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ABSTRACT
We model a market for a single product that may be com-
posed of sub-products that face horizontal and vertical com-
petition. Each firm, offering all or some portion of the prod-
uct, adopts a price function proportional to its costs by de-
ciding on the size of a markup. Customers then choose a set
of providers that offers the lowest total cost. We character-
ize equilibria of the two-stage game and study the efficiency
resulting from the competitive structure of the market.

Categories and Subject Descriptors
J.4 [Social And Behavioral Sciences]: Economics—non-
cooperative games, oligopoly, bundling, supply function equi-
librium

1. INTRODUCTION
Classical models of competition, through either prices or

production quantities, have focused predominantly on mar-
kets of a single good. In this setting, producers of sub-
stitutes, either perfect or imperfect, compete horizontally
for the same pool of customers. Recently, there has been
increasing recognition that in some industries competition
among customers has a significant combinatorial component,
beyond the scope of traditional single-market models. In
such industries, producers whose goods may be purchased
in combination compete vertically. In this paper, we study
a framework where each producer chooses a price schedule,
having in mind both the actions of vertical and horizontal
competitors. Each producer sets its pricing schedule accord-
ing to a price function that is specified as a constant percent-
age markup over per-unit production costs. Producers set
the pricing schedule for individual products and customers
choose a bundle of products at minimum price. Customers
are interested in bundles composed of products given by any
path of a series-parallel network. Producers on parallel links
compete horizontally, while connections in series represent
vertical relationships. Our model allows for many infinites-
imal customers, or a single, centralized buyer. The latter
case applies to a monopsony where a single buyer purchases
components from multiple producers. In this setting, price
schedules can be cast as contracts that depend on quantities.
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Industries with this structure include those where a phys-
ical or geographic network is explicitly present, as in the
airline industry, as well as those where a network structure
is defined implicitly by the available bundles. To offer an ex-
ample of the latter, consider a computer consisting of a CPU,
keyboard and monitor. Buyers either create their computer
by selecting the parts separately from a set of providers in
each category, or by selecting an integrated model.

There is a large literature concerning centralized pricing,
and a more recent body of work on price competition by
decentralized firms. See, e.g., [2, 8, 7, 9, 1] for the case of
substitutes, or [3, 12] for more general market structures.
The growing literature on competition in networks has been
motivated largely by applications involving a physical net-
work. The focus has been the role of prices in guiding users
towards efficient paths through the network. A feature of
physical networks is often that customers experience costs
due to congestion, with the effects increasing in the num-
ber of customers sharing a path. Our model is more in line
with traditional models of competition in that customers
experience no costs outside of the price that is paid to the
producer. However, producers themselves experience costs
that are marginally increasing, and pass this cost structure
on to the customers through their price schedules. In this
way, demand is encouraged to spread across multiple paths
as in a network with congestion. Marginally-increasing unit
costs are a common assumption in industries where capacity
is constrained or costly to increase in the short term.

Supply function equilibria, popularized by the work of
[10], represent a generalization of Cournot and Bertrand
models of competition. In each of these cases, producers
commit to either prices or production quantities before ob-
serving their competitors’ choices, leaving only one of these
as a possible lever for responding to the market. In the
case of supply function equilibria, producers choose a func-
tion relating the price to the quantity produced (i.e., the
inverse of the price function). Then, after all such functions
have been chosen, the firms can adjust to the market con-
ditions by choosing a point along this supply function. In
equilibrium, each producer sells according to a single quan-
tity/price combination, selected from its supply function so
that the market clears. In this way, supply function equilib-
ria model the common scenario where both price and quan-
tity are adjusted in response to the market conditions. The
paper [10] shows that, in the case of a duopoly, competition
in supply functions leads to equilibrium prices and quantities
intermediate between those of Bertrand and Cournot com-



petition. In related research, [5] analyzes mergers of firms
with quadratic cost functions in a market of substitutes us-
ing the framework of [10]. For a market of substitutes with a
deterministic demand and nonlinear cost functions, [7] iden-
tifies an equilibrium where price functions have the same
structure as cost functions and study their properties, par-
ticularly the efficiency of the resulting market.

The model we study assumes that all producers face a
quadratic cost function, so that marginal costs are linearly
increasing. We allow for heterogeneity among producers
by applying an efficiency parameter that scales each cost
function according to the specifics of the firm’s production
technology. Producers are assumed to select a price func-
tion that maintains the same shape as their cost function
so that the per-unit price charged by each producer is a lin-
ear function of the quantity produced. This simplifies each
producer’s decision to a single parameter, which we call its
markup. We refer to supply function equilibria where each
firm is restricted to playing a markup over its cost function
as markup equilibria. To motivate the restriction to markup
equilibria, we show that even when producers may choose
any non-decreasing price function, any markup equilibrium
remains an equilibrium in the unrestricted game. This gen-
eralizes a result of [7] for the case of substitutes. In addition,
[10] considers the game with general supply functions in the
symmetric duopoly case, and shows that of the many equi-
libria existing when demand is deterministic, uncertainty
eliminates all but the unique markup equilibrium.

As indicated, our model applies to general series-parallel
networks. The network is assumed to have a single source s
and sink t, and the possible bundles are represented by all
paths connecting s and t. Hence, these bundles may be
supplied by various combinations of producers. All bundles
are assumed to be perfect substitutes, so that customers
choose only on price, selecting the cheapest path through the
network. Demand is deterministic and initially considered
to be fixed, although an extension to the case of an elastic
linear demand function is discussed. Once the producers
have selected their price functions, customers make buying
decisions choosing the cheapest bundle. As price functions
are increasing, the price of each bundle increases with the
number of customers purchasing, and so each customer’s
preferred bundle is dependent on the consumption choices of
all other customers. Thus, the allocation itself is modeled as
a game played amongst the customers where, at equilibrium,
all bundles will sell for the same price.

In this paper, we fully analyze the two-stage game in
which producers select price functions in the first stage, fol-
lowed by the allocation game in the second stage. To our
knowledge, we are the first to address equilibria of supply
function games in a market with both substitutes and com-
plements. We show that equilibria can be computed, and
present examples of markup equilibria, focusing in particu-
lar on instances where the effects of a change in the market
structure differ qualitatively from what a localized, single-
market model would predict. We present a necessary and
sufficient condition for the existence of equilibria, and show
that the equilibrium is unique when it exists. For a fixed, in-
elastic demand, an equilibrium exists only in networks that
are 3-edge-connected (see e.g., [4] for background on graph
connectivity). Notice that this condition depends entirely on
the topology of the network, and is independent of the cost
parameters. For a network of substitutes, this is equivalent

to requiring at least 3 producers to compete in the market
[7]. Surprisingly, this matches results of existence of equi-
libria in related models [11, 8]. For general series-parallel
networks, this condition rules out the case in which two pro-
ducers within a bundle act as “monopolies” in that no other
firm can replace them in that bundle. A similar problem was
discussed in the network competition model of [3], and both
scenarios are reminiscent of double marginalization, which is
widely recognized as a source of inefficiency. When demand
is elastic, the outside option provides sufficient horizontal
competition, but a weaker existence condition is still needed
to address the potential for vertical instability.

The best-response functions of producers have a highly in-
tuitive structure: the per-unit price equals the per-unit cost
plus a markup whose functional expression depends only on
the markups of everybody else. We present its closed-form
description, highlighting the fact that a producer’s markup
decreases with the introduction of horizontal competitors
and increases with the introduction of vertical competitors.
Further study of the comparative statics of equilibria shows
that the relationship of a producer’s market share and profits
to the efficiency of its vertical competitors is more complex.
Inefficiencies in markets for complementary items allow a
producer to extract higher markups while simultaneously
reducing the producer’s market share. The net effect would
be difficult to predict without an equilibrium model that
includes vertical competitors.

For games with inelastic demand, we study the efficiency-
loss at equilibrium. To that effect, the production cost at
equilibrium is compared to the cost when customers are allo-
cated optimally with respect to real production costs. In the
two-stage game, the loss of efficiency results from the fact
that markups distort the cost structure, leading customers
to purchase less from those producers with high markups
than they would in an optimum allocation. We show that
when there is a sufficient level of competition, markups are
bounded, and so the resulting allocation is not too ineffi-
cient. In contrast to the single-market model, where the
addition of competitors increases efficiency, the addition of
vertical competitors increases markups and can lead to in-
efficiency.

2. MODEL AND GAME STRUCTURE
We model a market for complementary goods by consid-

ering demand for a single good that we will call a bundle.
Customers face multiple options for purchasing a bundle,
and while each is equivalent in the eyes of the customer,
they may be the result of production from a number of sep-
arate producers, each selling some portion of the good. We
recognize that there need not be any single definitive way to
divvy up production of a bundle, and so our model is gen-
eral enough to allow each purchase option to be subdivided
among any number of producers. Furthermore, each sub-
division defines a production niche that multiple producers
may compete to fill. Finally, among the various options for
filling any particular niche, we consider that each may be
further subdivided in some fashion and split among more
specialized producers.

In general, we look at markets that takes a series-parallel
(SP) structure. The class of SP networks are exactly those
that can be constructed recursively through link subdivi-
sions in series and in parallel. That is, through repeated ap-
plication of the operations DivS(·) and DivP(·), pictured
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Figure 1: Operations defining an SP network.

in Figure 1. DivS(a) subdivides a link a into two links,
connected in series, with a newly created node joining the
head of a′ and tail of a′′. DivP(a) subdivides a link a into
two links, a′ and a′′, each connecting the same two nodes as
the original link a. Seeing as we do not limit the number or
arrangement of subdivisions, SP networks provide a great
deal of generality.

We model the set of available purchase combinations as
paths from the source s to the sink t of an SP network, G,
comprising a set of links AG = {1, . . . , n}. Each link a ∈ AG

represents a producer, and each path through G a bundle
that customers may purchase. Thus, denoting the set of
available bundles by B := {B1 . . . Bm}, we say for producer
a ∈ AG, that a ∈ Bi if link a appears along path Bi in the
network representation. In this way, the network defines a
mapping of producers to purchase bundles. Each customer
chooses a complete bundle, so that

∑m

i=1 fi = 1 where fi

is the proportion of customers choosing bundle Bi. Then,
the proportion of demand produced by producer a, is equal
to xa =

∑

Bi∋a fi. Because we interpret fi and xa as pro-
portions, the total demand is normalized to one unit. We
assume that individual customers are small so that demand
is divisible among them, and each acts as a price taker. Al-
though the discussion is for the case of inelastic demand,
most results extend to the elastic case (see Section 3.1.1).

The per-unit production cost for each producer a ∈ AG is
a function ua := R+ → R+ that depends on the production
level xa. We assume that all producers make use of similar
‘technology’ but some are more efficient than others. This
is modeled by a cost function of the form ua(xa) := cau(xa)
where the function u(xa) is an indication of the industry’s
unit cost for production level xa, and the parameter ca mea-
sures the efficiency of producer a ∈ AG. This paper as-
sumes that per-unit costs are linear, i.e., u(x) = x (see Sec-
tion 2.2.1). More generally, the model may assume that u
is increasing, differentiable, and bijective (i.e., evaluates to
zero at zero and grows to infinity). Furthermore, xu(x) is
convex; in other words, industries face increasing marginal
production costs, which is the case, e.g., when labor or
production capacity is scarce or when there is congestion.
Putting all the elements together, the total cost to producer
a of producing xa units is κa(xa) := xaua(xa) = caxau(xa),
which is quadratic in this paper, and convex in general.

We consider a two stage game, where producers deter-
mine a pricing structure in the first stage, and customers
choose a bundle of producers to purchase from in the second
stage. In the first stage, producers commit to a price func-
tion pa(xa) specifying the per-unit price to be charged at a
specific level of production. Thus, both prices and produc-
tion quantities are determined in the second stage, where
the market clears. We assume that the price of a bundle
is additive so that a customer purchasing bundle Bi pays
a total of

∑

a∈Bi
pa(xa). Note that in the case of comple-

mentary items produced by the same producer, we would

model purchase of both items by a single link. Thus, we
are assuming additive pricing here only in the case of items
purchased from competing producers. A critical feature of
this structure is that the price a customer pays for a unit of
production from producer a, depends on the total quantity
that producer a produces, which itself is dependent on the
consumption choices of all customers. This gives the second
stage its interpretation as a game between customers.

We simplify the first-stage game by restricting the set
of price functions a firm may choose. We consider only
markups, in the sense that the producer a’s price function
pa(xa) = αaua(xa) for some positive factor αa ≥ 1 that
is chosen by the producer. We interpret αa as a markup,
due to the fact that αa represents the ratio of price to pro-
duction cost for producer a. This model is consistent with
cost-plus pricing policies that are often employed in prac-
tice. Within this framework, the shape of all price functions
is determined exogenously through the cost structure, and
producers compete by selecting a single a parameter. This
is not as restrictive an assumption as it may seem. Even in
the setting where producers may choose any non-decreasing
price-function, it can be shown that while there are in gen-
eral many equilibria for the game, at any equilibrium in
price-functions it is a best response to play a price function
that is a markup of the producer’s cost function. This ro-
bustness result was shown for a network of parallel links in
[7]. The full paper presents an extension to the setting of
SP networks. By exogenously setting the shape of all price
functions as we have, we allow each to be described com-
pletely by a single price multiplier wa := caαa. The actual
unit price for product a is then given by wau(xa).

We seek to analyze the assignment of demand to specific
producers. An assignment is described through either con-

sumption decisions, using the vector ~f ∈ R
m, or through

production quantities, as represented by the vector ~x ∈ R
n.

The heterogeneity in our problem is across producers only,
and so we will be primarily concerned with the production
assignment ~x. Note that for a given assignment ~x, there
may be multiple consumption allocations that give rise to
~x. In particular, when we discuss uniqueness of an optimal
or equilibrium production assignment, this need not imply
uniqueness of the consumption assignment. We denote the
set of possible production-consumption pairs by

F :=
{

(~x, ~f) ∈ R
(n+m)
+ :

m
∑

i=1

fi = 1, xa =
∑

Bi∋a

fi ∀a ∈ AG

}

.

We say that a production allocation ~x is feasible if there

exists a consumption assignment ~f ∈R
m
+ such that (~x, ~f)∈F .

2.1 Submarket Structure
We now define the concept of a submarket. It will be help-

ful to introduce the composition operations S(·) and P(·),
each of which takes as input a set G of SP networks, and
returns a single SP network. In the case of S(G), the input
networks are composed in series with the sink of one net-
work doubling as the source node of the next. In the case of
P(G), the input networks are composed in parallel so that
all share a common source and sink.

As our market connects the source and sink nodes of an
SP network, so a submarket is defined by a subnetwork con-
necting two nodes of G. Formally, a submarket g is a con-
nected subnetwork of G, with two terminal nodes, a source



Figure 2: Example of a submarket (g1), and a net-
work that is not a submarket (g2).

and sink, chosen from among the nodes in G, and the prop-
erty that for any non-terminal node in g, all incident links
are included in g as well. See Figure 2 for an example. The
submarket g is self-contained in that it defines a product
offering such that the output of any producer within g can
be purchased only as part of that larger offering. The full
market G is a submarket, as is any individual producer a.
The flow into the source node of g represents the demand
for the product this submarket produces. Were this quan-
tity fixed, then competition on g would fit the form of our
general model. As it is, a submarket strictly smaller than G
faces an elastic demand, decreasing in the price of its offer-
ing. The price-sensitivity of this demand is determined by
the price functions chosen by producers in AG \Ag.

The SP structure of G dictates that submarkets are ar-
ranged in a nested fashion. Each submarket g can be charac-
terized as either a series submarket, indicating that g = S(G)
for some set G of submarkets, or a parallel submarket, com-
posed as g = P(G). We can give the set G of component
markets comprising g an explicit name, denoting this set
by ψ(g). To avoid ambiguity, we require when g is a series
submarket that all elements of ψ(g) be parallel submarkets,
and vice versa, so that ψ(g) represents the largest (by car-
dinality) set of submarkets from which g can be formed in
a single composition. In defining ψ(·), we have implicitly
defined a tree structure that captures all submarkets; see
Figure 3 for an example. Beginning with G as the root, ψ(·)
determines a set of successors for each node. Every sub-
market appears as a node in this tree representation, with
each producer a ∈ AG appearing as a leaf node. By conven-
tion, we will think of individual producers as series (parallel)
submarkets, when their predecessor is parallel (series).

For an arbitrary vector ~v ∈ R
n defined on the full set of

producers, we use the notation ~vA for the vector restricted
to some set A ⊆ AG. When g is an SP network representing
some market, we abuse notation by referring directly to ~vg ,
with the understanding that this vector contains values for
producers in Ag. In this respect, for two markets g and g′,
we have g′ ⊆ g if Ag′ ⊆ Ag, and g \ g′ denotes the set of

S

Figure 3: The network and submarket representa-
tions of a market G.

producers contained in Ag, but not in Ag′ .

2.2 Optimal and Equilibrium Assignments
To quantify the quality of an assignment, we consider the

total production cost C(~x) :=
∑

a∈A caxau(xa) as a social
cost function. This function captures whether customers
are matched to the producers that are most efficient. Notice
that payments are not considered in this function because
they are internal transfers. The socially optimal assignment
xOPT is the unique production assignment minimizing C(~x).
In other words,

(xOPT, fOPT) := arg min(~x,~f)

{

C(~x) : (~x, ~f) ∈ F
}

. (1)

The production assignment is unique because u(·) is such
that xau(xa) is convex for all a ∈ AG.

An equilibrium for producers is a vector of markups ~α
that maximize the profits of all producers simultaneously,
and an equilibrium for customers is an assignment fNE such
that all customers are buying at minimal price. These two
games are played sequentially, making it a Stackelberg game.
It will be convenient to think of the producers as setting
price multipliers, leaving markups defined implicitly. So,
in the markup game, producers first choose ~w, followed by
a second stage in which customers determine fNE(~w), and
consequently determine a production assignment xNE(~w) as
well. For a fixed ~w, producer a realizes profits

πa(~w) := (wa − ca)(xNE
a (~w))u(xNE

a (~w)). (2)

The equilibrium conditions imply that a tuple (~w, xNE
a (~w))

representing the two stages is at equilibrium if and only if

wa ∈ Φa(~w−a) := argmax
w≥0

{πa(w, ~w−a)} for all a ∈ AG (3)

where Φa(·) is the best response function of producer a to
the price multipliers of all other producers, denoted by ~w−a.
Here, the second stage assignment (xNE(~w), fNE(~w)) ∈ F is
defined for an arbitrary vector ~w and satisfies the condition

∑

a∈Bi
wau(x

NE
a (~w)) ≤

∑

b∈Bj
wbu(x

NE
b (~w)) (4)

for all Bi, Bj ∈ B such that fNE
i (~w) > 0. The above inequal-

ity says that in any equilibrium of the second-stage game,
all bundles sell, if at all, at a single minimal price.

The uniqueness of ~w is established later, but at this point
it is clear that xNE

a (~w) is unique for any ~w because the func-
tion u(·) is strictly increasing [6]. Notice that price distor-
tions driven by producers with market power, as well as
potential negative externalities in the second stage, make
it such that the markups ~w may not give rise to the most
efficient equilibrium assignment. Rather, it is likely that
C(xNE(~w)) > C(xOPT).

2.2.1 Linear Unit Cost Functions
We now specialize to the case of quadratic cost functions,

which we generate by considering u(x) = x. Hence the total
cost for producer a has the form κa(xa) = cax

2
a. This as-

sumption will remain in force throughout. From a technical
point of view, this assumption allows us to explicitly char-
acterize the optimal assignment and the unique assignment
corresponding to a given vector of markups. Indeed, in this
situation C(~x) is a convex function and the absence of any
fixed costs ensures that all producers are active under both
assignments. Furthermore, the restriction to linear unit



costs is sufficient to ensure that customers are efficient in the
sense that for fixed ~w, xNE(~w) minimizes

∑

a∈A xawau(xa).
Thus, their behavior in the game is consistent with that of a
centralized buyer with the ability to split consumption op-
timally among the bundles. In this case, our model can be
viewed as a demand-dependent contract between producers
and a monopsonistic buyer.

Seeing as customers behave efficiently, any inefficiency in
the assignment is the result of distortion of the true cost
functions due to producer markups. It follows that when
markups are not distortionary, the equilibrium assignment
will match the socially optimal assignment.

Theorem 1. The unique socially optimal assignment xOPT

is equal to xNE(~c).

Thus, the optimal assignment matches the second stage equi-
librium that results when producers charge their actual costs
without markup. In the next section, we characterize the
second-stage equilibrium assignment for any fixed set of price
functions, which will include the optimal assignment as a
special case.

2.3 Assignment Game
In this section we present a precise functional form of the

second-stage assignment xNE(~w), where ~w is a fixed vector
of price multipliers. To start, we introduce the network price
multiplier Rg(~wg), which generalizes wa to a submarket g.
When a demand of xg is assigned to g according to (4), the
market price for a bundle is Rg(~wg)xg. As ~w is fixed prior to
the assignment game, we use the notation Rg with the un-
derstanding that the multiplier reflects the combined effects
of a set of price functions selected by individual producers
in the first-stage game. Since demand for market G is nor-
malized to one unit, RG is also the equilibrium price of a
bundle under ~w.

For an individual producer, Ra = wa. For a larger sub-
market g, Rg depends ultimately on the proportions in which
customers choose from among the bundles in g. A full char-
acterization is obtained inductively by:1

RS(G) =
∑

g∈G Rg, and RP (G) = (
∑

g∈G 1/Rg)−1. (5)

which follow since customers allocate to parallel submarkets
in inverse proportion to their price multipliers.

We say that a producer a spans the market if link a con-
nects s and t directly. In this case, all other bundles are
substitutes for a, and xa is increasing in the multipliers of
all competitors. If, on the other hand, producer a faces
vertical competition, the residual demand for product a is
shifted downwards as the markups on complementary items
increase.

We now express xa in terms of aggregate measures of the
horizontal and vertical competition faced by a. Our ap-
proach is to redefine the market by pivoting G so that the
nodes incident to a become the source and sink. In this
reformulation, denoted G ⊙ a, a spans the market and all
competition with a is horizontal. To interpret, the market
spanned by a is one in which all customers come to market
in possession of a bundle that is perfectly complementary to

1Equation (5) matches that used for electrical circuits to
compute the equivalent resistance when placing resistors in
series and parallel. Ohm’s law, Voltage = Current · Resis-
tance, is analogous to the price function pa = xaRa.

(a) Producer a has a monopoly.

(b) Producer a faces only horizontal competition.

(c) Producer a compites horizontally and vertically.
Links in g1 are reversed to form G⊖ a.

Figure 4: The producer’s substitute network G⊖ a.

a. To complete their bundle, customers may purchase from
a or one of its direct competitors. In addition, there is the
option to ‘sell back’ the complementary items and purchase
a new bundle. Any such action can be represented as a path
through G⊙a. In the course of pivoting G, any complemen-
tary links to a; i.e., those on a path from s to a or a to t,
are reversed in direction to reflect that these products are
sold back to producers at the prevailing market price. Any
combination of sales/purchases that forms a path through
the pivoted network will leave the customer with a complete
bundle, and is in effect a perfect substitute to a. Accord-
ingly, we call the network created by removing a from G⊙a,
the substitute network for producer a. The substitute net-
work is denoted by G ⊖ a, and its construction is demon-
strated in Figure 4. The example in (c) contains vertical
competition and so requires pivoting. The total demand in
the reformulated game is subject to an adjustment factor for
the amount of vertical, rather than horizontal, competition
that is faced by producer a. The scaling factor µa(~w−a) is
the demand for producer a when wa is equal to zero. When a
faces vertical competition, this will be strictly less than one,
and decreasing in the markups demanded for complements
of a. In general, the factor µa(~w−a) may be increasing, de-
creasing, or unaffected by wb, depending on whether b is
largely a substitute or a complement of a. Since ~w is fixed
we suppress the dependency and will use the notation µa.

The uniqueness of the niche that producer a fills will de-
termine the multitude of paths in G ⊖ a, and play a key
role in determining market power. A measure of this is R⊖a

defined for G⊖a according to (5). If producer a is a monop-
olist, then G ⊖ a is empty, indicating that customers have
no choice but to purchase from a. Since there is no price
at which a substitute can be purchased, we say R⊖a = ∞
in this case. In general, R⊖a measures the market power of
producer a in equilibrium, with a higher multiplier indicat-
ing a relative absence of attractive alternatives to producer
a. In Proposition 1 we show that R⊖a in fact determines
the slope of producer a’s residual demand with respect to
its markup, αa.

Proposition 1. For any SP network with price functions
fixed according to ~w, and for any link a, the equilibrium



assignment xNE(~w) takes the form

xNE

a (~w) = µa

(

R⊖a

R⊖a + wa

)

. (6)

By describing the assignment as in (6), we can in turn de-
scribe the total production costs as a function of the markups.
According to Proposition 1

C(xNE(~w)) =
∑

a∈AG

ca

[

µa

(

R⊖a

R⊖a + wa

)]2

. (7)

From Theorem 1, we know that xOPT is precisely xNE(~c).
Recalling thatR(~w) is the price of any bundle in equilibrium,
the optimal production cost is

C(xOPT) =
∑

i:Bi∈B fi(RG|~w=~c) = RG|~w=~c . (8)

For an arbitrary equilibrium assignment, the total payment

by customers is RG =
∑

a∈AG
wa

[

xNE
a (~w)

]2
. In general,

it is not the case that C(xNE(~w)) = RG, since some por-
tion of these payments is kept by the producers as profit.
To study efficiency of an assignment xNE(~w), we compare
the cost C(xNE(~w)) to C(xOPT). Ultimately, the degree of
inefficiency will depend on ~α, which is the outcome of the
strategic choices taken by producers in the first-stage game.

The size of producer a’s markup in the first stage will
depend on its market power, as made explicit here.

Proposition 2. In the first-stage game, the best response
function for any producer a satisfies

Φa(~w−a) = 2ca +R⊖a . (9)

In terms of R⊖a, the per-unit price that producer a will
charge in equilibrium is pa(xa) = waxa = 2caxa + R⊖axa.
Producer a’s costs are given by κ(xa) = cax

2
a, yielding a

marginal cost of ∂κ(xa)/∂xa = 2caxa. Thus, equilibrium
prices can be interpreted intuitively to consist of marginal
costs of production, plus a markup of R⊖axa. Furthermore,
using R⊖a as a measure of market power, the markup that
can be extracted is directly related to the level of compe-
tition faced. As the competition faced by producer a in-
creases, R⊖a will decrease. In the extreme case, where R⊖a

grows small, the price will approach the marginal cost, in
accordance with the interpretation as a competitive mar-
ket. If R⊖a grows small for all producers, then the markup
vector approaches 2~c, so that the equilibrium assignment ap-
proaches xOPT. That is, perfectly competitive markets are
efficient.

2.3.1 Submarket Price Functions
The result of Proposition 1 will extend to any submarket

g, with Rg in place of wa. The substitute network G ⊖ g
for any submarket g is defined analogously to G ⊖ a. Fur-
thermore, we can consider alternatives to g within a larger
submarket g′, by constructing the graph g′⊖g, and assigning
the price multiplier Rg′⊖g to this market. For convenience,
when the outer submarket in this construction is the full
market G, we use the shorthand notation R⊖g, leaving the
specification of G as an implicit assumption.

Once price multipliers have been fixed, a submarket g
is equivalent to a single producer with a price function of
pg(xg) = Rgxg. We can also define the aggregate choice
of Rg by a submarket response function φg(R⊖g), reflect-
ing the interaction of producers in g, although this need not

take the form of (9). We show that this is indeed a single-
valued function. Existence of the underlying equilibrium is
explored in the next section.

For the case of a single producer a, Φa(~w−a) = φa(R⊖a) =
2ca +R⊖a, so that φg(·) generalizes the best response func-
tion Φa(·) while making the dependence on the substitute
network explicit in the definition. Accordingly, a markup
equilibrium ~w satisfies wa = φa(R⊖a) for all producers a.

3. EQUILIBRIUM OF MARKUP GAME
Each producer selects wa to satisfy the best-response map

Φa(~w−a) = 2ca + R⊖a. A Nash equilibrium of the markup
game is a vector ~w satisfying wa = Φa(~w−a) for all a ∈ AG.
It is clear from (5) that R⊖a(·) is a continuous function,
and so Φa(·) is continuous and single-valued. Combining
the producers’ individual best response functions yields a
continuous vector-valued function Φ(~w) whose fixed points,
if any exist, correspond to equilibrium markups. If the im-
age of Φ(·) over the domain ~w ∈ R

n
+ is contained within

X =
∏

a∈AG
Xa with Xa ⊂ [2ca,∞), we can, without loss

of generality, define markup equilibria as fixed points of the
function Φ̃ : X → X where Φ̃a(~w) := Φa(~w−a). Making use
of Brouwer’s fixed point theorem, a sufficient condition for
existence of a fixed point of Φ̃(·) is compactness of X. If
producer markups are bounded so that wa ≤ w̄ <∞ for all
producers, then we define Xa by the compact set [2ca, w̄],
and apply the fixed point theorem. We proceed in this sec-
tion by deriving conditions which guarantee the existence of
w̄. Essentially, an equilibrium requires sufficient competitive
pressure to prevent any producer from continually increasing
the size of their markup.

3.1 Competition and Graph Connectedness
In this section, we explore the existence of an upper bound

on ~w in a market with inelastic demand. We will see that
the critical property in establishing a bound is the degree of
connectedness of the network structure. A set of links whose
removal disconnects the graph is a cut. A graph is k-edge-
connected if there are no cuts containing less than k links
[4]. For example, Figure 5 shows a 2-connected network.

The intuition for studying connectedness was provided in
Section 2.3, where we noted that a producer’s market power
is directly related to the uniqueness of the producer’s niche,
which is reflected in the number (and ultimately, price) of
alternative paths available for joining the nodes that the
producer connects in G. The connectedness of the graph
indicates the smallest set of producers such that one must
be used in any path connecting some pair of nodes in the
network. A high degree of connectedness should translate to
some bound on the market power of any individual producer.
In this section we formalize this idea.

For a submarket g, the connectedness Q(g) is the largest k
for which g is k-edge-connected. A directed cut is one that

Figure 5: A 2-connected network. Producers a and
b make up a cut.



divides the graph so that the source and sink are discon-
nected. A cut that does not separate the source and sink is
a vertical cut in that the producers in the cut belong to some
common bundle and compete vertically. If Q(g) = k, then
there can be neither any directed cuts, nor any vertical cuts,
that contain less than k links. As such, link directions play
no role in determining Q(g). Redefining connectedness in
terms of vertical cuts alone gives the vertical connectedness
V (g). In general, composing g with producers in parallel
can increase Q(g), but V (g) provides an upper bound on
the connectedness of any market within which g is nested.

It is clear from the response functions that in the case of a
duopoly, the combined sensitivity of the producers leads to
an infinitely increasing sequence of markups. This applies as
well to any network with Q(G) < 3. Although G is directed,
instability can result from both directed and vertical cuts.
Essentially, stability requires that the substitute network for
any producer is 2-connected in its directed form. The cause
of instability in any case where G⊖ a is not 2-connected is
similar to that of the duopoly case, where G ⊖ a consists
of a single link for either producer. In the general case, it
is producer a and the producer that disconnects G⊖ a that
combine to drive the instability. We will show that when the
graph is 3-connected, there is enough competition to ensure
that markups are bounded.

Theorem 2. A markup equilibrium exists iff the network
is 3-edge-connected.

By bounding ~w, we restrict the image of Φ̃(~w) to a com-
pact set, assuring the existence of a markup equilibrium. We
observe further that Φa(~w−a) is increasing in wb for all b 6= a.

As a result, any sequence {~wτ} with ~wτ = Φ̃(~wτ−1) will
be increasing element-wise. Starting at ~w0 with w0

a = 2ca
for all a ∈ AG, we generate a sequence of markups that
must converge to a markup equilibrium. Applying iterated
best responses, we are able to compute the unique markup
equilibrium in this way for any game that satisfies the 3-
connectedness condition.

Corollary 1. If a markup equilibrium exists, it can be
approximated by iterating best responses.

At an equilibrium, ~w, we have φa(R⊖a)/R⊖a = wa/R⊖a =
wa/φG⊖a(wa). In Theorem 3, we show that the first and
last ratios in the equality are monotonically decreasing and
increasing in R⊖a, respectively. This ensures that an equi-
librium can exist for at most one value of R⊖a, and so for
at most one value of wa.

Theorem 3. If a Nash equilibrium, ~wNE, exists in the
markup game, then it is a unique equilibrium.

3.1.1 Extension to Elastic Demand
The network multiplier RG is itself the result of a response

function φG(·) whose argument is set exogenously, and re-
flects the price multiplier of an option outside of the mar-
ket. To this point, by assuming that no alternatives to G
exist, we have used implicitly that R⊖G = ∞. By choosing
R⊖G < ∞ we allow for an elastic demand. The price of an
outside alternative, g0, and by extension the willingness to
pay for market G, can be defined by a fixed multiplier R⊖G

applied to the function u(1 − xG) where xG is the demand
assigned to market G. With linear unit costs, the demand

takes the form pG = R⊖G(1 − xG), or xG = 1 − pG/R⊖G,
yielding a model of linear demand and quadratic total costs.

Here we extend Theorem 2 to a market with elastic de-
mand. In network form, the elastic demand model includes
an outside option, spanning the entire market, with a fixed
markup. Adding an outside option does not introduce any
instability in markups, but may provide enough competition
that markups are bounded for a market structure that does
not yield an equilibrium with inelastic demand. The con-
ditions for existence are thus weaker than in the inelastic
case.

Corollary 2. For a market G with elastic demand, de-
fine G+ as P(G, g0), where the outside option g0 consists
of two parallel links. A markup equilibrium exists iff G+ is
3-edge connected.

The corollary includes the possibility that an equilibrium
does not exist, even in an elastic demand market. The out-
side option provides stability when there is a shortage of
purchase options, as with a monopoly or duopoly, by as-
signing some value to not purchasing. If there is a lack of
competition vertically within some bundle, this will persist
in the elastic case. Thus, an equilibrium exists in an elastic
demand market if and only if the vertical connectedness is
at least 3.

If there is some vertical instability, but the directed net-
work remains 3-connected, there may still be an equilibrium
on some subnetwork spanning the market (this holds triv-
ially for an elastic demand market, because the price never
exceeds Rg0

). In the next section, we see that in such cases
we can simply ignore the paths with vertical instability.

3.1.2 Irrelevance of Inefficient Submarkets
In both inelastic and elastic demand markets, when the

competition in a market is insufficient, then producers will
continually have an incentive to increase markups, so that
no equilibrium exists. Yet, because we allow for asymmet-
ric market structures, it may happen that some producers
face sufficient competition while others do not. Intuitively,
if some subnetwork of producers, spanning the market ver-
tically, supports an equilibrium, while other producers raise
their markups infinitely, we expect that eventually all cus-
tomers will abandon the unstable producers and adopt the
equilibrium assignment consistent with the stable set of pro-
duction bundles.

This observation allows us to study some markets that
are not 3-connected, but do have a 3-connected substructure
embedded within. That is, we consider a market G+ that
is an extension of a 3-connected market G. To ensure that
G spans the market vertically, we define an extension as
the addition of competition in parallel to a submarket of G.
Formally, we form G+ by replacing some submarket g′ of G
with P(g′, g+), where g+ is an SP network.

First, we consider the case where G+ remains 3-connected,
but costs for producers in g+ are prohibitively large. We
show that g+ can be ignored.

Theorem 4. Let ~w∗ be an equilibrium of the markup game
on G, and G+ be a 3-connected extension of G, with clb → ∞
simultaneously for all b ∈ G+ \ G, when l → ∞. Then,
the sequence (~wl

G, ~w
l
G+\G) of extended equilibria converges

to (~w,∞) as l → ∞.



Figure 6: A non series-parallel 3-connected network.

In Theorem 4, G+ is 3-connected, so each instance of the
extended network is one that we can analyze on its own. In
contrast, we look next at the case where g+ introduces some
instability into the market through its competitive structure.
We note that g+ needs not be 3-connected for G+ to be
so. For instance, adding a single link to G cannot reduce
the connectivity. However, it may be the case that g+ is
vertically unstable, in that removing two producers from g+

disconnects g+ into three disconnected markets. In this case,
no extension formed from g+ will produce an equilibrium.

The extended network is no longer 3-connected, and when
best-responses are iterated, it must be that ~wτ

G+\G → ∞,

where τ is the number of iterations applied. (Unlike in
Theorem 4, costs in the extended network remain constant
throughout.) We will show that while the sequence {~wτ

G+\G}

is unbounded, ~wτ
G → ~w∗, with the limit an equilibrium in G.

In this way, we expand the set of networks we may analyze
to include all extensions of 3-connected networks.

Theorem 5. Let ~w∗ be equilibrium markups for G. If
G+⊖G is vertically unstable, then multipliers on G converge
to ~w∗ when best responses are iterated on G+.

The result supports the use of iterated best responses to an-
alyze any market in which there is an embedded 3-connected
network spanning from source to sink. We have defined an
extension as the addition of a single submarket, but repeated
application of Theorem 5 allows for more general structures.

3.2 Other Network Structures
As the following example will demonstrate, Theorem 2

does not immediately generalize to networks that are not
Series-Parallel. Figure 6 presents a very simple network
structure that is 3-edge-connected, but violates the restric-
tion to SP structure. No markup equilibrium exists for this
network.

Critically, when the network is not SP, we cannot guaran-
tee that all producers are active in equilibrium. In Figure 6,
producer 3 is offering a contribution to the bundle that is
evidently being offered by producers 1 and 4 as well. Here
producer 1 is offering the equivalent of products 2 and 3 in
combination. Similarly, producer 4 is offering the equivalent
of products 3 and 5 in combination. If the markups and
demand allocation are such that the prices for products 1
and 4 are less than the prices of products 2 and 5, respec-
tively, then producer 3 is in effect excluded from the market.
There is no markup that producer 3 can choose for which
customers will purchase product 3.

When this the case, the price function for product 3 does
not influence the second stage results, and as such does not
factor into the profits of other producers. Consequently,
when producer 3 is not active, we can eliminate them from
the analysis entirely, with no affect on the equilibrium. The
remaining producers then comprise a series-parallel network
that is not 3-connected. There is no equilibrium in such a
network, so producer 3 must be active in any equilibrium.

We show that, regardless of the cost structure, no equi-
librium can exist in which producer 3 is active, and thus no
markup equilibria exist for this 3-connected network.

4. SENSITIVITY ANALYSIS
In this section we study the effects of changes to market

parameters and structure. We pay particular attention to
insights that can only be obtained through a model that
includes vertical competition. We begin by looking at the
market price for a bundle, RG, which is closely related to the
local competitiveness of submarkets. This relationship is not
as clear when considering the social cost criterion, and we
look at the implications for understanding efficiency in the
market. We show how a model of vertical competition can
benefit a regulator who is analyzing a particular submarket.
Finally, we consider the role of vertical competition in a
predictive model used by a producer. We illustrate the effect
this can have on a producer’s decision-making.

Recall that RG is the market price in equilibrium for a
given network, and C(xOPT) = RG|~w=~c is the cost of satis-
fying demand in a socially optimal manner. A comparison of
these terms gives a measure of the extent to which bundles
have been marked up. In particular, RG/(RG|~w=~c) measures
the ‘average’ markup, and RG−RG|~w=~c is equal to the total
producer profit. In terms of social cost, C(xNE(~w)) evalu-
ates a markup vector ~w, and the ratio C(xNE(~w))/(RG|~w=~c)
determines the inefficiency of that vector. As such, we are
particularly interested in changes to the market structure
for which RG|~w=~c remains constant, so the effects on profits
and efficiency can be observed through RG and C(xNE(~w))
alone. One interpretation of such a change, focusing only on
network structure, is that of a merger. Here, the underly-
ing cost structure of the market remains unchanged, but we
consider changes in the ownership of production capacity. A
formal definition is given below.

4.1 Price of a Bundle and Industry Profits
We will we look at the ramifications of a shift in the re-

sponse function for a single producer or some subnetwork
of producers. By a shift, we mean that φg(R⊖g) is re-

placed by a function φ̂g(R⊖g) such that (for an upwards

shift) φ̂g(R) ≥ φg(R) for all R in the domain. For a single
producer, a shift in φa(·) can result only from a change in ca,
but for a submarket g it can be the result of any number of
structural or parametric changes within g. We show that an
upwards (downwards) shift will always lead to an increase
(decrease) in the equilibrium price, RG.

Lemma 1. An upwards shift in φg(R⊖g), for any submar-
ket g of G leads to an increase in the equilibrium price, RG.

Corollary 3. An increase in ca for any producer a leads
to an increase in equilibrium price for G. When a new link
is added in parallel to any submarket, the equilibrium price
for G decreases.

The corollaries follow immediately from Lemma 1. They
illustrate a consistency between the local competitiveness
of sub-products and the competitiveness of the market as a
whole, with respect to fundamental changes in the produc-
tion capabilities. Locally, it is clear that we are decreasing
efficiency in the first part of Corollary 3, and adding com-
petition in the second. These effects extend directionally to



the entire network. We next consider mergers, where the
production capacity is preserved in a certain sense. In this
setting, any changes in the bundle price will result entirely
from changes in the way the producers interact.

We define a merger as a change in the network structure
where multiple links are combined in a way that preserves
the aggregate cost structure. The cost of the new link should
match the cost of using the subnetwork that it replaces, as-
suming that flow is allocated optimally within the original
subnetwork. We denote the optimally aggregated cost of a
submarket g by cg . The procedures for aggregating costs
optimally are identical to those for aggregating price multi-
pliers:

cS(G) =
∑

g∈G cg, and cP (G) = (
∑

g∈G 1/cg)−1. (10)

We first look at horizontal mergers, where two parallel
links, a1 and a2 are combined to form aP . We denote the
cost of the merged producer by c. Letting p := ca2

/(ca1
+

ca2
), we have ca1

= c/p and ca2
= c/(1−p). Any horizontal

merger can be described in this way for some p ∈ (0, 1).
We show that any such merger results in an upward shifted
response function, φaP

(·) relative to the aggregated response
function φgP

(·), where gP = P({a1, a2}). In fact, for any
such parallel pair, prices increase with p, yielding the lowest
prices in the symmetric case.

Theorem 6. Horizontal mergers increase the equilibrium
price of a bundle.

We complete our discussion of mergers with the case of
mergers involving vertical competitors. The ability to ana-
lyze vertical mergers is a distinct benefit of our SP market
definition. Two producers in series is an unstable configu-
ration, so we will not analyze mergers originating from this
structure. Rather, we look at the case of a single producer
in series with a set of producers who compete with each
other horizontally. We consider the effect of consolidating
all of these producers to a single link. We interpret this as a
scenario where the production being offered by the parallel
competitors is carried out in-house by the producer occupy-
ing a single link. In this way we study the effect of vertical
integration.

Let c be the cost of the integrated producer aS. We con-
sider parallel producers a1 and a2, comprising a submarket
gP . The submarket gP is connected in series with a third
producer aV to form gS = S({aV , gP}). We require cgS

= c,
and in particular, for p, q ∈ (0, 1), let ca1

= cq

p
, ca2

= cq

1−p
,

and caV
= 1 − q. For any choice of p and q, φaS

(·) is a
downward shift of φgS

(·), so that vertical integration results
in a lower price than the subcontracting setup. The size of
the effect is increasing in q, and thus greatest when the local
monopolist, aV , controls a small portion of the market gS.

Theorem 7. Vertical integration decreases the equilibrium
price of a bundle.

4.2 Social Cost
Lemma 1 provides a formal connection between the local

competitiveness of a submarket and the overall size of the
markup on a bundle. The equivalent connection need not
exist for costs, providing a clear motivation for consideration
of vertical competition in a regulatory context.

For a producer a competing in a parallel submarket g of G,
that is g = P(G) with a ∈ G, an alternative to a full model

Figure 7: Total production cost in this market is
smaller when c3 and c4 are unequal.

of G would be to estimate the parameters µg and R⊖g, or
equivalently to estimate the demand function for the sub-
market g, and treat g as a market of exclusively horizontal
competition, subject to an elastic demand. This may be a
reasonable approach, and is in line with the way in which
producers choose their markups in our model (actually we
assume an even more restricted viewpoint in which R⊖a is
held fixed to generate a residual demand). However, a lo-
calized approach of this type can be misleading with regard
to social cost.

Relative to total profit, social cost depends on the symme-
try, rather than the size of markups. So, when a bundle con-
sisting of product g is inherently more expensive to produce
than substitute bundles, likely leading to high markups on
those substitutes, what is perceived locally as an inefficiency
in the market for g may be a force that drives markups on
g closer to those on substitutes, in effect reducing the de-
gree of distortion in the overall market. We proceed with an
example to demonstrate this possible effect.

Consider the market G in Figure 7, with submarket g.
The market for product g is a duopoly, and for a fixed mul-
tiplier R−g, the two producers face an elastic combined de-
mand. For a regulator considering the market for g as such,
the most efficient configuration of the market, would appear
to be the symmetric one. For comparison, we consider the
efficiency that results in G when the symmetry of the sub-
market g is adjusted, but the aggregate cost structure, as
measured by ( 1

c3
+ 1

c4
)−1, is held constant.

When costs in g are symmetric, c3 = c4 = 9. In this
case, the optimal allocation has 83.3% of customers purchas-
ing from producers 5 and 6. The average cost of a bundle
under the optimum is 0.83. The equilibrium allocation is
presented in Table 1. Producers 5 and 6, each being more
efficient than the other purchase combinations, apply rela-
tively large markups of α5 = α6 = 5.1 to their products.
In comparison, the price of a combination purchase from
the other producers is only 3.1 times larger than the cost of
10. This distortion encourages a larger proportion of costly
combination purchases, and the average cost of a bundle in
equilibrium is 0.87.

In another scenario, producer 3 is considerably more effi-
cient than producer 4. If c3 = 5 and c4 = 45, the aggregate
cost structure is unchanged; the optimally aggregated cost
is 4.5 as in the symmetric case, while the relative efficiency
becomes unequal. Studying g in isolation would suggest that
this arrangement is inefficient. Yet, the higher markups ap-
plied by producer 3 raises the price of a combination pur-
chase to 3.9 times the cost. This shifts some demand back to
producers 5 and 6, so that the average cost of a bundle falls
to 0.86, despite the asymmetry. Although the difference in
social cost between these two scenarios is rather small, the
direction of change is surprising as it goes contrary to what
a local model of market g suggests.



Social Optimum Pr. 1 Pr. 2 g Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 4.5 2 2 .833
Market Share (x) .083 .083 .167 .417 .417 1
Cost (cx2) .007 .007 .126 .347 .347 .833

Symmetric Costs Pr. 1 Pr. 2 Pr. 3 Pr. 4 Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 9 9 2 2 .833
Markup (α) 6.96 6.96 2.70 2.70 5.08 5.08 4.60
Market Share (x) .123 .123 .123 .123 .377 .377 1
Cost (cx2) .015 .015 .135 .135 .285 .285 .870

Asymmetric Costs Pr. 1 Pr. 2 Pr. 3 Pr. 4 Pr. 5 Pr. 6 Market (G)

Efficiency (c) 1 1 5 45 2 2 .833
Markup (α) 7.56 7.56 3.69 2.14 5.50 5.50 5.14
Market Share (x) .111 .111 .186 .036 .389 .389 1
Cost (cx2) .012 .012 .174 .058 .303 .303 .861

Table 1: Social cost comparison for symmetric and
asymmetric costs in g.

4.2.1 Inefficiency Bound
Let ~α be the unique markup equilibrium for an arbitrary

3-edge-connected market structure. Let the scalar ᾱ be the
upper bound on markups for that market, which is guaran-
teed to exist when w̄ exists. Then:

C(xNE)

C(xOPT)
≤
ᾱ

2
. (11)

Here we take ᾱ, the upper bound on producer markups,
to represent maxa{αa}, making the inequality as tight as
possible. For this bound to be meaningful, we would like
to express, or at least bound, ᾱ as a function of the model
primitives. To do this, we introduce the term σa, which
is an indicator of producer a’s market power. We define
σa := (R⊖a|~w=~c)/ca. We then define σ := maxa{σa}, as a
measure of asymmetries in the network as a whole.

From (9), αa = 2 + R⊖a/ca ≤ 2 + σᾱ, This implies that
ᾱ ≤ 2 + σᾱ, from which we deduce that ᾱ ≤ 2/(1 − σ) for
σ < 1. Plugging into (11) establishes:

C(xNE)

C(xOPT)
≤

1

1 − σ
. (12)

We cannot use this bound for σ ≥ 1. Clearly, it is not
tight for σ close to 1 as well, as the right hand side blows
up approaching 1 from below. If the market is very com-
petitive, then σ will be close to zero, at which point the
bound approaches 1. When general series-parallel markets
are considered, σ can be typically made large by introduc-
ing additional vertical competition though link subdivisions.
Some structural restrictions are thus necessary to guarantee
any level of efficiency.

We note that slackness is introduced in our bound by the
maximum in the definition of σ. This is necessary due to the
possible asymmetry of our market structure. When produc-
ers compete horizontally in a single market, this analysis can
produce a much tighter bound, due to the fact that the de-
gree of competition faced by each of the producers is closely
linked in that type of setting (see [7]). Other structural
symmetries can be imposed to produce a similar effect.

4.3 Producer Market Position
Finally, we look at the market from the perspective of an

individual producer. The producer is concerned with its own
profits, and needs to predict the effect that changes in the
market structure (initiated on its own or by competitors)
will have on this quantity. Here again the story is com-
plicated by the potential asymmetry of the network. This

opens the possibility that network alterations will increase
the competition for some, while decreasing it for others. We
have shown that all markups increase when a subnetwork
becomes less efficient. To contrast, profits may decrease for
some producers when their competitors become less efficient.
The direction of the change in these terms will depend on
the relative position of the producers in question to the al-
tered market. At a high level, the nature of the changes
will depend on whether the two products are competing in
a fashion that is ‘more horizontal’ or ‘more vertical.’

Besides allowing a producer to understand the changes
to its competitive environment that result from potential
changes to vertical competitors, variance in the responses
of both horizontal and vertical competitors combine to pro-
duce a large range of potential outcomes in response to any
change the producer may make in its production process (we
model such changes as a change in the efficiency parameter
ca). A producer considering some form of investment may
get a very different projection of the returns when using
a localized model of competition. From a producer’s per-
spective, this can be a strong motivation to model vertical
competition.
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