 2011) have been developed for simulating the layout

of geological domains such as rock types or ore types. Although they were initially developed for

the oil industry, they are now being applied in mining in a variety of geological settings, including

uranium (Skvortsova et al., 2002), gold (Yunsel and Ersoy, 2011), lead-zinc (Yunsel and Ersoy,

2013), copper (Talebi et al., 2016; Maleki and Emery, 2015) and iron (Mery et al., 2017; Maleki

et al., 2020). In our opinion, incorporating rock type uncertainty as well as grade uncertainty

in stochastic mine production scheduling studies is one of the promising research avenues for the

future.

6.1.2 Impact of the spatial covariance

In this work we used a well-structured spatial covariance, that is, one with a low nugget effect and

a reasonably long range compared to the drill-hole spacing. While we ran tests for a range of drill-

hole spacings, we did not test the effect of how well or how poorly the covariance was structured on

the results. We suspect that they could have been quite different for poorly structured covariance

models. Another direction for future research would therefore be to carry out tests for different

covariance structures.
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J. J. Gómez-Hernández and A. G. Journel. Joint sequential simulation of multigaussian fields. In

Geostatistics Troia’92, pages 85–94. Springer, 1993.

25



R. C. Goodfellow and R. Dimitrakopoulos. Global optimization of open pit mining complexes with

uncertainty. Applied Soft Computing, 40:292–304, 2016.

P. Goovaerts. Geostatistics for natural resources evaluation. Oxford University Press on Demand,

1997.

S. Goria. Evaluation d’un projet minier: approche bayésienne et options réelles. PhD thesis, Paris,
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