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We present a framework for a class of sequential decision-making problems in the context of general

interdiction problems, where a leader and a follower repeatedly interact. At each period, the leader allocates

resources to disrupt the performance of the follower (e.g., as in defender-attacker or network interdiction

problems), who in turn minimizes some cost function over a set of activities that depends on the leader’s

decision. While the follower has complete knowledge of his problem, the leader has only partial information,

and needs to learn about the cost parameters, available resources, and the follower’s activities from the

feedback generated by the follower’s actions. We measure policy performance in terms of its time-stability,

defined as the number of periods it takes for the leader to match the actions of an oracle with complete

information. In particular, we propose a class of greedy and robust policies and show that these policies are

weakly optimal, eventually match the oracle’s actions, and provide a real-time certificate of optimality. We

also study a lower bound on any policy performance based on the notion of a semi-oracle. Our numerical

experiments demonstrate that the proposed policies consistently outperform a reasonable benchmark, and

perform fairly close to the semi-oracle.

Key words : bilevel programming, attacker-defender, interdiction, learning, incomplete information, online

optimization, robust optimization

1. Introduction

Bilevel optimization deals with problems where a subset of the lower-level decisions are constrained

to be a solution of another mathematical program that depends on the remaining upper-level

decisions. This general structure makes bilevel programs useful for modeling hierarchical decision-

making problems between multiple, typically, two actors, commonly referred to as the leader

(an upper-level decision-maker) and the follower (a lower-level decision-maker), see Colson et al.

(2007). In this perspective, the leader solves an optimization problem that depends on the optimal

solution to the follower’s problem, and this latter problem is, in turn, parameterized by the leader’s

decisions. Bilevel programs are used in several application areas such as law enforcement (Morton

et al. 2007), defense (Brown et al. 2006), economics (Sherali et al. 1983), transportation (Lucotte
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and Nguyen 2013), energy (Bard et al. 2000), revenue management (Côté et al. 2003), among

others; see Colson et al. (2007) and the references therein.

An important class of bilevel programs, known as max-min bilevel problems or interdiction prob-

lems, deals with settings where the leader and follower are adversaries. More precisely, in these prob-

lems the leader’s objective is to maximally degrade the performance of the follower. As an example,

consider network flow interdiction problems, which have applications in military and smuggling pre-

vention settings. Here, the follower operates a network with the objective to move between two ver-

tices through a shortest path (Israeli and Wood 2002), to send the maximum flow possible between

two vertices (Wood 1993), or more generally, to move flow in the network at minimum cost subject

to some demand balance constraints (Smith and Lim 2008). The leader, by using the resources at her

disposition, can block (either totally or partially) a limited number of arcs and nodes in the network.

Her objective is to allocate her resources so as to maximize the length of the follower’s shortest path,

minimize the maximum flow, or maximize the minimum cost incurred by the follower, respectively.

These types of models are also used in surveillance settings, where the leader places resources (e.g.,

sensors) in a network to minimize the follower’s probability of evasion, see Morton et al. (2007).

Network flow interdiction models belong to a larger class of Attacker-Defender (AD) or Defender-

Attacker (DA) models (Wood 2011). In a typical AD setting, an attacker (the leader) and a defender

(the follower) interact during a war-time confrontation: the attacker allocates her forces so as to

disable assets of the defender’s infrastructure; the defender decides how to operate his system at

minimum cost given the restrictions set by the leader’s attack. The leader decides her allocation

with the objective to maximize the defender’s operational costs. Conversely, in a DA model, a

defender (the leader) allocates her limited defensive resources to protect her assets, and an attacker

(the follower), for a given defensive configuration, seeks for the most effective attacks. Here, the

defender’s objective is to allocate her resources so as to minimize the effectiveness of the attacks. In

general, AD and DA models can be casted as interdiction problems to model decisions in a broad

range of application areas: see, e.g., Salmeron et al. (2004), Brown et al. (2005).

Typical formulations of interdiction problems in the literature assume a single interaction

between the leader and the follower, and that either the leader knows all the parameters of

the follower’s problem (as in the references discussed above), or that she knows a probability

distribution over the set of problem configurations and parameters (see, e.g., Held et al. (2005)).

Hence, these models solve a single (possibly stochastic) interdiction problem, assuming that even

if the leader and the follower interact across several periods, the leader would implement the

resulting full-information solution at every time period. In contrast, many applications inherently

involve multiple interactions between the leader and the follower (e.g., as in smuggling interdiction

and AD-DA problems). More importantly, in these problems the leader does not always know
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with certainty the system that the follower operates, and cannot estimate it (a priori) reliably due

to the adversarial nature of their confrontation. Consequently, she has incomplete information of

the problem solved by the follower at each time period, and has to learn about it through time by

observing the follower’s reactions to her actions.

Departing from the existing literature, this paper studies sequential interdiction problems with

incomplete information (SIPI). In these problems, the leader and follower interact repeatedly :

at each stage the leader implements a set of actions and then observes the follower’s reaction;

from the information, or feedback, she gets from the follower’s response, the leader (potentially)

updates her knowledge of the follower’s problem, and incorporates this information into her

decision-making process. Observe that in SIPI, besides determining how to allocate her resources,

the leader faces additional questions outside the scope of traditional bilevel models, as she needs to

recognize whether a given upper-level solution is the best possible, she needs to force the follower

to disclose as much information as possible, and needs to exploit this newly learned information

to best re-allocate her resources in future periods. Therefore, given the leader’s limited knowledge

of the follower’s problem, at each time period she faces a form of the exploitation vs. exploration

trade-off : she must choose either to exploit the current information so as to maximize her

immediate reward, or to explore solutions that albeit not being maximally rewarding, may reveal

new information that can be used to implement better solutions in future periods.

For the reasons above, SIPI can be viewed as a class of online optimization problems (Cesa-

Bianchi and Lugosi 2006). In particular, SIPI can be framed as an adversarial multi-armed

bandit problem (Auer et al. 2002). However, naively using bandit policies would result in regret

bounds that are exponential in the primitives of the SIPI (where regret is the difference between

the costs incurred by the decision-maker and those incurred by an oracle decision-maker with

complete up-front knowledge of the problem, see Cesa-Bianchi and Lugosi (2006)). This follows as

the number of solutions of a bilevel linear problem is typically exponentially large in the number

of its variables and constraints, in the worst-case (Colson et al. 2007).

Multi-armed bandits do not yield polynomial regret bounds for SIPI as they make no specific

assumptions about the relationship between the actions of the decision-maker and the costs

associated with these actions. In this sense, online models with particular structures have been

studied in the literature, see for instance, online convex (Zinkevich 2003, Hazan 2015), online

combinatorial (Audibert et al. 2013), and online linear (Agrawal et al. 2014) models. However,

these models assume a single-level relationship between the decision-maker’s actions and the costs

she observes. As a consequence, SIPI does not fit these frameworks due to the hierarchical (and

generally non-convex) relationship between the leader actions and the responses she observes.
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Given the limitations of current online models, in this paper we develop a general framework

for SIPI. We represent the leader’s and follower’s decisions in terms of resources and activities,

respectively. Initially, the leader does not know all the follower’s activities and constraints, and as

such, she might not know all of her resources or constraints. The leader learns about an unknown

follower’s activity as soon as she observes him performing it, and at the same time learns about

all the lower-level constraints that restrict this activity, all the leader’s resources that interfere

with that activity, and all upper-level constraints associated with the newly learned resources.

From a technical point of view, we first make the assumption that for every activity, resource, and

constraint she knows, the leader also knows the corresponding entries in the upper and lower-level

constraint matrices and the right-hand side vectors in a typical bilevel programming formulation

of the full-information problem. However, we suppose that the leader does not know with certainty

the components of the follower’s cost vector for the activities she knows; she only knows that they

belong to a certain (polyhedral) uncertainty set. Furthermore, in Section 4 we analyze a more

general uncertainty model, where the uncertainty extends beyond the follower’s cost vector.

Besides learning new activities, resources, and constraints, the leader can also observe addi-

tional information of the follower’s problem from his response. In this sense, we introduce the

notions of Standard feedback, and its specializations, Value-Perfect and Response-Perfect feedbacks.

In Standard feedback, the leader observes the total cost the follower incurs at each time period;

in Value-Perfect feedback she also observes the cost coefficient associated with each activity used

by the follower at that time, while in Response-Perfect feedback she also observes the value of the

decision vector for the activities performed by the follower.

We measure the performance of the leader’s decision-making policy in terms of its time-stability.

This is defined as the first time period by which the cost the follower incurs coincides with the

best possible cost an oracle leader with complete knowledge of the problem attains from there on.

Time-stability is closely related to the notion of regret used in online optimization; in particular any

upper bound on the time-stability of a policy implies an upper bound in the regret of that policy.

In this paper we analyze a set of greedy and robust policies, which we denote by Λ. The policies

are greedy because at any time they exploit the leader’s information of the follower’s problem so

as to maximize the follower’s costs at the current time period, and they are robust because they

assume that the follower’s cost vector realizes its worst case for the follower. For these reasons,

implementing the policies in Λ involves solving at each time a max-min bilevel problem with lower-

level robustness constraints. Hence their computation requires both bilevel and robust optimization

techniques: we develop a method that first replaces the lower-level robust optimization problem by

its equivalent linear program counterpart (Ben-Tal et al. 2009), and then reformulates the resulting

linear bilevel program as a one-level mixed integer program (Audet et al. 1997).
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We demonstrate that the time-stability of policies in Λ under Value-Perfect and Response-

Perfect feedback is upper bounded by the number of follower’s activities. We show that these

policies are optimal in the sense that they attain the best possible worst-case time-stability across

all possible problem instances. Furthermore, they provide a certificate of optimality in real time.

We also develop a method to provide a lower bound for the time-stability of any policy based on

the concept of a semi-oracle. The semi-oracle has full information of the problem beforehand, but

can only use the leader’s resources whose existence has been revealed by the follower’s actions. As

such, the semi-oracle combines the knowledge of the standard oracle with the practical limitations

of the leader and thus, provides an informative lower bound on the performance of any policy. Our

numerical results show that the policies in Λ consistently outperform a reasonable benchmark,

and perform reasonably close to the semi-oracle.

The present work is connected to the shortest-path interdiction model with incomplete infor-

mation discussed in Borrero et al. (2016). Particularly, the aforementioned model can be viewed

as an SIPI where the bilevel problem is a shortest-path interdiction problem, the feedback is

Value-Perfect, the uncertainty set is a hypercube, and there is incomplete information only about

the follower’s cost vector. In this sense, our work generalizes the results of Borrero et al. (2016) to

account for general interdiction models with Value-Perfect feedback, polyhedral uncertainty sets,

and uncertainty in the follower’s cost vector. Moreover, we extend many of these results to SIPI

problems where feedback is Response-Perfect or Standard and where there is uncertainty in the

follower’s constraint matrix. In addition, in this work we measure the performance of policies in

terms of worst-case time-stability rather than in terms of efficiency (see Borrero et al. (2016));

the former is a more transparent and informative measure of performance, see Section 2.1.

The remainder of the paper is organized as follows. In Section 2 we provide a mathematical

formulation of the problem. Section 3 discusses greedy and robust policies, while Section 4 extends

most of the results of greedy and robust policies for the case of uncertainty in the lower-level

constraint matrix. Section 5 discusses the semi-oracle benchmark and Section 6 presents numerical

experiments. The proofs of the main results are provided in the manuscript; supporting material

and the remaining proofs are given in the online supplement.

2. Basic Model: Cost Uncertainty

Before describing the main model of this section, we first consider the single-stage model with full

information. Here, the leader can use any resource i∈ I, |I|<∞, and for each i∈ I she chooses a

value xi ≥ 0 such that x := (xi : i∈ I)∈X, where X denotes the set of feasible resource levels. We

let CL denote the set of constraints faced by the leader and assume that X is given by

X := {x∈Zk+×R|I|−k+ : Hx≤h},
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where 0≤ k≤ |I|, H := (Hdi : d∈CL, i∈ I)∈R|CL|×|I| and h := (hd, d∈CL)∈R|CL|.

The follower, on the other hand, reacts after the leader chooses x. He can pick different levels

among his activities in a finite set A: we let ya denote the level by which activity a is performed,

and define y := (ya : a∈A). By performing activity a at level ya the follower incurs a cost of ca ·ya,

and hence he desires to select y so as to minimize his total costs. His choices for y are limited,

however, as y should satisfy all the constraints in a set CF and should also be feasible given the

leader’s decision x. Therefore, the follower selects vector y(x), where for any x∈X

y(x)∈ arg min{c>y : y ∈ Y (x)}, with Y (x) :=
{
y′ ∈Zb+×R|A|−b+ : F y′+Lx≤ f

}
. (1)

For any x∈Zk+×R|I|−k+ , Y (x) is the follower’s set of feasible actions given the leader’s decision x.

In (1), c := (ca : a∈A)∈R|A|, F := (Fda : d∈CF , a∈A) belongs to R|CF |×|A|, L := (Ldi : d∈CF , i∈

I) belongs to R|CF |×|I| and f := (fd, d ∈CF ) ∈R|CF |. In addition, 0≤ b≤ |A| indicates the number

of discrete variables of the follower’s problem.

The objective of the leader in the full-information bilevel model is to choose the x ∈ X that

maximizes the cost the follower faces. Therefore, she solves the following bilevel problem

z∗ =max
x,y

c>y (2a)

s.t. Hx≤h, x∈Zk+×R|I|−k+ (2b)

y ∈ arg min
{
c>y′ : F y′+Lx≤ f , y′ ∈Zb+×R|A|−b+

}
. (2c)

In contrast with this usual single-stage interdiction problem with complete information, we

assume that the leader and the follower interact sequentially, once per period in T = {0,1, . . . , T},

that at all times the follower has the information needed to compute y(x), but that this is not

the case for the leader. We assume that at time t = 0 the leader does not fully know the set of

activities A, and hence potentially neither CF , nor the value of all the data defining region Y (x).

In addition, as some leader’s resources might be only available if some of the follower’s activities

are known, she might have only partial information regarding I, CL and the set X.

Specifically, at the beginning of each time t∈ T the leader is aware of a subset of the follower’s

activities At ⊆A, a subset of the leader’s resources It ⊆ I, a subset of upper-level constraints Ct
L ⊆

CL and a subset of lower-level constraints Ct
F ⊆CF . The contents of At, It, Ct

L, and Ct
F depend on

the set of activities, resources, and constraints the leader initially knows, denoted by A0, I0, C0
L, and

C0
F , and on all the activities, resources, and constraints she has learned from the feedback generated

by follower’s responses until time t−1, see Figure 1. Furthermore, the leader’s knowledge of the fol-

lower’s lower-level problem data is limited, and in this direction we make the following assumptions:
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A1: At any time t∈ T the leader knows with certainty the values of F t := (Fda : d∈Ct
F , a∈At)

and f t := (fd : d∈Ct
F ). In addition, the leader knows with certainty all her data (both upper-level

and lower-level) with respect to the resources in It, that is, at time t she knows with certainty

Ht := (Hdi : d∈Ct
L, i∈ It), ht := (hd : d∈Ct

L) and Lt := (Ldi : d∈Ct
F , i∈ It).

A2: The leader does not know with certainty all the entries of c but she knows that

ct := (ca : a∈At)∈ U t, with

U t := {ĉt ∈R|A
t| : Gtĉt ≤ gt}.

If Ct
U is the set of constraints of polyhedron U t, then Gt ∈ R|CtU |×|At| and gt ∈ R|CtU |. We assume

that both Gt and gt are known with certainty to the leader at time t.

A3: The matrix H and vector h take non-negative values.

A4: For any x∈X, Lx≤ f .

1. The leader chooses xt ∈Xt, where

Xt := {x∈Zkt+ ×R|I
t|−kt

+ : Htx≤ht}, (3)

and kt, 0≤ kt ≤ |It|, is the number of resources in It whose levels are discrete.

2. The follower solves the lower-level optimization problem given that the leader implements xt:

zt := min
y

{
c>y : F y+

∑
i∈It

Lix
t
i ≤ f , y ∈Zb+×R|A|−b+

}
,

where Li is the i-th column of L. Denote by yt the solution of this program that the follower implements.

3. The response of the follower generates feedback F t; see Section 2.2 for its definition. The leader

observes the information in F t and uses it to update her knowledge to It+1, Ct+1
L , At+1, Ct+1

F and

U t+1 (thus, potentially, she also updates Ht+1, ht+1, F t+1, Lt+1, f t+1, and ct+1).

Figure 1 Interaction between the leader and the follower at period t∈ T . The matrices and vectors are defined as

Ht := (Hdi : d ∈ CtL, i ∈ It), ht := (hd : d ∈ CtL), F t := (Fda : d ∈ CtF , a ∈At), Lt := (Ldi : d ∈ CtF , i ∈ It),

f t := (fd : d∈CtF ), and ct := (ca : a∈At). The set U t is the uncertainty set for the cost vector.

Assumption A1 implies that, with the exception of the cost vector, the leader knows with

certainty all the problem data in (2) that is associated with activities in At, resources in It, and

constraints in Ct
F and Ct

L. Particularly, the latter part of this assumption stems from the idea that

the leader is always certain about her operational capabilities (hence, she always knows H and h

for all activities and constraints known to her), and about the effect that her actions have on the

follower (hence, she always knows L for all activities and constraints known to her). We note that

the assumption regarding the leader’s certain knowledge of the values of F t can be relaxed, and

most of the results can be extended to this more general setting, see Section 4.
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Assumption A2 states that the leader has a polyhedral uncertainty set for ct. Polyhedral sets

capture many important classes of uncertainty for the data in ct such as lower and upper bounds,

linear relationships between the entries, 1-norms, infinity norms, among others, see Ben-Tal et al.

(2009). Assumption A3 reflects the fact that the leader aims to optimally use her assets subject to

budgetary constraints. (Note that this assumption holds for broad classes of standard interdiction

problems arising in network interdiction, AD and DA models.) This follows due to our convention

that the upper-level vectors in X are non-negative. Thus, by using resource i ∈ I at level xi, the

leader consumes Hdixi units of asset d, d∈CL, and the total amount of such asset available to her

at any given time is given by hd. Finally, assumption A4 is technical and is made to ensure that

the follower’s problem is not trivially infeasible.

Ideally, the leader would implement an optimal upper-level solution of the full-information prob-

lem (2) at any given time. However, given the lack of information, she might not be able to do

so. For this reason, we assume that the objective of the leader is to select the value of xt, for all

t∈ T , in order to minimize the number of periods until she can implement an optimal upper-level

solution of the full-information problem (2) from there on. More precisely, her objective is to find

a weakly optimal decision-making policy with respect to time-stability. The formal definition of

these concepts is given in Section 2.1 below. Before that, we illustrate the assumptions above and

the flexibility of the framework by means of an example. (An additional example of SIPI in the

context of network interdiction with incomplete information can be found in Borrero et al. (2016).)

Example 1. We consider a simple class of the attacker-defender linear models, which can be

viewed as an adversarial knapsack problem (DeNegre 2011, Caprara et al. 2013). The defender has

n> 0 assets; operating asset a during a time period costs him ba and produces a profit of pa. He has

an operational budget of B per period, and has to decide a level ya ∈ [0,1] at which the operation

of asset a is performed for all a= 1, . . . , n. Hence, at each period the follower would ideally solve

the following knapsack problem absent the actions of the leader

y∗ ∈ arg max
y
{p>y : b>y≤B,0≤ ya ≤ 1 ∀a= 1, . . . , n},

where p := (pa : a= 1, . . . , n) and b := (ba : a= 1, . . . , n).

The attacker, on the other hand, can temporarily disable some of the defender’s assets. Disabling

asset a during any given period costs her ra, and the attacker has a budget of R per period.

Moreover, if an asset is disabled then the follower cannot operate it. In this setting, A = I =

{1, . . . , n}, CF consist of n + 1 constraints, and hence F = (b>;I), where I is a n × n identity

matrix. Here, the lower-level right-hand side vector is given by f = (B;1) (1 is a vector of ones of

size n) and the cost vector satisfies c=−p. On the other hand, CL is a singleton that contains the
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leader budgetary constraint, so H = r>, with r = (ra : a∈ I), and h= (R). Observe that matrix L

in this setting is given by L= (0>;I) where 0 is a vector of zeros.

At time t= 0, we make the assumption that the attacker does not know all the assets operated

by the defender, nor the corresponding profits. For those assets A0 ⊆A she knows, she has interval

estimates `a ≤ ca ≤ma for the profits, which implies that U0 = {ĉ0 ∈R|A0| : `a ≤ ĉ0
a ≤ma ∀a∈A0}.

Thus, G0 = [I;−I] and g0 = (m;`), with m= (ma : a∈A0) and `= (`a : a∈A0).

2.1. Optimality Criteria

We measure the performance of a leader’s decision-making policy in terms of its time-stability,

where the time-stability of a policy is the first time period by which the actions prescribed by

the policy coincide with the actions of an oracle decision-maker from there on. Recall that the

oracle has all the information about the problem and thus, implements an optimal full-information

decision, which yields a cost of z∗ to the follower, at all time periods t∈ T .

To formally introduce time-stability and the concept of optimality we use, we first define what

we consider a problem’s instance for the leader. The initial information of the problem is the

collection D0, where

D0 := (A0, I0,C0
F ,C

0
L,U0,H0,h0,F 0,L0,f 0).

Note that given some initial information D0, there might be several different bilevel problems of

the form (2) that agree with the information contained in D0. In view of this, we define G(D0) to

be the collection that contains all possible bilevel problems given that the leader knows D0:

G(D0) := {(A,I,CF ,CL,c,H,h,F ,L,f) : conditions C1-C5 below are satisfied}

C1: A0 ⊆A, I0 ⊆ I, C0
F ⊆CF , C0

L ⊆CL.

C2: I0 =∪a∈A0I(a), C0
L =∪i∈I0CL(i), C0

F =∪a∈A0CF (a).

C3: U0 has valid upper and lower bounds for all ca, a∈A0.

C4: (ca : a∈A0)∈ U0.

C5: H0, h0, F 0, L0, f 0, are submatrices of H, h, F , L, f .

In condition C2, the set I(a) contains all the interdiction resources that interfere with activity

a ∈A. Likewise, CL(i) and CF (a) are, respectively, the sets of upper- and lower-level constraints

that restrict resource i∈ I and activity a∈A; see Definition 1 in Section 2.2 below for further details

on these notions in the context of feedback. Therefore, C2 means that at time t = 0 the leader

knows all interdiction resources and constraints associated with the follower’s activities in A0.

Using collection G(D0), we define an instance of the problem as a pair (D0,D), where D ∈G(D0).

We denote by G the set of all possible instances.
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A decision-making policy π is a sequence of set functions π = (π1, . . . , πT ), such that xt =

πt(Ht(D0,D)), and Ht(D0,D) denotes the history of both the leader and follower decision-making

process up to time t≥ 1, that is, Ht(D0,D) := (D0, x0,F0, . . . , xt−1,F t−1), where we recall that F t is

the feedback the leader gets from the follower’s response at time t, see Figure 1. The set of all poli-

cies is denoted by Π. When discussing a particular policy π, we include a superscript π on xt and

in all other quantities depending on it, and denote them by xt,π, yt,π, zt,π, It,π, At,π, U t,π and F t,π.

Let an instance (D0,D) be given. We define the time-stability of a policy on (D0,D), denoted by

τπ(D0,D), as the first time in T such that z∗ is equal to zt,π from there on, i.e.,

τπ(D0,D) := min{t∈ T : zs,π = z∗ for all s≥ t}.

The leader would like to find an “optimal” time-stability policy, i.e., a policy that has a lower

time-stability than any other policy across all instances. To this end, let us say that policy π is

absolutely better than policy π′ if and only if τπ(D0,D) ≤ τπ′(D0,D) for any instance (D0,D),

and that π∗ is absolutely optimal if it is absolutely better than any other policy. Unfortunately,

absolute optimality is a very strong notion, and, in general, absolute optimal policies do not exist,

see, e.g., Remark 1 in Borrero et al. (2016) for the sequential shortest-path interdiction problem

with incomplete information, which can be viewed as a particular case in our general setting.

Henceforth, we study an alternative optimality notion referred to as weak optimality. Let the size

of an instance (D0,D) as the vector (|A|, |A0|), and define Gs as the collection of instances of size

s = (n,n0) (with n≥ n0), i.e., Gs := {(D0,D) ∈G : (|A|, |A0|) = s}. We say that π is weakly better

than π′ when for any instance size s, the worst-case time-stability of π across all possible instances

of size s is at most the worst-case time-stability of π′ across all possible instances of size s.

Observe that any direct information on U0 in the definition of s is not included. This follows

as, from the worst-case analysis perspective, any reasonable notion of size of U0 is likely to be a

function of n0. Given the above considerations, we say that policy π is weakly better than π′ if

max
(D0,D)∈Gs

τπ(D0,D)≤ max
(D0,D)∈Gs

τπ
′
(D0,D) for all s∈ S,

where S := {(n,n0) ∈ Z2
+ : n ≥ n0}. We say that π∗ is weakly optimal if it is weakly better than

any other policy, that is, if

π∗ ∈ arg min
π∈Π

max
(D0,D)∈Gs

τπ(D0,D) for all s∈ S. (4)

Therefore, we define the objective of the leader as to find a weakly-optimal policy π∗, i.e., to find

a solution to the optimization problem (4). It should be clear that the notion of weak optimality is

an adaptation of the notion of min/max optimal policies used in the online optimization literature,

specifically, in the multi-armed bandit settings, see Audibert and Bubeck (2009).
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Remark 1. Time-stability is connected to the concept of regret, where the regret until time t is

given by Rπ
t =

∑
s≤t(z

∗− zs,π). Importantly, a finite bound on the time-stability provides a finite

upper-bound on the regret, i.e., Rπ
t ≤Uτπ, where U satisfies that z∗− zs,π ≤U . Most of the online

optimization literature uses regret, or its variations such as pseudo-regret, as a measure of perfor-

mance and seeks to find policies that optimally upper-bound it, see, e.g., Cesa-Bianchi and Lugosi

(2006). We use time-stability instead of regret because of its practical implications: if the leader

knows that time-stability is attained, then an optimal full-information solution has been found.

Moreover, she can be assured that there will be no loss of performance after that time period.

2.2. Feedback

Recall that the feedback F := (F t, t ∈ T ) is the information that the leader collects from the

follower’s response at each time period. Depending on the particular application, the feedback

might include data from the follower’s problem as well as from his response yt, some information

regarding the follower’s activities and constraints that were unknown to the leader, as well as the

leader’s resources that were previously unavailable. We formalize these notions as follows:

Definition 1. Let time t∈ T be given and consider the bilevel problem (2).

• We say that the follower performs activity a ∈A (leader uses resource i ∈ I) at time t if and

only if yta > 0 (xti > 0).

• We say that a lower-level (upper-level) constraint d∈CF (d∈CL) restricts follower’s activity

a∈A (leader’s resource i∈ I) if and only if Fda 6= 0 (Hdi 6= 0), and we denote by CF (a) (CL(i)) the

set of constraints that restrict a∈A (i∈ I).

• We say that a leader resource i ∈ I interferes with follower activity a ∈A if and only if there

exists a lower-level constraint d∈CF , such that d∈CF (a) and Ldi 6= 0. We denote by I(a) the set

of all leader’s activities that interfere with a∈A.

The first of the above definitions reflects the intuitive fact that if the follower’s variable ya takes

the value 0 then it does not change the value of the follower’s objective function nor the value

of his constraints; hence this can be interpreted as if activity a ∈A is not performed. The second

definition is a consequence of the fact that if Fda = 0 for a given a∈A, then ya can take arbitrarily

large values without compromising the satisfiability of constraint d; the remaining definitions are

also inspired by the same observations.

Example 1 (continued). In the AD knapsack example, the follower performs activity a ∈ A
if he operates asset a. The leader uses resource a ∈ A if she disables asset a (hence, I = A). For

any a∈A, CF (a) consists of the defender’s budget constraint and on the constraint ya ≤ 1. On the

other hand, for any a ∈ I it is clear that CL(a) = CL. Moreover, observe that in this setting, for

any asset a∈A, we have that I(a) = {a}.
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Definition 2. We say that feedback F is standard if and only if for any t∈ T

S1: The leader observes the total cost zt incurred by the follower.

S2: The leader observes the activities performed by the follower, that is, she can determine that

the follower performed activity a ∈A at time t as long as yta > 0. If yta > 0 and a 6∈At, the leader

learns about the existence of a∈A, and of all the leader resources that can restrict a∈A. Therefore,

At+1 =At ∪
⋃

a : yta>0

{a}, It+1 = It ∪
⋃

a : yta>0

I(a).

S3: For every new follower’s activity a ∈A learned by the leader, she learns all the lower-level

constraints in CF (a), and all the upper-level constraints CL(i), for all i∈ I(a). Henceforth,

Ct+1
F =Ct

F ∪
⋃

a∈At+1\At
CF (a), Ct+1

L =Ct
L ∪

⋃
i∈It+1\It

CL(i).

S4: For any newly learned activity a∈A: the leader learns the value of Fda for all d∈CF (a)∪Ct
F ;

for any i ∈ I(a)∩ It the leader learns the value of Hdi for all d ∈ CL(i) \Ct
L and the value of Ldi

for all d ∈CF (a) \Ct
F ; for any i ∈ I(a) \ It the leader learns the value of Hdi for all d ∈CL(i)∪Ct

L

and the value of Ldi for all d ∈ CF (a)∪Ct
F . Finally, for any d ∈ CF (a) \Ct

F the leader learns the

value of fd, and for any i∈ I(a) the leader learns the value of hd for all d∈CL(i) \Ct
L.

Hereafter, we make the assumption that the feedback is always standard. Importantly, note that

S2−S4 imply that at any given time t∈ T the leader knows all the resources and constraints asso-

ciated with all the follower’s activities she knows at time t. In other words, a condition analogous

to C2 in Section 2.1 for t= 0 holds at all periods t ∈ T . These considerations imply that at any

given time t∈ T the matrices F , L and H can be partitioned in submatrices as follows:

F =


At A \At

Ct
F F1 F2

CF \Ct
F 0 F3

, L=


It I \ It

Ct
F L1 0

CF \Ct
F L2 L3

, H =


It I \ It

Ct
L H1 H2

CL \Ct
L 0 H3

, (5)

and it is clear that, in the notation of the above structure, the leader is only aware of F1, L1 and

H1 at the beginning of time t∈ T . In particular, note that F t =F1, Lt =L1, and Ht =H1.

Assumption S1 on the standard feedback is typical in the online optimization literature (Cesa-

Bianchi and Lugosi 2006) and can be seen as a minimum requirement to perform any optimization

analysis. The role of the other assumptions, namely, S2-S4 is to determine what information the

leader gains when a new activity is learned; specifically, these assumptions ensure that at any time

t the leader has the structural information of a version of problem (2). That is: (i) the leader always

observes all the constraints associated with the resources/activities she knows, and hence, if she

ignores the existence of a constraint (lower or upper level) then she must ignore the existence of all
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the resources/activities associated with it; (ii) the leader is always aware of all the resources in I

that can restrict the follower’s activities she knows, and hence, if the leader ignores a resource, then

it must be that said resource cannot interfere with the follower’s activities that she already knows.

It is important to note that our assumptions on standard feedback do not rule out the possibility

that there might exist resources that the leader knows at time t that might restrict the follower’s

activities she does not know at time t. In this sense, some of the leader’s feasible vectors at time t

might ‘involuntarily’ restrict the follower’s activities.

Example 1 (continued). In the AD knapsack example, by assuming standard feedback, at

each time t the leader observes the profit the follower receives from operating his assets. If the

follower uses an asset unknown to the leader, then the leader learns about the existence of this

asset, its cost ba and the operating level upper bound. In addition, she discovers that she can

disable the asset and that it costs her ra to do so.

Observe that the assumptions on standard feedback impose no conditions on the values that

are observed from the follower’s response nor on the follower’s cost vector. In this sense, stronger

assumptions can be made in order to guarantee that the leader learns the follower’s data in c or

his response yt with more accuracy. In this paper we consider the following two cases:

Definition 3. Let F be standard. We say F is: (i) Value-Perfect if and only if at any time t∈ T

the leader learns the value of ca for all a∈A such that yta > 0; or (ii) Response-Perfect if and only

if at any time t∈ T the leader learns the value of yta for all a∈A such that yta > 0.

Standard feedback, as well as its Value-Perfect feedback version, can be viewed as adaptations

of similar notions in the online optimization literature. For example, suppose that A=A0 (hence,

the leader knows all the follower’s activities at time t = 0). In this case, standard feedback only

requires the leader to observe the value of zt at each t ∈ T , and thus it parallels to the notion of

bandit feedback that appears in online convex and combinatorial optimization (see, e.g., Bubeck

and Cesa-Bianchi (2012) and the references therein). Similarly, Value-Perfect feedback parallels

the notion of semi-bandit feedback in online combinatorial optimization (Audibert et al. 2013).

Example 1 (continued). In the AD knapsack setting, under Value-Perfect feedback, at each

period the leader observes the follower’s profit from the assets operated during the period. Under

Response-Perfect feedback, she observes the corresponding values of y’s.

3. Greedy and Robust Policies

In this section we introduce a set of leader’s policies Λ that are greedy and robust. These policies

are greedy in the sense that at each t∈ T they aim to maximize the immediate cost that the follower

faces at time t, and robust in the sense that they exploit the cost information in U t in a worst-case
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scenario approach. Under the Value-Perfect and Response-Perfect conditions on the feedback F ,

we show that these policies’ time-stability are upper-bounded by |A|, and moreover, that they are

weakly optimal. Also, we show that these policies also have additional features, such as that they

can identify the value of time-stability in real time, yielding a certificate of optimality. Note that

the proposed policies can be viewed, in a sense, as natural generalizations of known results for the

shortest-path network interdiction problem, see Borrero et al. (2016). Throughout this section we

omit any dependence on the instance (D0,D) unless necessary to avoid confusion.

3.1. General Results for Standard Feedback

In order to define the set of greedy and robust policies, Λ, some additional concepts have to be

introduced. For any t∈ T , and given any x∈Xt, define region Y t(x) as

Y t(x) :=
{
y ∈Zb

t

+ ×R|A
t|

+ : F ty+Ltx≤ f t
}
,

with 0 ≤ bt ≤ |At|. Observe that Y t(x) is the leader’s perception of the follower’s feasible region

given that she selects x, and that the leader completely knows Y t(x) at time t. For any x ∈Xt,

define ztR(x) as the value of the robust linear program

ztR(x) := min
{

max
{

(ĉ)
>
y : ĉt ∈ U t

}
: y ∈ Y t(x)

}
.

Note that ztR(x) is the follower’s (worst-case) objective function value given x if the leader’s per-

ception is correct. Let zt,∗R be the value that corresponds to the best possible decision the leader

can take at time t if she estimates the follower’s response using the robust approach above, that is,

zt,∗R := max{ztR(x) : x∈Xt} ∀t∈ T .

Finally, for any policy π, define ξπ := ξπ(D0,D) as ξπ := min{t ∈ T : zt,∗R = zt,π}. We define

policies in Λ as those policies that greedily optimize in a robust fashion from time t= 0 until time

ξλ. From ξλ onwards, policies in Λ repeat the same solution used at time ξλ. Formally:

Definition 4. We say that λ∈Λ⊆Π if and only if

xt,λ ∈ arg max{ztR(x) : x∈Xt} ∀t≤ ξλ, (6)

and xt,λ = xξ
λ,λ for all ξλ < t≤ T .

The greedy and robust policies Λ generalize the greedy and pessimistic policies given for the

shortest-path interdiction problem in Borrero et al. (2016). In contrast to the policies of this earlier

work, here Λ requires solving a general max-min bilevel linear problem, where the lower-level

problem involves a robust optimization problem over a polyhedral uncertainty set. Despite this
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more general setting, it can be shown that the policies in Λ are computable by standard mixed

integer programming (MIP) solvers as robust bilevel problem (6) can be reduced to a single-level

MIP, see Appendix A.3 for further details.

The following result lists the main properties of the policies in Λ under the assumption of

standard feedback. It establishes a simple relationship between the cost of the optimal oracle

solution (z∗), the cost the follower faces at t (zt,λ), and the cost the leader expects the follower

to incur (zt,∗R ). In addition, it reveals the importance that time period ξλ has for time-stability.

We note that this result generalizes Lemma 4 of Borrero et al. (2016), which is given for the

shortest-path interdiction setting, to general interdiction problems.

Theorem 1. Let t∈ T be given and let λ∈Λ be arbitrary. Then, zt,λ ≤ z∗ ≤ zt,∗R and τλ ≤ ξλ.

Proof. Observe that for any t ∈ T and x ∈Xt, ztR(x) = min{(dt)> y′ : y′ ∈ Y t
R(x)}, where dt =

(1,0, . . . ,0)> and Y t
R(x) :=

{
(y0, y) ∈ R×R|A

t|
+ : − y0 + (ct)

>
y ≤ 0 ∀ĉt ∈ U t, y ∈ Y t(x)

}
. Indeed,

ztR(x) can be equivalently written as

min
{
y0 : y0 ≥ max

ĉt∈Ut
(ĉt)

>
y, F ty+Ltx≤ f t, y ∈R|A

t|
+ , y0 ∈R

}
.

The observation follows after noting that (y0, y) satisfies the first constraint of the above problem if

and only if y0 ≥ (ct)
>
y for all ĉt ∈ U t. Importantly, in the remaining proofs, we assume that ztR(x)

is given in terms of Y t
R(x). We proceed in two steps.

Step 1. We first prove that zt,λ ≤ z∗ ≤ zt,∗R . Fix x∈X and xt ∈Xt, and define z(x) and x̄t as

z(x) = min{c>y : y ∈ Y (x)}, and x̄ti = xti if i∈ It; x̄ti = 0 if i 6∈ It. (7)

For the leftmost inequality, the result follows from the definition of both z∗ and zt,λ (see Equa-

tions (2) and Equation (4)). Indeed, observe that z∗ = max{z(x) : x ∈X}, that zt,λ = z(x̄t,λ), and

that x̄t,λ ∈ X because the feedback is standard and Assumption A3 holds. For the rightmost

inequality, let x∗ be an element of X that attains z∗. Partition x∗ as x∗ = (x̂, x̃), where x̂= (x∗i )i∈It

and x̃= (x∗i )i∈I\It . Recall the definition of the partition of matrices given by (5). Therefore, because

x∗ ∈X and A3 holds, one has that x̂∈Xt.

Now, suppose that Y t
R(x̂) is non-empty (if it is empty then it must be the case that zt,∗R = +∞

and the result holds) and let (y0, ŷ) be such that (y0, ŷ) ∈ arg min{(dt)> y′ : y′ ∈ Y t
R(x̂)} (hence

(ct)
>
ŷ = ztR(x̂)). By the definition of zt,∗R we have that (ct)

>
ŷ ≤ zt,∗R . On the other hand, define ȳ

as ȳa := ŷa if a ∈At, and ȳa := 0 if a ∈A \At. Because F is standard, Assumption A4 holds, and

ŷ ∈ Y t(x̂), it follows that ȳ ∈ Y (x∗); therefore, z∗ ≤ c>ȳ. As c>ȳ = (ct)
>
ŷ, and both (ct)

>
ŷ ≤ zt,∗R

and z∗ ≤ c>ȳ hold, then we have the desired result.
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Step 2. Next, we show that τλ ≤ ξλ. For notational convenience, let ξ = ξλ in the remainder of the

proof. We claim that x̄ξ,λ ∈ arg max{z(x) : x ∈X}. Indeed, the fact that the feedback is standard

(recall equation (5)) implies that x̄ξ,λ ∈X. Because by definition of ξ we have that zξ,λ = zξ,∗R , step

1 implies that z(x̄ξ,λ) = z∗ (recall that we have zt,λ = z(x̄t,λ)), and therefore the claim follows.

Now, by definition of λ, for all s ≥ t it must be the case that xs,λ = xξ,λ. We claim that this

implies that zs,λ = z∗ for all s≥ t, and hence that τλ ≤ ξλ. In order to arrive at a contradiction,

assume that zs,λ < z∗ for s > ξλ. As xs,λ = xξ,λ, one has that ys,λ ∈ Y (xξ,λ), and by the definition

of yξ,λ it would follow that zξ,λ ≤ zs,λ < z∗, which contradicts the fact that zξ,λ = z∗.

Theorem 1 has important practical implications. Note that the leader is always aware of the value

of zt,∗R , and (by standard feedback) always observes the value of zt,λ. Therefore, she can determine

whether a given period t is equal to ξλ. Let t ∈ T be given such that t− 1 < ξλ, then at time t

exactly one of the following scenarios may occur:

(i) The follower faces the cost the leader expected (zt,λ = zt,∗R ). In this case, t= ξλ, and Theorem 1

implies that the solution implemented by the leader at time t is an optimal solution of the full-

information problem.

(ii) The follower faces a cost less than that the leader expects (zt,λ < zt,∗R ). In this case, nothing

can be said regarding the optimality of the solution that the leader implements at time t by only

assuming standard feedback. However, if the stronger notions of either Value-Perfect or Response-

Perfect feedback are assumed, then the leader must learn new information of the follower’s problem,

as we show in the following sections.

Particularly, observation (i) implies that policies in Λ provide certificates of optimality in real-

time. That is, as soon as t= ξλ, the leader is sure that the best possible solution has been found.

Given the importance of ξλ for greedy and robust policies, next we derive a sufficient condition in

terms of the uncertainty set U t that establishes whether a given time t∈ T corresponds to ξλ.

Proposition 1. Let t∈ T be given, suppose that U t = {ct}, and assume that yta = 0 for all a 6∈At.

Then ξλ ≤ t, and, in particular, τλ ≤ t.

Proof. As yt,λ ∈ Y (xt,λ) and yta = 0 for all a 6∈At, it follows that
∑

a∈At Fday
t,λ
a +

∑
i∈It Ldix

t,λ
i ≤ fd

for all d ∈ Ct
F , which implies that (yt,λa )a∈At ∈ Y t(xt,λ). On the other hand, as U t is a single-

ton, the set Y t
R(xt,λ) becomes Y t

R(xt,λ) = {(y0, y) ∈ R|A
t|

+ : − y0 + (ct)
>
y ≤ 0, y ∈ Y (xt,λ)}, and

hence, ztR(xt,λ)≤ (ct)
>

(yt,λ)a∈At . Therefore, from the first set of inequalities of Theorem 1 and as

ztR(xt,λ) = zt,∗R by definition of xt,λ, we have that zt,λ ≤ zt,∗R ≤ (ct)
>

(yt,λ)a∈At . On the other hand,

from the definition of yt,λ, we have that zt,λ = (ct)
>

(yt,λ)a∈At . We can conclude that zt,λ = zt,∗R ,

and hence ξλ ≤ t, as desired. The later part of the proposition is a consequence of the above result

and the second set of inequalities of Theorem 1.
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In other words, whenever there is no uncertainty in U t, if the leader decides by using a policy in Λ,

and the follower does not reveal any new activity, then the leader can be sure that the best solution

has been found. Importantly, there is a connection between the fact that U t is a singleton with the

polyhedral dimension of U t, dim(U t), which is defined as the maximum number of affine independent

points within U t (see Wolsey and Nemhauser (2014)). Indeed, dim(U t) = 0 if and only if U t = {ct}.

In the following sections we use the condition that dim(U t) = 0 along with Proposition 1 to establish

upper bounds on ξλ (and hence, on τλ) under Value-Perfect and Response-Perfect feedbacks.

3.2. Policies in Λ Under Value-Perfect Feedback

Recall that feedback F is Value-Perfect if the leader observes the value of ca for all activities a∈A

such that yta > 0. Under this feedback the leader should update the uncertainty set U t to U t+1 as

U t+1 = {ĉ∈R|A
t+1| : (ĉa)a∈At ∈ U t, ĉa = ca for all a s.t. yta > 0}.

For convenience we partition At as At = Ãt ∪ Āt, where for any follower action a ∈ Ãt the leader

knows with certainty the value of ca, that is, Ãt := {a ∈At : ĉa = ca ∀ĉ ∈ U t}, and Āt :=At \ Ãt.

The next lemma establishes that if the cost the follower incurs is different from the one expected

by the leader, then the leader must learn the real cost of a follower’s activity. The proof follows

directly from the definitions, its details can be found in the online supplement.

Lemma 1. Suppose λ∈Λ and that feedback F is Value-Perfect. If zt,λ < zt,∗R then Ãt+1 \ Ãt 6= ∅. In

particular, if yta = 0 for all a 6∈At, then dim(U t+1)< dim(U t).

A direct consequence of the above result is that, in conjunction with Proposition 1, it provides

an upper bound for the time-stability for any policy in Λ. We observe that this result generalizes

Lemma 5 of Borrero et al. (2016) to general interdiction problems:

Theorem 2. Let λ∈Λ and suppose that F is Value-Perfect. Then, τλ ≤ ξλ ≤ |A \ Ã0|.

Proof. Let t∈ T be given such that zt,λ < zt,∗R . Lemma 1 implies that Ãt+1 \ Ãt 6= ∅. Hence, Ãt 6=A

can happen at most for |A \ Ã0| periods. Also, if t ∈ T satisfies Ãt = A, then dim(U t) = 0 and

Proposition 1 implies that ξλ ≤ t. Therefore, ξλ ≤ |A \ Ã0| and the result follows.

The previous results shed light into the importance of greedy and robust policies for solving

the exploitation vs. exploration dilemma. Simply speaking, it states that as long as the leader is

being robust with respect to uncertainty, then ‘robust’ exploitation (i.e., deciding greedily) always

implies exploration (i.e., discovering new information). We emphasize that the key property behind

the result is robustness: if the leader were to use another approach to deal with uncertainty, then

she might not discover any new information; see Remark 7 in Borrero et al. (2016) for an example

in the context of shortest path interdiction.
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Our next result, whose proof can be found in the online supplement, shows that the upper bound

in Theorem 2 is tight across all instances and, more importantly, across all policies. In other words,

we establish that policies in Λ are weakly optimal.

Proposition 2. Consider λ∈Λ and suppose that F is Value-Perfect. Then, for any s= (n,n0)∈ S

max
(D0,D)∈Gs

τλ(D0,D)≤ n. (8)

Moreover, λ is weakly optimal.

3.3. Policies in Λ Under Response-Perfect Feedback

Next, we establish convergence and weak optimality under Response-Perfect feedback. Recall that

under this feedback the leader always observe the value of yta for all a∈A such that yta > 0. In this

setting, the leader should update the uncertainty set U t to U t+1 by including the linear equality∑
a∈At+1 yt,λa ĉa = zt,λ. That is,

U t+1 =
{
ĉ∈R|A

t+1| : (ĉa)a∈At ∈ U t,
∑

a∈At+1

yt,λa ĉa = zt,λ
}
. (9)

Observe that if At+1 =At, i.e., if the leader does not learn any new activity at time t, then U t+1

has the same number of variables as U t, and moreover, equation (9) implies that U t+1 ⊆U t.

In Response-Perfect feedback, as in the Value-Perfect setting, by using a policy in Λ the follower

must be forced to reveal new information whenever zt,λ < zt,∗R . Specifically, if yta = 0 for all a 6∈At,

then it must be the case that dim(U t+1) < dim(U t). This inequality follows because in this case

dim(U t) cannot increase (since U t+1 ⊆ U t), and, more importantly, from the fact that the linear

equality
∑

a∈At+1 yt,λa ĉa = zt,λ is linearly independent from all the linear equalities in U t. These

observations are formalized in the following result, which can be considered analogous to Lemma 1:

Lemma 2. Let λ ∈ Λ and suppose feedback F is Response-Perfect. If zt,λ < zt,∗R and yta = 0 for all

a 6∈At then dim(U t+1)< dim(U t).

Now, if the leader learns new activities at t, then U t+1 has |At+1 \At| more variables than U t.

The addition of the corresponding new variables potentially increases the dimension of U t+1 with

respect to U t by |At+1 \At|. However, it is readily seen that the linear equality
∑

a∈At+1 yt,λa ĉa = zt,λ

is trivially linearly independent of previous inequalities in U t, and as such if the leader learns new

activities at t it can be concluded that dim(U t+1) ≤ dim(U t) + |At+1 \At| − 1. This observation,

along with Lemma 2, immediately provides the following upper bound (whose proof we omit):

Theorem 3. Let λ∈Λ. Then, under Response-Perfect feedback, τλ ≤ ξλ ≤ dim(U0) + |A \A0|.
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The above results, as in the case of Value-Perfect feedback, have the same implications regarding

the exploitation vs. exploration dilemma. That is, exploitation always implies exploration as long as

the leader decides robustly. In addition, for Response-Perfect feedback weak optimality also holds.

The proof of this fact applies the same arguments as in Proposition 2. Thus, its proof is omitted.

Proposition 3. Let λ∈Λ be given and suppose that F is Response-Perfect. Then, for any s∈ S

max
(D0,D)∈Gs

τλ(D0,D)≤ n.

Moreover, λ is weakly optimal.

4. Model for Matrix Uncertainty

In this section we consider a more general model referred to as the matrix model for the uncertainty

of the leader regarding the data of the follower’s problem. We assume that she knows with

certainty the value of ct at the beginning of time t, but that she does not know with certainty

the values of matrix F t. We emphasize the generality of this model: if in a given problem ct is

uncertain as well, then it can be included in F t w.l.o.g. by introducing a new variable y0 that

represents the cost function and adding the constraint y0 ≥ (ct)>y.

In this setup, and under the appropriate extensions of certain assumptions and feedback

definitions, we show that the results for standard feedback for the basic model of Section 2 (which,

in view of the current discussion, can be referred to as the cost model) are also valid. Moreover,

we show that for the Value-Perfect feedback case, the time-stability upper bound of Theorem

2 also holds, while for Response-Perfect feedback, an extension of the upper bound in Theorem

3 holds under certain assumptions. The proofs of the results, except for that of the bound for

Response-Perfect feedback (which can be found in the online supplement), follow from similar

arguments as those for the cost model, and thus are omitted.

4.1. Assumptions and Feedback in the Matrix Model

In this model we assume that the leader knows ct with certainty, but only knows that F t belongs to

an uncertainty set U t. For any d∈Ct
F let us denote by ntd the number of the follower’s activities in

At that d restricts, that is, ntd := |{a∈At : d∈CF (a)}|. We replace assumption A2 from Section 2

with the following:

A2E: The leader does not know with certainty all entries of F but she knows that F t ∈ U t, with

U t = {F̂ t ∈R
∑
d∈Ct

F
ntd : GtF̂ t ≤ gt},

where we make the convention that

F̂ t = (F11, . . . ,F1nt1
,F21, . . . ,F2nt2

, . . . ,F|Ct
F
|1, . . . ,F|Ct

F
|nt
|Ct
F
|
)>.
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If Ct
U is the set of constraints of polyhedron U t, then Gt ∈ R

|CtU |×
∑
d∈Ct

F
ntd and gt ∈ R|CtU |. We

assume that both Gt and gt are known by the leader at time t.

We also modify the definition of standard feedback; specifically we replace S4 by S4E:

S4E: For any new learned activity a ∈A, the leader learns the value of ca (instead of learning

the value of Fda for all d∈CF (a)∪Ct
F ). The rest of the assumption is as S4.

Moreover, in this setting Value-Perfect feedback is extended to account for the values of the

constraint matrix. That is, we refine the concept of Value-Perfect feedback as follows

Definition 5. In the matrix model, standard feedback F is called Value-Perfect if and only if at

any time t∈ T the leader learns the value of Fda for all a such that yta > 0 and d∈Ct
F ∪CF (a).

Note that the definition of Value-Perfect feedback in the previous sections is a particular case

of the above. On the other hand, we do not make additional assumptions on Response-Perfect

feedback.

Finally, we modify the definition of an instance. The initial information in this setting consists

of the vector D0 := (A0, I0,C0
F ,C

0
L,U0,H0,h0,L0,f 0,c0), and G(D0) becomes

G(D0) := {(A,I,CF ,CL,F ,H,h,L,f ,c) : conditions C1,C2 and C3E-C5E below hold}

C3E: U0 has valid upper and lower bounds for all Fda, d∈C0
F , a∈A0.

C4E: (Fda : d∈C0
F , a∈A0)∈ U0.

C5E: H0, h0, L0, f 0, c0 are submatrices and subvectors of H, h, L, f , c.

The above definitions are straightforward extensions of the assumptions and definitions of the basic

cost model in Section 2. Using them, we extend most of the results in the next sections.

4.2. Extended Greedy and Robust Policies

In what follows we generalize the greedy and robust policies in Λ to the matrix model which we

denote by ΛE. Policies in ΛE are greedy because they maximize the follower’s costs at the next time

period, and they are robust because they consider all possible realizations of F̂ t over U t. As shown

below, these policies share most properties of the policies in Λ under the different modes of feedback.

For any t∈ T , and given any x∈Xt define the “robust” region Y t
E(x) as

Y t
E(x) :=

{
y ∈R|A

t|
+ : F̂ ty+Ltx≤ f t ∀F̂ t ∈ U t

}
.

The robustness of Y t
E(x) follows from the fact that any element of this set must be feasible for any

possible realization of the uncertain data in U t. Define

ztE(x) := min
{

(ct)
>
y : y ∈ Y t

E(x)
}
, x∈Xt and zt,∗E := max{ztE(x) : x∈Xt} t∈ T .

Additionally, for any policy π define ξπE := ξπ(D0,D) as ξπE := min{t∈ T : zt,∗E = zt,π}.



Borrero, Prokopyev, and Sauré: Sequential Interdiction with Learning 21

Definition 6. We say that λ∈ΛE ⊆Π if and only if xt,λ ∈ arg max{ztE(x) : x∈Xt} for all t≤ ξλ,

and xt,λ = xξ
λ,λ for all ξλE < t≤ T .

As before, ξλE is the first time period when the follower uses a solution with the cost expected by

the leader. Finally, from ξλE onwards, policies in ΛE repeat the same solution used at time ξλE.

4.2.1. Policies in ΛE under Standard and Value-Perfect Feedback The following

proposition states that the standard feedback results that hold for Λ in Section 3.1, (i.e., Theorem

1 and Proposition 1) also hold for ΛE.

Proposition 4. Let λ ∈ ΛE be given and assume that F is standard. Then, (i) For any given

t∈ T it follows that zt,λ ≤ z∗ ≤ zt,∗E ; (ii) τλ ≤ ξλE; and (iii) Given t∈ T , if dim(U t) = 0 and yta = 0

for all a 6∈At, then ξλE ≤ t, and, in particular, τλ ≤ t.

In addition, given the extended definition of Value-Perfect feedback, Lemma 1 and Theorem 2

can be generalized in a straightforward fashion for the policies in ΛE. Indeed, define ÃtE as the set

of the follower’s activities for which the leader knows (with certainty) the values of the columns

of A associated with them, that is, ÃtE := {a∈At : ∀F̂ ∈ U t F̂da = Fda ∀d∈Ct
F}.

Proposition 5. Suppose λ∈ΛE and that feedback F is Value-Perfect. Then, (i) If zt,λ < zt,∗E then

Ãt+1
E \ ÃtE 6= ∅; and (ii) τλ ≤ ξλE ≤ |A \ Ã0

E|.

4.2.2. Policies in ΛE under Response-Perfect Feedback In this section we establish

convergence under Response-Perfect feedback for policies in ΛE. In contrast with the Value-Perfect

case, the extended results are more involved. We begin with the following observation.

Lemma 3. Let λ∈ΛE, and suppose that zt,λ < zt,∗E and that yta = 0 for all a 6∈At. Then there exist

a F̃ t ∈ U t and a lower-level constraint d∈Ct
F such that(

F̃ t
d

)>
yt,λ > fd− (Lt

d)
>
xt,λ. (10)

The above result implies that the leader can remove matrix F̃ t from the uncertainty set at time t,

as equation (10) means that F̃ t 6=F t. For any given t∈ T and λ∈ΛE, let us define Dt,λ as the set

of constraints for which equation (10) holds at time t, that is

Dt,λ :=
{
d∈Ct

F : ∃F̃ t ∈ U t s.t.
(
F̃ t
d

)>
yt,λ > fd− (Lt

d)
>
xt,λ
}
.

Suppose that zt,λ < zt,∗E and yta = 0 for all a 6∈At. Under the assumption of Response-Perfect feed-

back, one direct way to remove those elements of U t that satisfy equation (10) is to define U t+1 as

U t+1 = {F̂ t ∈ U t :
(
F̂ t
d

)>
yt,λ ≤ fd− (Lt

d)
>
xt,λ ∀d∈Dt,λ}, (11)
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where we note that U t+1 ⊂U t by Lemma 3. On the other hand, if yta > 0 for some a 6∈At, then, in

general, the existence of a F̃ t such that (10) holds cannot be guaranteed, and hence the update

in equation (11) can be vacuous (i.e., U t+1 = U t).
From the above discussion it is clear that whenever the leader does not learn a new follower

activity, then her uncertainty set reduces its size. However, the update defined by (11) does not

necessarily reduce the dimension of U t, and hence an upper bound similar to that of Theorem

3 cannot be proved in this setting by using the polyhedral dimension arguments. However, if we

make additional assumptions about the lower-level problem or about the leader’s ability to observe

the said problem, a finite upper bound can be established. These assumptions guarantee that the

uncertainty update reduces the dimension of the uncertainty polyhedron at least by one.

Proposition 6. Let λ∈ΛE and suppose that F is Response-Perfect.

(i) If all constraints of the lower-level problem are equalities, then τλ ≤ ξλ ≤ dim(U0) +∑
a∈A\A0 |CF (a)|.
(ii) If for any period t∈ T such that yta = 0 for all a 6∈At the leader observes the slack associated

with at least one of the constraints in Dt,λ, then τλ ≤ ξλ ≤ dim(U0) +
∑

a∈A\A0

(
|CF (a)|+ 1

)
.

Observe that all of the upper-bound results for policies in Λ (or ΛE) proved so far rely on the fact

that whenever the leader does not learn a new activity, then the dimension of U t+1 can be made

strictly less than the dimension of U t. For the matrix model and under Response-Perfect feedback,

if no additional assumptions are made, then this reduction in dimension cannot be guaranteed. In

this general setting, however, we can prove that every time U t is updated, the difference in ‘size’

between U t+1 and U t is sufficiently large, see Borrero (2017).

5. Semi-Oracle Lower Bounds

In online optimization, the performance of a policy is compared against that of an oracle, who repre-

sents an ideal decision-maker who has all information of the problem beforehand, see Cesa-Bianchi

and Lugosi (2006). Such an oracle faces no uncertainty and is able to make the best possible decision.

In our problem setting, the oracle solves problem (2) at every period, and thus always attains a time-

stability of zero. Unfortunately, such a lower bound is rather trivial and of not particular interest.

Consider instead a weaker oracle that, albeit knowing all the information of the problem in

advance, has restrictions in the way she can use this information. Specifically, at any period such

a weaker oracle can only use resources that she initially knows at time t = 0, or that have been

revealed to her by the follower in previous periods. Hence, this semi-oracle, see Borrero et al.

(2016), represents a decision-maker that combines both the practical limitations of the leader, with

all the knowledge of the traditional oracle. Specifically, the semi-oracle solves:

min
∑
t∈T

1{c>yt<z∗} (12a)
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s.t. xt ∈X t∈ T (12b)

yt ∈ arg min{c>y : y ∈ Y (xt)} t∈ T (12c)

xti = 0 i∈ I \ It, t∈ T (12d)

It+1 = It ∪
⋃

a : yta>0

I(a) t∈ T \ {T}, (12e)

where constraint (12d) prevents the semi-oracle from using activities which she does not know by

time t. Observe that absent this constraint, the formulation corresponds to what the oracle (with

full information) would solve. Constraints (12b) and (12c), on the other hand, imply that the semi-

oracle has all the information of the problem. As a consequence, the leader cannot be expected to

formulate nor optimally solve (at least, consistently) the problem given by (12) in practice.

There are two main advantages of using the notion of the semi-oracle, rather than the oracle,

as a benchmark. First, it yields a more informative lower bound on the performance of any policy:

the time-stability attained by the semi-oracle is not always zero; moreover, by using it we can

evaluate the effect that the initial information has on the performance of any policy. Second,

for any given instance, there is always a policy that attains the time-stability of the semi-oracle

policy. Specifically, for any policy, any interaction between the leader and the follower can be

mapped into a feasible solution of (12), and more importantly, given a fixed instance, there must

exist a policy that yields the same values of xt and yt as an optimal solution of (12).

It is important to note, however, that the semi-oracle decision process does not constitute a

feasible policy: given a same historyHt(D0,D), the semi-oracle might determine two different values

for xt for different instances, see an example for the sequential shortest path interdiction in Borrero

et al. (2016). This, because problem (12) is a function of the instance (D0,D), rather than a function

of the history (as it is the case with any admissible policies; recall their definition in Section 2.1).

It can be readily seen that the semi-oracle optimization problem (12) is NP -hard. Small and

moderately sized instances of the problem, however, can be tackled by state-of-the-art MIP solvers.

Indeed, a single-level MIP reformulation of (12) can be obtained by using reformulation techniques

of bilevel optimization, and can be found in the online supplement along with an algorithm to

speed-up the solution time of the MIP.

6. Numerical Illustration

In this section we demonstrate the numerical performance of the policies in Λ. For this, we use a

simple extension of the AD Knapsack problem of Example 1 where the follower has two budgetary

constraints. We consider both Value-Perfect and Response-Perfect feedbacks, two different models

for the initial uncertainty set along with the uncertainty either in the profits, or in the budgetary
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constraints, or in both the profits and the constraints. In order to provide a broader picture of the

performance of the policies in Λ, we compare them against reasonable benchmark policies in the

context of SIPI, and with respect to the semi-oracle lower-bounding procedure of the previous

section. Our results show that the policies in Λ outperform the benchmark, and compare rather

favorably with respect to the semi-oracle lower bound.

The decisions generated by the policies in Λ are computed by solving a one-level MIP reformu-

lation of the bilevel problem (6), see Section A.3 of the Appendix for further details. Generally

speaking, the transformation of optimization problem (6) into an MIP involves application of

methods from bilevel optimization (to transform the hierarchical problem into a single-level

problem) and robust optimization (to adequately optimize over the uncertainty set U t) areas. We

note that, in general, problem (6) is NP -hard, as bilevel linear optimization is its special case.

Additional results regarding the performance of the policies in Λ can be found in Borrero et al.

(2016). There, the numerical experiments are shown for when the interdiction problem is a shortest

path interdiction problem, the feedback is Value-Perfect, and there is interval uncertainty for the

cost coefficients. We note that the results obtained for such configuration largely conform with the

findings we obtain in this section.

Test Instances. We consider an extension of the AD knapsack problem from Example 1, where

the defender has n= 15 assets (thus |A|= |I|=15). The upper-level information is given by r = 1

and R= 3, thus the Attacker can disable at most three assets at any given time. In this extension the

follower faces two budgetary constraints
∑n

j=1 b
(k)
j yj ≤B(k), k = 1,2, with B(k) = dU(1,10 · n)/3e,

U(a, b) denoting a number drawn from a uniform discrete distribution between a and b. We consider

two models of initial uncertainty sets, namely, hypercube and simplex :

• In the hypercube model the defender’s profits satisfy pa ∈ [`pa, u
p
a], a∈A, where for each a∈A

the values of `pa, pa, and upa are drawn at random (and ordered) from a random variable V , V =

V1 + V2, where V1 and V2 follow a U(1,5) and a U(1,20) distribution, respectively. Likewise, the

budgets satisfy that b(k)
a ∈ [`(k)

a , u(k)
a ], a ∈ A, where for each k = 1,2 and each a ∈ A the values of

`(k)
a , b(k)

a , and u(k)
a are drawn at random (and ordered) from a random variable W , W =W1 +W2,

where W1 and W2 follow a U(1,10) and a U(1,20) distribution, respectively.

• For the simplex model we assume that (besides non-negativity constraints) G0 and g0 represent

three inequalities, one for the profits, and one for each of the budgetary constraints:

n∑
j=1

G1j p̂j ≤ g1,
n∑
j=1

G2j b̂
(1)
j ≤ g2,

n∑
j=1

G3j b̂
(2)
j ≤ g3.

The coefficients G1j, j = 1, . . . , n, are drawn at random from a U(1,5) distribution. Similarly for

the budgets, Gij, i= 2,3, j = 1, . . . , n, are drawn at random from a U(1,10) distribution. The right-

hand sides satisfy that gi = 5n
∑n

j=1Gij, i = 1,2,3. The real values for the profits are generated
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as pj = (g1/G1j)Rw
p
j , j = 1, . . . , n, where R is a random number between 0 and 1, and the wpj s

are weight values drawn at random from a continuous U(0,1) distribution and normalized so that∑n

j=1w
p
j ≤ 1. The real values for the budgets b

(k)
j , j = 1, . . . , n, k= 1,2, are generated following the

same logic.

Given the polyhedron P0 obtained by either of the above methods, we generate U0 by adding

to P0 the constraints that specify the data that the leader knows with certainty. For instance,

if the budgets are known with certainty, we add the constraints b̂
(k)
j ≤ b

(k)
j and −b̂(k)

j ≤ −b
(k)
j for

j = 1, . . . , n, k= 1,2. If there is uncertainty for the profits and both constraints, then U0 =P0.

For each of the uncertainty models, we generated at random N = 30 instances, and assume the

leader uses both Value-Perfect and Response-Perfect feedbacks. We consider three sets of initial

information A0: in the first, the leader knows five activities of the follower; in the second, she knows

ten activities; and in the last, she knows all activities. Finally, we set T = 20 periods.

Benchmark Policies. In addition to policies in Λ, we consider the following benchmarks:

• The analytical center policy πb: At each time t ∈ T the policy computes xt,πb by solving the

deterministic bilevel problem

xt,πb ∈ arg max
x∈Xt

{
(−p̃t)>y : (b̃t,(k))>y≤B(k) k= 1,2, y+x≤ 1, y ∈R|A

t|
}
, (13)

where (p̃t, b̃t,(1), b̃t,(2)) is the analytical center of the polytope U t, see Bertsimas and Tsitsiklis

(1997).

• The random policy πr: At each time t ∈ T the policy computes xt,πr by solving problem

(13) with (p̄t, b̄t,(1), b̄t,(2)) used instead of (p̃t, b̃t,(1), b̃t,(2)). Here we have that (p̄t, b̄t,(1), b̄t,(2))

is a randomly generated extreme point of U t that is obtained by solving the linear program

(p̄t, b̄t,(1), b̄t,(2))∈ arg max{(`t)>v : v ∈ U t}. In this problem, at each time t∈ T each entry of vector

`t is drawn at random from a Bernoulli distribution with parameter 1/2, i.e., each entry is zero

or one with equal probability.

• The “stopped” random policy πs: At each time t ∈ T the policy computes xt,πs in the same

manner as policy πr. However, whenever the follower’s costs are as expected by the leader (i.e.,

zt,πs is the same as the value of (13) with (p̄t, b̄t,(1), b̄t,(2)) in place of (p̃t, b̃t,(1), b̃t,(2))), then the

policy keeps using the same solution thereafter.

• We also consider the lower bound provided by the semi-oracle approach discussed in Section

5. While it is not an admissible policy, with a slight abuse of notation we denote it by π∗ hereafter.

Results and Discussion. In Tables 1– 4 we show the mean time-stability and mean absolute

deviation (MAD) of the time-stability across the N = 30 replications for each configuration. We

make the convention that whenever a policy does not find the optimal full-information solution,

then the time-stability is set to τπ = 21 (i.e., τπ = T + 1).
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Table 1 Mean and MAD for time-stability for the hypercube uncertainty model and Value-Perfect feedback.
λ πb πr πs π∗

Uncertainty A0 Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD

Profits

{1 . . .5} 2.47 0.59 6.27 6.77 11.93 7.36 9.43 7.36 1.47 0.63
{1 . . .10} 2.53 0.55 7.93 8.05 15.50 5.58 11.93 6.16 1.03 0.53
{1 . . .15} 2.57 0.71 6.83 8.22 18.10 3.83 16.33 6.40 0.00 0.00

First Constraint

{1 . . .5} 2.27 0.71 4.87 5.28 7.60 5.51 7.20 6.29 1.47 0.63
{1 . . .10} 1.83 0.80 5.93 5.60 9.17 7.56 7.83 7.70 1.03 0.53
{1 . . .15} 1.17 0.90 5.10 6.76 9.47 8.29 8.57 8.81 0.00 0.00

First and second constraints

{1 . . .5} 2.47 0.67 5.67 5.88 13.33 7.50 9.97 8.12 1.47 0.63
{1 . . .10} 2.43 0.70 6.90 7.45 17.03 4.94 17.30 5.67 1.03 0.53
{1 . . .15} 2.17 0.63 9.73 9.67 19.60 2.24 16.80 6.11 0.00 0.00

Profits, first, and second
constraints

{1 . . .5} 2.77 0.62 5.80 5.29 18.37 2.95 15.60 6.86 1.47 0.63
{1 . . .10} 3.00 0.51 8.93 7.40 20.53 0.60 17.53 5.33 1.03 0.53
{1 . . .15} 3.13 0.45 11.50 6.42 20.80 0.32 21.00 0.00 0.00 0.00

Table 2 Mean and MAD for time-stability for the hypercube uncertainty model and Response-Perfect feedback.
λ πb πr πs π∗

Uncertainty A0 Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD

Profits

{1 . . .5} 3.37 0.67 8.60 7.41 14.00 6.67 10.97 8.10 1.47 0.63
{1 . . .10} 3.30 0.79 9.00 7.62 16.40 5.45 14.57 6.99 1.03 0.53
{1 . . .15} 3.23 0.75 8.77 7.29 18.20 3.68 18.10 4.50 0.00 0.00

First Constraint

{1 . . .5} 2.80 0.97 7.80 7.53 12.03 7.03 7.23 6.81 1.47 0.63
{1 . . .10} 2.30 1.15 7.70 7.78 10.67 8.83 9.73 9.12 1.03 0.53
{1 . . .15} 1.60 1.21 7.63 8.86 12.27 8.85 9.30 9.49 0.00 0.00

First and second constraints

{1 . . .5} 3.60 1.27 14.83 7.25 18.53 3.43 15.77 6.85 1.47 0.63
{1 . . .10} 3.57 1.25 16.23 6.25 20.20 1.35 17.50 4.93 1.03 0.53
{1 . . .15} 3.30 1.43 17.07 5.46 20.80 0.32 19.97 1.52 0.00 0.00

Profits, first, and second
constraints

{1 . . .5} 4.33 1.20 14.60 7.30 20.53 0.55 16.90 5.09 1.47 0.63
{1 . . .10} 4.47 1.21 15.87 6.41 20.67 0.48 20.77 0.41 1.03 0.53
{1 . . .15} 4.73 1.33 16.20 5.71 20.77 0.38 19.77 2.03 0.00 0.00

Table 3 Mean and MAD for time-stability for the simplex uncertainty model and Value-Perfect feedback.
λ πb πr πs π∗

Uncertainty A0 Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD

Profits

{1 . . .5} 1.77 0.71 8.50 7.24 20.83 0.17 17.90 5.09 1.23 0.37
{1 . . .10} 1.77 0.71 4.10 3.38 21.00 0.00 19.73 2.28 1.00 0.20
{1 . . .15} 1.77 0.71 2.53 0.46 21.00 0.00 19.03 3.27 0.00 0.00

First Constraint

{1 . . .5} 2.17 0.43 5.33 6.27 7.47 5.92 7.27 7.23 1.23 0.37
{1 . . .10} 2.27 0.49 11.73 9.25 12.90 7.61 12.23 8.59 1.00 0.20
{1 . . .15} 2.37 0.47 12.70 9.12 15.43 6.17 14.57 8.27 0.00 0.00

First and second constraints

{1 . . .5} 2.20 0.37 8.10 7.99 11.53 7.87 11.17 8.50 1.23 0.37
{1 . . .10} 2.20 0.39 14.30 6.70 15.43 6.43 15.90 5.29 1.00 0.20
{1 . . .15} 2.37 0.43 14.83 8.35 17.67 4.68 18.83 2.87 0.00 0.00

Profits, first, and second
constraints

{1 . . .5} 1.77 0.71 10.73 9.51 19.10 1.79 13.93 8.87 1.23 0.37
{1 . . .10} 1.77 0.71 10.13 9.07 20.60 0.59 15.87 7.43 1.00 0.20
{1 . . .15} 1.77 0.71 5.63 5.89 20.63 0.47 16.07 7.15 0.00 0.00

Table 4 Mean and MAD for time-stability for the simplex uncertainty model and Response-Perfect feedback.
λ πb πr πs π∗

Uncertainty A0 Mean MAD Mean MAD Mean MAD Mean MAD Mean MAD

Profits

{1 . . .5} 6.40 1.10 9.47 3.63 20.70 0.47 19.40 2.31 1.23 0.37
{1 . . .10} 6.40 1.10 9.70 3.89 21.00 0.00 20.50 0.80 1.00 0.20
{1 . . .15} 6.40 1.10 8.07 3.97 21.00 0.00 21.00 0.00 0.00 0.00

First Constraint

{1 . . .5} 5.50 1.55 14.60 8.19 16.07 6.43 13.97 7.08 1.23 0.37
{1 . . .10} 5.23 1.72 13.73 8.60 16.43 6.11 14.00 8.23 1.00 0.20
{1 . . .15} 4.97 1.69 13.40 8.98 16.57 5.65 15.43 6.55 0.00 0.00

First and second constraints

{1 . . .5} 5.43 1.56 18.27 4.16 18.63 3.15 18.93 2.70 1.23 0.37
{1 . . .10} 5.20 1.59 19.33 2.93 19.10 2.84 19.03 3.01 1.00 0.20
{1 . . .15} 5.03 1.53 19.13 3.03 19.27 2.78 18.83 3.33 0.00 0.00

Profits, first, and second
constraints

{1 . . .5} 7.80 1.43 17.63 4.51 20.77 0.37 19.80 1.83 1.23 0.37
{1 . . .10} 7.80 1.43 16.80 5.49 20.90 0.17 20.80 0.36 1.00 0.20
{1 . . .15} 7.80 1.43 16.23 6.22 20.97 0.06 20.37 1.14 0.00 0.00

We observe that the proposed policies λ ∈Λ consistently outperform the benchmark by a large

margin except for the semi-oracle lower bound π∗, which is to be expected. For virtually all con-
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figurations, policies πr and πs yield very poor time-stability results, while πb is somewhat better.

Moreover, these policies, in contrast with λ, are not able to find an optimal solution for most cases

within the time horizon. These results reflect one of the key advantages of the greedy and robust

nature of the policies in Λ, namely, the fact that the leader is guaranteed to eventually find an opti-

mal solution to the full information problem. In addition, it is remarkable that the time-stability

of the policies in λ is considerable better than their theoretical worst-case of |A|.

Furthermore, we observe that the performance of the proposed policies is better for the case

of Value-Perfect feedback when compared to Response-Perfect feedback, under both uncertainty

models, and is particularly pronounced in the simplex model with Response-Perfect feedback. This

is to be expected: under Value-Perfect feedback more linearly independent equations are added

on average to U t at each time period. It is also noticeable that the amount of initial information

does not seem to have any significant impact on policy performance under both feedback types

and uncertainty models. However, we note that in other bilevel settings the amount of initial

information does have a very important effect (see, e.g., discussion in Borrero et al. (2016) for an

example in the context of the shortest path interdiction).

An important feature of the policies in Λ is their extremely low variability, not much larger

than the semi-oracle’s. In contrast, the benchmark policies are orders of magnitude more variable.

Importantly, while these policies have low MAD values some cases, this is due to the fact that for

most instances their time-stability is infinity (recall our earlier remark that policies that do not find

an optimal solution within the first 20 periods of an instance are assigned the value τπ = T = 21).

We observe that our numerical experiments do not yield a clear conclusion regarding what type

of uncertainty is more challenging for the leader. That is, note that for policy λ the results are fairly

similar whether there is uncertainty only in the constraints or uncertainty only in the profits. In fact,

for some configurations the time-stability is better for profit uncertainty while in other is better for

constraint uncertainty. Note that the performance when there is uncertainty in both constraints is

slightly worse than the case where only one constraint is uncertain. Interestingly, this is not always

true, see, e.g., the simplex model for both Value-Perfect and Response-Perfect feedback.

For most configurations the worst performance is observed when there is uncertainty across both

profits and budget constraints. The only exception being Value-Perfect feedback under the simplex

model, where the results are the same as the case of profit uncertainty. Importantly, we observe

that the policies in λ have a very good performance for Response-Perfect feedback whenever there

is uncertainty in the constraints. Such behavior is remarkable, since as mentioned in Section 4.2.2,

no theoretical results that upper bound the time-stability are yet available for these cases. This

suggests that theoretical upper bounds for the matrix model under Response-Perfect feedback

might be found, however their derivation might not depend on the notion of polyhedral dimension.
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7. Conclusions

This paper presents a framework for addressing a class of max–min bilevel problems where at each

period a leader allocates resources so as to degrade the performance of a follower. The follower, in

turn, aims at minimizing the cost of performing his activities given the leader’s actions. In order

to solve the problem, we propose a class of policies Λ that are both greedy and robust. Under

reasonable assumptions on the information that the leader collects from the follower’s response,

our theoretical results show that in this class of problems exploitation always implies exploration

as long as the leader is using policies in Λ. Moreover, the greediness and robustness of policies

in Λ are sufficient to guarantee weak optimality and we also show that these policies provide the

leader with a real-time certificate of optimality.

The implementation of the proposed policies requires solving a linear MIP in each period: these

problems can be solved by available commercial solvers. We also present a lower bound on the best

possible achievable performance based on the actions of a semi-oracle, which can also be computed

via an MIP. Our theoretical results are supported by a series of numerical experiments that show

that the proposed policies consistently outperform other benchmark policies.

Several questions remain open at this point with regard to sequential bilevel problems with

incomplete information. One of the most relevant is to study up to what point the results in this

work can be extended to general bilevel programs. The key challenge for this broader class of

problems is that, as it can be readily checked, Theorem 1 and Lemmas 1 and 2 do not hold for

greedy and robust policies. This implies that these policies (i) no longer provide a certificate of

optimality; (ii) do not imply that an optimal solution has been found whenever the expected cost

of the leader is the same as that of the follower; and (iii) do not imply that the leader learns new

information whenever the expectation and the value observed are different.

In addition, the study of models with more general assumptions on uncertainty, where, for

instance, the leader is not certain about her upper-level data, provide an attractive avenue of future

research. For instance, the question of determining whether finite time-stability upper bounds

can be proved for the matrix model under Response-Perfect feedback with no extra assumptions

remains open, as well as to determine alternative feedback settings where finite bounds, and weak

optimality, can be also be attained.
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Appendix A: Additional Results and Complementary Material

Proof of Lemma 1. First, note that if yt,λa > 0 for some a 6∈At, then the result follows from the

assumption of Value-Perfect feedback. Therefore, suppose that yt,λa = 0 for all a 6∈At. We claim that

there exists an activity a∈At \ Ãt such that yt,λa > 0; the existence of such an activity implies the

desired result from the assumption of Value-Perfect feedback. Indeed, to proceed by contradiction,

suppose that this is not the case, i.e., yt,λa = 0 for all a∈At \ Ãt. As yt,λ ∈ Y (x̄t,λ) (see Equation (7))

and yta = 0 for all a 6∈ At, then it must be that (yt,λa )a∈At ∈ Y t(xt,λ). Now, because ĉa = ca for all

a∈ Ãt, one has that for all ĉt ∈ U t

(ĉt)
>

(yt,λa )a∈At = (ct)
>

(yt,λa )a∈At ,

and therefore ((ct)
>

(yt,λa )a∈At , (y
t,λ
a )a∈At)∈ Y t

R(xt,λ). Thus, by the definition of xt,λ we have that

zt,∗R ≤ (ct)
>

(yt,λa )a∈At . (A-1)

On the other hand, because yta = 0 for all a 6∈At, one has that zt,λ = (ct)
>

(yt,λa )a∈At , and hence, by

Theorem 1 along with (A-1), we have that zt,λ = zt,∗R , yielding the desired contradiction.

Proof of Proposition 2. First, observe that equation (8) is an immediate consequence of Theorem

2. In order to prove weak optimality, we show that for any given policy π and any s = (n,n0) ∈ S

there exists an instance (D0,D)π of size s such that τπ((D0,D)π)≥ n.

Let A = {1,2 . . . , n0, n0 + 1, . . . , n}, A0 = {1, . . . , n0} and I = A, I0 = A0. Let X (and hence H

and h) be given by

X =
{
x∈Zn+ :

∑
j∈I0

xj = n0− 1,
∑
j∈I

xj ≤ n− 1, xj ≤ 1 ∀j = 1, . . . , n
}
,

and let X0 (and hence, H0 and h0) be given by

X0 =
{
x∈Zn+ :

∑
j∈I0

xj = n0− 1, xj ≤ 1 ∀j = 1, . . . , n0
}
.

On the other hand, for any x∈X define Y (x) as

Y (x) :=
{
y ∈Rn+ :

n∑
j=1

yj ≤ 1, yj +xj ≤ 1 ∀j = 1, . . . , n
}
.

That is, F = [1>;I] and L = [0>;I], where I is an identity matrix of size n, and f is a column

vector of ones. Define F 0, L0 and f 0 as the corresponding submatrices of F , L and f associated

with j = 1, . . . , n0. Finally, consider c to be such that cn0+q < cn0+q+1, for q = 1, . . . n−n0− 1, and

for the cost coefficients of the first n0 activities we assume that the leader knows that they belong

to U0, where U0 = {ĉ0 ∈Rn0
: `≤ ĉ0

j ≤ u, j = 1, . . . , n0}, where we assume that cn < `< u< 0.
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In order to adequately define the instance, a particular ĉ0 in U0 has to be fixed. However,

independent of which specific ĉ0 is chosen (which will depend on the policy, see below), the above

defined data constitutes an instance, i.e.,Dπ ∈G((D0)π), and its size is given by (n,n0). Particularly,

note that from the leader perspective, the problem consist of blocking those n− 1 activities that

are most profitable to the follower, constrained to the fact the she always need to block exactly

n0−1 out of the n0 activities she knows at time t= 0. In addition, from the assumptions on c, the

follower’s profit from any of the n− n0 activities that the leader does not initially know is better

than the profit generated by any activity that the leader initially knows.

From the definition of (D0,D) it is clear that if x∗ is an optimal oracle decision, then x∗j = 1 for

j = n0 +1, . . . , n, which implies that the leader must learn all those activities before implementing a

solution where zt,π = z∗. Hence, if t0 denotes the first time after which the leader learns all activities

from A \A0, it is clear from the structure of the instance that t0 ≥ n− n0. In addition, note that

until t0 the follower has only used activities in A \A0, so by Value-Perfect feedback, he has not

revealed to the leader any of the real costs of the activities in A0.

In order to prove weak optimality we show that for any given policy π there is a cost vector

c0 ∈ U0 such that it takes the leader at least another n0 time periods to consistently implement x∗

(this would imply that τπ((D0,D)π)≥ n, yielding the desired result). First, assume that π does not

repeat any solution from time t0, until time tn = t0 + n0 − 1. For any t= t0, . . . , tn, let jπ,t be the

(unique) follower activity in A0 that xt,π does not block at time t, and choose the values of c1, . . . , cn0

such that ` < cjπ,t0+1 < cjπ,t0+2 < . . . < cjπ,tn < cjπ,t0 <u, and note that these values are admitted by

U0. Observe that fixing the costs of the actions in A0 in this way, we have that x∗ satisfies x∗j = 1,

for j 6= jπ,t0 and x∗
jπ,t0

= 0, and that z∗ = cjπ,t0 . On the other hand, for t= t0 + 1, . . . , tn,

zt,π ≤ cjπ,t < z∗ (A-2)

(we note the first inequality above is, in general, not an equality, as it is not necessary for xt,π to

block all the activities j with j > n0). Henceforth, equation (A-2) implies that τπ((D0,D)π)> tn,

and hence, as t0 ≥ n−n0, τπ((D0,D)π)≥ n, and the result follows.

Now, suppose that π repeats a solution once between t0 and tn, thus there exist t0 ≤ u< v ≤ tn
such that xu,π = xv,π. In this case jπ,u = jπ,v, and there exist 1≤ b≤ n0 such that b 6= jt,π for all

t= 0, . . . , n. Let c0 satisfy ` < cjπ,t < cjπ,t+1 for t= t0, . . . , v−2, cjπ,t < cjπ,t+1 for t= v+1, . . . , tn, and

assume that cjπ,tn < cb <u. Observe that c0 belongs to U0, and hence (D0,D)π is a valid instance,

and moreover, x∗ is given by x∗j = 1 for all j 6= b, x∗b = 0, with z∗ = cb. In addition, it is seen that

for t= t0, . . . , tn it follows that zt,π ≤ cjπ,t < z∗, and hence τπ((D0,D)π)≥ n, as desired. Also, note

that if π repeats a solution between t0 and tn, the same argument as above yields the result.
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Proof of Lemma 2. As zt,λ < zt,∗R there exists c̃t ∈ U t such that zt,λ < (c̃t)
>

(yt,λa )a∈At . Because

At+1 =At, we have that U t+1 = {ĉt ∈R|At| : (ĉt)
>

(yt,λa )a∈At = zt,λ, ĉt ∈ U t}, and therefore c̃t 6∈ U t+1.

Now, in view of the definition of U t+1 under Response-Perfect feedback, Gt+1 = (Gt; (yt,λ)>) and

gt+1 = (gt;zt,λ). For any t ∈ T let us denote by Ct,=
U those inequalities in the definition of U t that

must be satisfied as strict equalities, i.e., j ∈ Ct,=
U ⇔Gt

j ĉ
t = gj ∀ĉt ∈ U t, where Gt

j denotes j-th

row of Gt. Let us denote by Gt,= and gt,= the corresponding submatrix and subvector of Gt and

gt associated with those elements in Ct,=
U . We have that (see, e.g., Wolsey and Nemhauser (2014))

dim(U t) = |At| − rank(Gt,=,gt,=). (A-3)

We claim that rank(Gt+1,=,gt+1,=) ≥ rank(Gt,=,gt,=) + 1, and the desired result then follows

from equation (A-3). Indeed, arguing by contradiction, suppose that rank(Gt+1,=,gt+1,=) =

rank(Gt,=,gt,=). This implies that ((yt,λ)a∈At ;z
t,λ)> can be written as a linear combination of the

rows of (Gt,=,gt,=), and thus it is readily seen that {ĉt : Gt+1,=ĉt = gt+1,=}= {ĉt : Gt,=ĉt = gt,=}.
Because c̃t ∈ U t, it belongs to {ĉt : Gt,=ĉt = gt,=}, which by the above equation implies that it

also belongs to {ĉt : Gt+1,=ĉt = gt+1,=} and thus to U t+1, which yields the desired contradiction.

A.1. Proof of Proposition 6

Before proceeding with the proof of Proposition 6, additional notation, concepts and results need

to be introduced. In the discussion that follows, let us suppose that in Response-Perfect feedback,

besides observing the values of yta the leader is also able to observe the value of the left-hand

side (or, equivalently, the slack qtd) for all constraints d ∈Ct+1
F . For simplicity, let us denote rtd :=∑

a : yta>0Fday
t
a = fd − qtd − L>d x

t. Then, by using the information from the feedback, the leader

updates U t by including the linear constraints∑
a∈yta>0

ytaF̂da = rtd for all d∈Ct+1
F , (A-4)

in the definition of polyhedron U t+1. Recall that for any d ∈ Ct
F , ntd denotes the number of the

follower’s activities in At that d restricts, that is ntd := |{a∈At : d∈CF (a)}|. As such, for any given

time t∈ T we have that

U t ⊆R
∑
d∈Ct

F
ntd .

Denote mt = |Ct
F | and let us write Ct

F = {d1, . . . , dmt}. We organize the elements of U t into blocks,

so that F̂ ∈ U t is given by

F̂ = [F̂ d1 ; F̂ d2 ; . . . ; F̂ d
mt ],

where F̂ d ∈Rntd for all d∈Ct
F . We also assume that the columns of matrix Gt are organized in this

way. Using the conventions above, for any d∈Ct+1
F , constraint (A-4) can be rewritten as

v>d F̂ = rtd, (A-5)
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where vector vd is divided in subvectors as vd := [vd1
d ;vd2

d ; . . . ;v
d
mt+1

d ], and each subvector v
dj
d ∈

Rn
t+1
dj . If d 6= dj, then v

dj
d is a vector of zeros, i.e., v

dj
d = 0>

nt+1
dj

. Otherwise, if d = dj, then it has

the information of yt,λ for those activities in At+1 that are restricted by d, i.e, (vdd)a = yt,λa for all

a∈At+1 such that d∈CF (a).

Let D0 and D ∈ G(D0) be given, and suppose that T is sufficiently large. For any π, define

Sπ(D0,D) := {t ∈ T : ∃a 6∈ At s.t. yta > 0}, that is, Sπ(D0,D) is the set of time periods when at

least a new activity is learned by the leader (who is using policy π). Suppose that Sπ(D0,D) =

{s1, s2, . . . , sp}, where w.l.o.g. we suppose that sk < sk+1 for all k ≤ p− 1 (observe p depends on

π, we drop it for the notation for simplicity). In addition, for any k = 1, . . . , p, define Nk := {a ∈

A \Ask : yska > 0}, i.e., Nk is the set of activities the leader learns by the end of time period sk.

Lemma 4. Let λ∈Λ, suppose that feedback F is Response-Perfect and that the leader observes the

values of all the slack variables of the follower problem at any time t∈ T . If ξλ > sp then,

dim(U t+1)−dim(U t)≤


∑

a∈Nk |CF (a)| −
∣∣∣⋃a∈Nk CF (a)

∣∣∣, if t= sk for some k≤ p,

−1, otherwise.
(A-6)

Proof. Let k < p be given. Observe that at the end of period sk the leader learns all the activities in

Nk, and as such introduces a new variable F̂da into Usk+1 for all d∈CF (a) and a∈Nk. Hence, Usk+1

has
∑

a∈Nk |CF (a)| more variables (columns) than Usk (observe that there is no new variable F̂da for

a∈At from the standard feedback assumption). On the other hand, for every d∈
⋃
a∈Nk CF (a) the

leader includes the linear constraint (A-5) into Usk+1 (in addition to the potentially new constraints

associated with each d∈Ct
F ).

From the definition of vd in equation (A-5), it is readily seen that if d 6= d′, and both d, d′ ∈⋃
a∈Nk CF (a), then (vd; r

sk
d ) and (vd′ ; r

sk
d′ ) are linearly independent. Moreover, it is also readily

observed that these vectors are linearly independent of all the other (expanded) vectors that give

equality constraints in Usk .

The above analysis implies that, with respect to dim(Usk), dim(Usk+1) increases by∑
a∈Nk |CF (a)| because of the new variables, but dim(Usk+1) decreases by (at least)∣∣∣ ⋃

a∈Nk

CF (a)
∣∣∣

because of the newly introduced linearly independent equality constraints. In other words,

dim(Usk+1)≤ dim(Usk) +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣. (A-7)
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On the other hand, let t < ξλ such that t 6∈ Sλ; i.e., yta = 0 for all a 6∈At. Note that because ξλ > t

one has that c>yt,λ < ztR (by part (i) of Proposition 4). We claim that (recall from the proof of

Lemma 2 the definition of Gt,= and gt,=)

rank([Gt+1,=,gt,=])> rank([Gt,=,gt,=]).

Indeed, because the assumptions of Lemma 3 hold, let F̃ t such that(
F̃ t
)>
d
yt,λ > fd− (Lt)

>
d x

t,λ.

Now consider U t after adding the equation v>d F̂ = rtd. Because qtd ≥ 0, one has that F̃ T
d y

t,λ >

fd − (Lt)
>
d x

t − qtd and hence F̃ 6∈ U t+1. Therefore, F̃ t ∈ U t \ U t+1 and, by the same arguments of

Lemma 2, the vector (vd;kd) must be linearly independent from all the rows of (Gt,gt). Therefore,

the desired claim follows and we can conclude that dim(U t+1)≤ dim(U t)− 1, as desired.

Lemma 5. Let λ∈Λ be given, suppose that the feedback F is Response-Perfect and that the leader

observes the values of all the slack variables of the follower’s problem at any time t ∈ T . Then,

s1 + dim(Us1)≤ dim(U0), and

sk+1 + dim(Usk+1)≤ sk + dim(Usk) + 1 +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣ k= 1, . . . , p− 1.

Proof. By the definition of s1, at periods t= 0,1,2, . . . , s1 − 1 we have that the leader does not

learn any activity and hence, by Lemma 4, dim(U t)−dim(U t−1)≤−1 for t= 1, . . . , s1. This implies

that dim(Us1) ≤ dim(U0)− s1 and the result follows. Suppose that k = 1, . . . , p− 1 is given. By

definition of sk+1, from t= sk + 1, . . . , sk+1− 1 the leader does not learn any activity and Lemma 4

again implies that dim(U t)−dim(U t−1)≤−1, t= sk + 2, . . . , sk+1. This observation implies that

dim(Usk+1)≤ dim(Usk+1)− (sk+1− sk− 1).

Now, the above equation along with equation (A-7) imply that

dim(Usk+1)≤ dim(Usk) +
∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣− sk+1 + sk + 1,

which yields the desired result.

Using the above Lemma 5 we have the following important result.

Lemma 6. Let λ∈Λ be given, suppose that the feedback F is Response-Perfect and that the leader

observes the values of all the slack variables of the follower problem at any time t∈ T . Then,

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣). (A-8)
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Proof. By repeated application of Lemma 5 it is verified that

sp + dim(Usp)≤ dim(U0) + (p− 1) +

p−1∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣). (A-9)

Because by definition no new action is learned after sp, dim(U t)− dim(U t−1)≤−1 for t≥ sp + 2.

This implies that at most by time sp + t̃, where t̃ :=
∑

a∈Np |CF (a)| −
∣∣∣⋃a∈Np CF (a)

∣∣∣+ 1, it must

be the case that dim(Usp+t̃) = 0. Henceforth, part (iii) of Proposition 4 implies that ξλ ≤ sp + t̃,

and hence equation (A-9) and the selection of t yield the desired result.

Proof of Proposition 6. Suppose first that (i) holds, i.e., that all the constraints are equality

constraints, thus the leader always knows that their slack is zero. Hence, a direct application of

Lemma 6 implies that

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

(∑
a∈Nk

|CF (a)| −
∣∣∣ ⋃
a∈Nk

CF (a)
∣∣∣).

The desired result follows by noting that
∑p

k=1

∑
a∈Nk |CF (a)| =

∑
a∈A\A0 |CF (a)| and that∣∣∣⋃a∈Nk CF (a)

∣∣∣≥ 1. On the other hand, consider (ii), i.e., that the leader observes the slack of one

of the constraints in Dt,λ at every period t∈ T such that yta = 0 for all a 6∈At. In this case, following

the same arguments as in Lemma 4, equation (A-6) can be simplified to:

dim(U t+1)−dim(U t)≤


∑

a∈Nk |CF (a)|, if t= sk, for some k≤ p,

−1, otherwise.

The result follows from Lemma 6, after mimicking the proofs of the previous results, as in this case

equation (A-8) becomes

τλ ≤ ξλ ≤ dim(U0) + p+

p∑
k=1

∑
a∈Nk

|CF (a)|.

A.2. Semi-Oracle Algorithm

In this section we show a one–level MIP reformulation of the semi–oracle optimization problem (12)

and provide an algorithm that can speed–up its solution. The MIP reformulation is given by (A-1):

min
u,v,w,y,x,θ

∑
t∈T

wt (A-1a)

s.t. Hxt ≤h t∈ T (A-1b)

F yt +Lxt ≤ f , −F>θt ≤ c t∈ T (A-1c)

θt ≤M θtut, yt ≤M ytvt t∈ T (A-1d)
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f −F yt−Lxt ≤M pt(1−ut) t∈ T (A-1e)

c+F>θt ≤M qt(1− vt) t∈ T (A-1f)

xti ≤Mxi

t−1∑
s=0

∑
a∈A(i)\A0

ysa t∈ T , i∈ I \ I0 (A-1g)

z∗(1−Mwwt)≤ c>yt t∈ T (A-1h)

ut ∈ {0,1}|CF |, vt ∈ {0,1}|A|,wt ∈ {0,1} t∈ T (A-1i)

yt ∈R|A|+ , xt ∈R|I|−k+ ×Zk+, θt ∈R
|CF |
+ t∈ T , (A-1j)

where xt is the solution of the semi-oracle at time t, and yt is the solution of the follower at time

t ∈ T . The fact that yt ∈ arg min{c>y : y ∈ Y (xt)} is represented by its linear programming (LP)

optimality conditions via constraints (A-1c) (primal and dual feasibility) and (A-1d), (A-1e), and

(A-1f) (the linearized complementary slackness conditions). In these constraints, M θt , M pt , M yt ,

and M qt are diagonal matrices that are upper bounds on θt, f − F yt −Lxt, yt, and c + F>θt,

respectively. We refer the reader to Audet et al. (1997) for more details on single-level MIP

reformulations of bilevel problems with the lower-level problem given by an LP.

Variable wt is binary and takes the value of zero if c>yt = z∗, i.e., if the optimal semi-oracle

solution is used at time t, see constraint (A-1h). Here, Mw = (z∗−`)/z∗ and ` is a valid lower bound

on the value of c>y for any feasible y. Finally, constraint (A-1g) implies that a resource cannot be

used if it has not been revealed by the follower or if it is not in I0. In this constraint, A(i) is the set

of follower activities that i interferes with, i.e., A(i) = {a∈A : i∈ I(a)}, and Mxi = ui/`i, where ui

is an upper bound on the value of the i-th entry of any x ∈X, and `i is a strictly positive lower

bound on the value that any ya, a ∈A(i), can take whenever ya > 0. In general, the computation

of these lower bounds can be highly involved, but for specific applications they can be computed

rather efficiently from the problem’s data, see Section 6 for an example.

Although the MIP problem (A-1) can be solved directly for moderately sized instances, it might

require lengthy computational times due to the large number of variables and constraints, particu-

larly if T is large. It turns out, however, that this problem can be made somewhat less “dependent”

on the time horizon T by computing a time-stability upper bound, which is constructed by forcing

the follower to reveal an ‘optimal’ set of resources I∗ as soon as possible. Once this upper bound

T 0 is computed, MIP (A-1) is solved by truncating the time to T 0, which, as it will be seen, can

be bounded by the cardinality of I∗. Then, the optimal solution of the original MIP is obtained by

extending the truncated solution until time T .

Before proceeding, we introduce some additional notation. Let x∗ be an optimal solution of the

full-information problem, and let I∗ := {i∈ I : x∗i > 0} be the set of resources that x∗ uses. For any
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J ⊆ I∗ define x∗,J as x∗,Ji := x∗i if i ∈ J and zero otherwise, thus x∗,J is the restriction of x∗ to the

resources in J . In addition, for any y define (with a slight abuse of notation)

I(y) :=
⋃

a : ya>0

I(a)

i.e., I(y) is the set of resources that interfere with the activities that y performs.

The computation of the upper bound T 0 is based on the two following observations: (i) as soon

as the semi-oracle enforces the follower to reveal all the resources in I∗, then she can implement the

optimal solution x∗; (ii) if for a given J ⊂ I∗ the semi-oracle implements x∗,J , then the response

of the follower must reveal a new resource in I∗ \ J , or else the response yields the optimal value

z∗. While the proof of (i) is straightforward, the proof of (ii) is a consequence of the following:

Lemma 7. Let J ⊆ I∗ and yJ ∈ arg min{c>y : y ∈ Y (x∗,J)}. If I(yJ)∩ I∗ ⊆ J , then z∗ ≤ c>yJ .

Proof. We proceed to prove that yJ ∈ Y (x∗). Note that if this holds, then z∗ ≤ c>yJ by the

definition of z∗. Indeed, let d∈CF and note that∑
a∈A

Fday
J
a +

∑
i∈I∗

Ldix
∗
i =
∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i +

∑
i∈I∗\J

Ldix
∗
i

=
∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i +

∑
i∈K1

Ldix
∗
i +

∑
i∈K2

Ldix
∗
i , (A-2)

where in the last equation K1 = (I∗ \J)∩ I(yJ) and K2 = (I∗ \J)\ I(yJ). Our objective is to prove

that the expression in (A-2) is at most fd for all d∈CF ; from this the desired result follows.

First, suppose that d∈CF satisfies that
∑

a∈AFday
J
a = 0; then (A-2) is at most fd by Assumption

A4. Hence, suppose that d∈CF satisfies that
∑

a∈AFday
J
a 6= 0. Note that K1 = I∗∩(I \J)∩I(yJ) =

(I \J)∩ (I(yJ)∩ I∗) = ∅, because by hypothesis I(yJ)∩ I∗ ⊆ J ; therefore,
∑

i∈K1
Ldix

∗
i = 0. On the

other hand, suppose that i ∈K2. Then i 6∈ I(yJ) and, since
∑

a∈AFday
J
a 6= 0, it must be the case

that Ldi = 0. As this holds for any i∈K2, we have that
∑

i∈K2
Ldix

∗
i = 0.

From the above observations, it follows that if
∑

a∈AFday
J
a 6= 0 then∑

a∈A

Fday
J
a +

∑
i∈I∗

Ldix
∗
i =
∑
a∈A

Fday
J
a +

∑
i∈J

Ldix
∗
i ≤ fd,

where the inequality in the above expression is a consequence of the assumption that yJ ∈ Y (x∗,J).

Thus, (A-2) is at most fd for any d∈CF and hence yJ ∈ Y (x∗), as desired.

Supported by the observations above, Algorithm 1 outputs an initial feasible solution. It starts

by computing x∗ and z∗. At any time t it implements the solution x∗,J
t
, with J t = I∗ ∩ It. If the

follower’s solution at t yields a value less than z∗, then, per observation (ii), the semi-oracle can use

a new resource in I∗ at the next time period; otherwise, the solution implemented at t is optimal.
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The value of T 0 is set to be the first time that z∗ is equal to the follower’s cost. We note that T 0 is

upper-bounded by |I∗| since in at most |I∗| periods the semi-oracle discovers all the resources in I∗,

and once these resources are available, the solution of the semi-oracle is optimal, per observation

(i). The above considerations are formalized in Lemma 8.

Algorithm 1 Finding an initial feasible solution to (A-1).

Require: (D0,D), T

Compute x∗ and z∗

J0 = I0 ∩ I∗, y0 ∈ arg min{c>y : y ∈ Y (x∗,J
0
)}, z0 = c>y0, t= 0

while z∗ > zt and t≤ T do

J t+1 = J t ∪ (I(yt)∩ I∗)

yt+1 ∈ arg min{c>y : y ∈ Y (x∗,J
t+1

)}, zt+1 = c>yt+1, t= t+ 1

end while

if z∗ = zt then

T 0 = t, zs = z∗, x∗,J
s

= x∗, ys = yt for s= t+ 1, . . . , T

else

T 0 =∞

end if

return T 0, z∗, {(x∗,Jt , yt) : t∈ T }

Lemma 8. Let T 0 be as computed by Algorithm 1. Then, T 0 is an upper bound on the optimal

value of problem (A-1), and if |I∗ \ I0| ≤ T , then T 0 ≤ |I∗ \ I0|.

Proof. First, if the algorithm outputs T 0 =∞, the results holds trivially. Hence, suppose T 0 <∞.

In this case, it is readily checked that T 0 is an upper bound as the solution {(x∗,Jt , yt) : t ∈ T }

output by Algorithm 1 is feasible in (A-1) and yields an objective value of T 0.

On the other hand, suppose that |I∗ \ I0| ≤ T and let s ∈ T \ {0} be given such that z∗ > zr for

all r ≤ s. Because Js ⊆ I∗, ys ∈ arg min{c>y : y ∈ Y (x∗,J
s
)}, and zs = c>ys, Lemma 7 implies that

there exist i∈ I(ys)∩ I∗ such that i 6∈ Js. Henceforth, |Js+1 \Js| ≥ 1.

In order to arrive at a contradiction, suppose that T 0 > |I∗ \ I0|. This implies that if we let

t= |I∗ \ I0|, then z∗ > zs for all s≤ t, and,

|J t|= |J0|+
|I∗\I0|∑
s=1

|Js \Js−1| ≥ |J0|+ |I∗ \ I0|= |I∗ ∩ I0|+ |I∗ \ I0|= |I∗|. (A-3)
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where the inequality follows as |Js \ Js−1| ≥ 1 for all s≤ t. By construction, we have that J t ⊆ I∗

for any t, thus inequality (A-3) implies that J t = I∗, and hence, by observation (i) that zt = z∗;

which yields the desired contradiction.

By using Algorithm 1, an optimal solution of (A-1) can be readily computed via Algorithm 2.

The correctness of Algorithm 2 follows from noting that T 0 is an upper bound for the time-stability.

Hence, we have the following result, which we state without proof.

Proposition 7. Algorithm 2 correctly solves program (A-1).

Algorithm 2 Finding an optimal solution to (A-1)

Require: (D0,D), T

Compute (T 0, z∗,{(xt, yt) : t∈ T }) by calling Algorithm 1 using ((D0,D), T )

if T 0 ≤ T then

Solve program (A-1) until time T 0 passing {(xt, yt) : t= 0, . . . , T 0} as an initial feasible solution,

let τ ∗ be the objective value

else

Solve program (A-1) until time T passing {(xt, yt) : t= 0, . . . , T} as an initial feasible solution,

let τ ∗ be the objective value

if τ ∗ = T + 1 then

τ ∗ =∞

end if

end if

return τ ∗

A.3. Numerical Computation of Policies in Λ

Next we establish that xt,λ and zt,∗R can be computed by solving a mixed-integer linear problem.

Lemma 9. Let t ∈ T be given and suppose that for all x ∈Xt the problem ztR(x) has an optimal

solution. Then,

zt,∗R = max (gt)
>
p (A-4a)

s.t. Htx≤ht (A-4b)

(Gt)
>
p− y= 0 (A-4c)

F ty+Ltx≤ f t (A-4d)

Gtĉt ≤ gt (A-4e)
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− (F t)
>
q− ĉt ≤ 0 (A-4f)

q≤M qv1, f t−F ty−Ltx≤M q(1− v1) (A-4g)

p≤M pv2, gt−Gtĉt ≤M p(1− v2) (A-4h)

y≤M yv3, (F t)
>
q+ ĉt ≤M y(1− v3) (A-4i)

y ∈R|A
t|

+ , ĉt ∈R|A
t|, q ∈R|C

t
F |

+ (A-4j)

p∈R|C
t
U |

+ , x∈R|I
t|−kt

+ ×Zk
t

(A-4k)

v1 ∈ {0,1}|C
t
F |, v2 ∈ {0,1}|C

t
U |, v3 ∈ {0,1}|A

t|. (A-4l)

where in the above equations M q, M p, and M y are diagonal matrices whose elements are large

enough numbers. Specifically, if (x, q, p, y, ĉt) satisfies equations (A-4b)–(A-4f), then M q is such

that max{qd,f td−F t
dy−Lt

dx} ≤M q
dd for any given d∈Ct

F (M p and M y are defined analogously).

Moreover, xt,λ can be computed as xt,λ = x̃ where (x̃, q̃, p̃, ỹ, c̃) is an optimal solution of the pro-

gram (A-4a)–(A-4l).

Proof. The optimization problem max{ztR(x) : x∈Xt} can be written as

max
{

min
{
y0 : (ĉt)

>
y≤ y0 ∀ĉt ∈ U t, −F ty≥Ltx−f t, y ∈R|A

t|
+ , y0 ∈R

}
: x∈Xt

}
. (A-5)

Recall that U t = {ĉt : Gtĉt ≤ gt}. The vector y satisfies the robust constraint (ĉt)
>
y ≤ y0 ∀ĉt ∈ U t

if and only if there exist p∈R|C
t
U |

+ such that

(gt)
>
p≤ y0 and (Gt)

>
p= y

(see, e.g., Ben-Tal et al. (2009)). Moreover, due to the objective function and to the fact that there

are no other constraints on y0, it follows that problem (A-5) is equivalent to

max
x∈Xt

{
min

{
(gt)

>
p : − y+ (Gt)

>
p= 0, −F ty≥Ltx−f t, y ∈R|A

t|
+ , p∈R|C

t
U |

+

}
: x∈Xt

}
. (A-6)

Since for any x ∈Xt it is assumed that ztR(x) has an optimal solution, any optimal solution y

of the inner minimization problem satisfies its Karush-Kuhn-Tucker (KKT) optimality conditions

(and vice-versa). Hence, replacing the minimization problem by the KKT conditions yields

max
x∈Xt

(gt)
>
p (A-7a)

s.t. − y+ (Gt)
>
p= 0 (A-7b)

−F ty≥Ltx−f t (A-7c)

− (F t)
>
q− ĉt ≤ 0 (A-7d)

Gtĉt ≤ gt (A-7e)
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(f t−F t−Ltx)>q= 0 (A-7f)

(gt−Gtĉt)>p= 0 (A-7g)

((F t)
>
q+ ĉt)>y= 0 (A-7h)

y ∈R|A
t|

+ , q ∈R|C
t
F |

+ , p∈R|C
t
U |

+ , ĉt ∈R|A
t|. (A-7i)

Observe that problem (A-7) is a non-linear mixed-integer problem (due to the non-linear comple-

mentary slackness constraints). However, it can be linearized by introducing 0-1 variables. Indeed,

q, y and x satisfy the constraint (f t−F t−Ltx)>q= 0 if and only if there exists v1 ∈ {0,1}|CtF | such

that (see, e.g., Audet et al. (1997)) q ≤M qv1 and f −F ty−Ltx≤M q(1− v1). A similar equiv-

alence exists between the other two set of complementary slackness constraints in problem (A-7).

We note that whenever the leader’s variables are all discrete, then zt,∗R and xt,λ can be computed

using a different MILP. In this case, the transformation of problem (A-6) into a one-level problem

involves using the strong duality optimality conditions, and then linearizing any resulting nonlinear

product. We use this approach for the numerical experiments in Section 6 as it yields shorter

solution times; details can be found in Zare et al. (2017).


