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Abstract. There is growing awareness and concern about fairness in machine learning and 
algorithm design. This is particularly true in online selection problems, where decisions 
are often biased: for example, when assessing credit risks or hiring staff. We address the 
issues of fairness and bias in online selection by studying multicolor versions of the classic 
secretary and prophet problems. In the multicolor secretary problem, we consider that 
each candidate has a color, and we can only compare candidates of the same color. In addi-
tion, we are given probabilities with which the best candidate of a given color is the best 
candidate overall. These probabilities but not the outcome of the random coin flip are 
known to both the online and offline algorithms. We characterize the optimal online algo-
rithm and show that unlike the optimal offline algorithm, it enjoys very desirable fairness 
properties. In the multicolor prophet problem that we study, candidates can again be parti-
tioned into groups of different colors. To counteract imbalanced selection, each color is 
associated with a target selection probability. We design fair online algorithms that condi-
tional on stopping, select from the different colors with the given target probabilities and 
achieve optimal approximation guarantees against the fair offline optimum. We also study 
data-driven (sampling-based) variants of both the multicolor secretary problem and the 
multicolor prophet problem, and we provide an empirical evaluation of our algorithms.
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1. Introduction
The sharp growth in data availability that characterizes 
modern society challenges our processing capabilities 
not only because of its massiveness but also because of 
the increasingly strict social norms that society seeks in 
the algorithms processing it. For instance, machine 
learning algorithms are now used to make credit and 
lending decisions, to estimate the success of a kidney 
transplant, to inform hiring decisions, and to recom-
mend schools to pupils among others. Therefore, there 
is a founded concern over the use of algorithms that 
may violate social norms. Two basic such norms that 
are receiving significant attention are fairness and 
privacy, and although a formalization of the latter is rel-
atively well established through the notion of differen-
tial privacy (Dwork et al. 2006), the former is much 

more unexplored from an algorithmic perspective 
(Kearns and Roth 2019).

In this paper, we are particularly interested in the 
study of fairness in (machine learning) algorithms in 
the context of sequential decision making under sto-
chastic input. We consider two fundamental problems 
in fair online selection, both concerned with selecting a 
single candidate. In both problems, candidates are par-
titioned into different groups or colors. The candidates 
arrive sequentially, and upon the arrival of a candidate, 
we have to irrevocably decide whether we want to 
select the candidate or not.

1.1. The Multicolor Secretary Problem
In the multicolor secretary problem, candidates arrive in 
uniform random order; we can rank candidates within 
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a group, but we cannot compare candidates across 
groups. We are thus looking at a secretary problem 
with a (particular) partially ordered set of secretaries. 
The use of poset models as a versatile tool to evaluate 
fairness and bias in online selection was initiated by 
Salem and Gupta (2024). Related problems with poset 
structure were previously studied by Preater (1999), 
Georgiou et al. (2008), and Kumar et al. (2011).

In our model, there is also a prior probability that the 
best candidate from a group is the best candidate over-
all. We model this as an independent, random coin flip 
that occurs after the selection. The problem models 
situations in which different qualities of the candidates 
make them largely incomparable (e.g., performance in 
final examinations at two different schools A and B in 
two different countries), but there is some probabilistic 
“ground truth” that the best candidate of a group is the 
best overall (for example, it may be known that the best 
student of a year is more likely to come from school A 
than from school B). In situations like this, it is natural 
to evaluate the fairness of an algorithm by how closely 
its selection probabilities match the prior probabilities. 
Namely, if pi is the probability with which the maximal 
candidate of group i → [k] is the best candidate overall, 
then we say that the algorithm is α-fair for α ↑ 1 if for all 
groups i, conditional on stopping, the algorithm selects 
a candidate of group i with probability in [pi=α,α · pi]
(Definition 2). Intuitively, the closer α�is to one, the bet-
ter the algorithm reflects the prior probabilities, and the 
fairer it is.

Putting fairness considerations aside for the moment, 
we consider the goal of designing an online algorithm 
that maximizes the probability of selecting the best 
overall candidate and compare it with the offline opti-
mum (that is oblivious to the random coin flip that 
determines the color of the best candidate). Note that 
here, the offline optimum simply picks the best candi-
date from the group of largest prior probability. So, for 
example, if there are two groups with priors 51% and 
49%, then the optimum offline algorithm always 
chooses the best candidate from the first group. This is 
precisely the type of behavior that we seek to avoid. 
Indeed, in situations like this, the offline optimum is not 
α-fair for any α ↑ 1. One may think that the 
best-possible online algorithm is to mimic the offline 
optimum: namely, to select the group of largest prior 
probability and then, run the classic secretary algorithm 
on that group. We prove that this is not the case, and 
indeed, our main result is to obtain the best-possible 
online algorithm for the problem and to establish that it 
satisfies very desirable fairness properties. Hence, for 
this variant of online selection, fairness follows as a con-
sequence of being online optimal.
Example 1. (Multicolor Secretary). Suppose you are hir-
ing a professional for a position and have four 

candidates for filling it. Two come from school A, and 
two come from school B. You can compare candidates 
coming from the same school, but you cannot com-
pare across schools. Suppose, in addition, that from 
previous experience, you know that 60% of the time, 
the best candidate comes from school A. If the process 
is offline and you can see all candidates simulta-
neously, the best strategy is to pick the best candidate 
from school A. This guarantees you a probability of 
picking the overall best of 0.6. On the contrary, if the 
process is online as in the secretary problem and can-
didates come in random order, the situation changes 
dramatically. A natural idea would be to simply 
ignore the candidates from school B and run the secre-
tary algorithm on the candidates from school A. For 
n ↓ 2, the secretary algorithm selects the best with 
probability 1=2, so you end up selecting the overall 
best candidate with probability 0.3. You could instead 
do something that is more fair to the candidates from 
school B: wait until you see the second candidate of 
any of the two schools. If they are the best of their 
school, select them. If not, select a candidate of the 
other school. One can easily show that with this pol-
icy, you end up selecting the best candidate with 
probability 0.375. Indeed, the probability that the sec-
ond candidate of a school arrives before the second of 
the other school is 1=2, and this candidate is the best 
of their school with probability 1=2; so, the probability 
of selecting the overall best is

1
2

1
2 0:6 + 1

2 · 1
2 0:4

 !
+ 1

2
1
2 0:4 + 1

2 · 1
2 0:6

 !
↓ 3

8 ↓ 0:375:

Thus, in the online setting, we can take advantage of 
the fact that in some realizations, we observe both 
candidates from school B before the second candidate 
from school A. Our general result leverages this idea 
by skipping a fraction of the candidates of each color, 
where the fraction depends continuously on the prior 
probability that the overall best candidate is of that 
color.

1.1.1. Our Results. Our main result for the multicolor 
secretary problem (Theorem 1) characterizes the opti-
mal online algorithm and gives a closed formula for its 
competitive ratio. We model the random order arrival 
by associating uniformly distributed arrival times with 
the candidates. An important ingredient in our proof is 
a lemma (Lemma 1) that establishes that the competi-
tive ratio is decreasing as the number of candidates ni 
of any given color i increases. We show that the online 
optimum algorithm employs time-dependent thresh-
olds for each color that depend on the number of 
groups k and the prior probabilities p ↓ (p1, : : : , pk) but 
not on the number of candidates from each group. The 
algorithm then accepts the first candidate who arrives 
after the threshold for its color and is the best candidate 
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from that color so far. We visualize the approximation 
guarantees of the optimal online algorithm for different 
k and a range of prior probabilities p ↓ (p1, : : : , pk) in 
panels (a) and (c) of Figure 1. In the case where there 
are k groups and the maximum is equally likely to come 
from any of these groups, our algorithm achieves a 
competitive ratio of k1=(k 1) (Corollary 1). This is two for 
k ↓ 2, 

"""
3

↔
for k ↓ 3, and 1 + O log k=k

# $
as k↗↘. With 

regard to fairness, we show that for equal priors over k 
groups and arbitrary group sizes, the optimal online 
algorithm does not choose from all groups with equal 
probability (a property that we coin 1-fairness) but 
approaches this property exponentially fast in the mini-
mum group size (Theorem 2). For general priors over k 
groups, we show that when two groups j, j≃ have a simi-
lar prior pj > pj≃ > (1 ω)pj, then the probability that the 
optimal online algorithm selects color j and the proba-
bility that it selects color j≃ are within ω of each other 
(Theorem 3). To exemplify this bound, consider the 
case where there are two groups, men and women, and 
the prior is such that the top candidate is a woman with 

probability 60% and a man with probability 40%. This 
translates into having ω ↓ 1=3 in the theorem statement, 
and thus, the optimal online algorithm will pick a 
woman at most 33% more often than a man. A pictorial 
view of the actual selection probabilities of the optimal 
online algorithm compared with the priors is shown in 
panels (b) and (d) of Figure 1.

We also study a data-driven version of the multicolor 
secretary problem. Intuitively, this model interpolates 
between a model with adversarial qualities, as assumed 
so far, and one in which the qualities are sampled from 
known distributions. As before, we assume that the 
ground set of candidates is partitioned into k groups (or 
colors) and that we can only compare candidates of the 
same color. We use Ci to denote the candidates of color 
i. We write ni for the number of candidates of color i 
and n ↓Pk

i↓1 ni for the total number of candidates. Each 
candidate chooses to be in S (the set of samples) inde-
pendently with probability q and to be part of V other-
wise. The samples are visible at the outset. Afterward, 
the candidates in V arrive in uniform random order, 
and we can select one of them. As in our base model, 

Figure 1. (Color online) For k ↓ 2, k ↓ 3, and Varying Priors, We Show the Competitive Ratio of the Optimal Algorithm Along 
with the Probabilities That It Selects a Candidate from Each Color Conditional on Stopping 

(a) (b)

(c) (d)

Notes. For k ↓ 2, we vary p1 linearly in [1=2, 1] (and p2 ↓ 1 p1). For k ↓ 3, we set priors following a power law with varying exponent γ → [0, 2]
(i.e., we set (p1, p2, p3) proportional to (1, 1=2γ, 1=3γ)). Observe that the competitive ratios start at k 1

k 1 when the priors are equal and tend to 1=e 
as the largest prior gets closer to one. Observe also that the conditional selection probabilities follow very closely the priors when they are not far 
from being balanced. (a) Competitive ratio for k ↓ 2. (b) Conditional selection probabilities for k ↓ 2. (c) Competitive ratio for k ↓ 3. (d) Condi-
tional selection probabilities for k ↓ 3. 
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we again assume that the best candidate in V ⇐ Ci is the 
best candidate overall with probability pi. Our goal is to 
maximize the probability of selecting the best candidate 
in V, where we compare ourselves with the best offline 
algorithm. For q ↓ 0, this model reduces to our base 
model, and as q↗ 1, the model approaches a setting 
where ranks are drawn from a known distribution. We 
show that the competitive ratio is again decreasing 
with the number of candidates ni of any given color i 
(Lemma 6). We also give a closed formula for the com-
petitive ratio of any online algorithm that sets group- 
specific thresholds t ↓ (t1, : : : , tk) (Theorem 4), and we 
argue how this can be used to computationally solve 
for the optimal such algorithm. We visualize the result-
ing competitive ratios for k ↓ 1, 2, 3 groups and equal 
priors pi ↓ 1=k as a function of the sampling rate q in 
Figure 2. We note that in the special case where k ↓ 1 
and q↗ 1, our result recovers the classic result of Gil-
bert and Mosteller (1966).

Our results for the multicolor secretary problem are 
summarized in Table 1. In Section 2.4, we provide addi-
tional numerical evaluations. We first explore the effect 
of a wrong prior p≃ ≠ p on the competitive ratio, show-
ing that the competitive ratio degrades gracefully. 
Then, using a simple model of belief update dynamics, 
we show how wrong priors can be corrected over time. 
For this, it is important that our algorithm (unlike the 
offline optimum) selects from all groups with positive 
probability.

1.2. The Multicolor Prophet Problem
In our second problem, which we call the multicolor 
prophet problem, candidates have values drawn inde-
pendently from given distributions and arrive in an 
arbitrary order. The goal is to maximize the expectation 
of the value of the selected candidate while selecting 

from each color with probability proportional to a pre-
scribed vector. We compete with the optimal offline 
algorithm satisfying the same fairness constraint. More 
formally, for a given partition of the candidates into col-
ors Ci for i → [k] such that |Ci | ↓ ni and a vector of prob-
abilities p ↓ (p1, : : : , pk), we denote by FairOpt the 
expected value of the optimal offline algorithm that 
selects from color i with probability pi (see Section 3.1). 
We say that an online algorithm is fair if conditioned on 
stopping, it stops at color i with probability pi for all i →
[k] (see Definition 3). In other words, in a fair online 
algorithm conditioned on the algorithm making a selec-
tion, the probability that a candidate is picked from 
group i is exactly pi.

We seek to bound the ratio between the expected 
value achieved by FairOpt and the best fair online 
algorithm. So, the underlying paradigm here is that 
although we can compare, we understand that selection 
probabilities can be unfair or biased (for example, 
because of differences in the value distributions or 
because of different arrival positions), and we want to 
correct this using the prior probabilities.

Example 2. (Multicolor Prophet). Consider again the 
problem of hiring one of four professionals for a posi-
tion. Now, our goal is to maximize the expected 
grades of the selected candidate. For simplicity, 
assume that they are i.i.d. realizations of a Uniform[0, 
1] distribution. A natural fairness constraint in this 
case is that we should select candidates with the same 
probability. We can achieve this in our framework by 
making each candidate a group on its own and letting 
pi ↓ 1=4 for i → {1, 2, 3, 4}. The optimal offline algorithm 
for this problem is perfectly fair. It selects each candi-
date with probability 1=4 and achieves an expected 
value of 4=5 ↓ 0:8. We can also calculate the optimal 
online policy via dynamic programming (DP); a candi-
date should be accepted if their grades are above the 
expectation of what comes next if we skip them. If the 
threshold for candidate i + 1 is z, the threshold for can-
didate i is T(z) ↓max{z, X} ↓ z + E[(X z)+], where X 
is a Uniform[0, 1] random variable. With this, 
T(z) ↓ z + (1 z)2=2. The threshold for the last candi-
date is, of course, zero. So, for the third candidate, it is 
T(0) ↓ 1=2. For the second, it is T(1=2) ↓ 5=8, and for 
the first one, it is T(5=8) ↓ 89=128 ⇒ 0:695. This policy 
gives an expected grade of T(89=128) ⇒ 0:741, but the 

Figure 2. (Color online) Competitive Ratio of Our Algorithm 
for the Sample-Driven Multicolor Secretary Problem for k ↓
1, 2, 3 and Balanced Priors 

Note. This was obtained by numerically optimizing Equation (3).

Table 1. Competitive Ratios for the Multicolor Secretary 
Problem

Equal priors General priors
General priors, 
sample based

k1=(k 1) (Corollary 1) Optimal guarantee 
(Theorem 1)

Optimal threshold-based 
guarantee (Theorem 4)

Note. The parameter k denotes the number of colors.
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first candidate is accepted with probability 0.305, 
which is rather unfair to the other three candidates. 
We can instead calculate thresholds so that all candi-
dates are selected with equal probability, namely 
α · 1=4, for some α → [0, 1]. For the uniform distribu-
tion, setting α ↓ 1 gives in expectation ⇒ 0:739. We can 
thus regain fairness while losing relatively little value. 
In Figure 3, we visualize the selection frequencies as a 
function of the arrival position for the same problem 
with 50 candidates. We plot the selection frequencies 
for the optimal online algorithm obtained via dynamic 
programming, the worst-case optimal algorithm of 
Correa et al. (2021b), and the optimal fair online algo-
rithm that we develop for this case. The optimal 
online algorithm obtained via dynamic programming 
chooses much more often from the beginning, 
whereas the worst-case optimal algorithm chooses 
mostly from the end. In contrast, our algorithm selects 
candidates with equal probability. Our algorithm 
obtains an expected value of 0.661, whereas the fair 
offline algorithm has a value of 50=51 ⇒ 0:98. If the 
distributions are more skewed, the asymmetry of the 
selection probabilities in the DP becomes much 
sharper, but we show in Theorem 6 that if we set 
α ↓ 2=3, then the ratio between the optimal fair offline 
value and the value of a fair online algorithm stays 
below 3=2 for any distribution.

1.2.1. Our Results. We derive the optimal online algo-
rithms and prove tight bounds on their competitive 
ratio for a range of settings. Our general approach is to 
mimic the selection probabilities qi with which FairOpt 
selects candidate i. We then set up our online algo-
rithms so that they select candidate i with probability 
α · qi for some α → [0, 1]. In the most general version, we 
prove that an approximation factor of two is best possi-
ble (Theorem 5), whereas improved factors can be 
obtained by making natural assumptions on the prior 
probabilities and the arrival order. This includes a tight 
factor 3=2 approximation for the special case of i.i.d. 
random variables (Theorem 6) and a tight 1=(2 

"""
2

↔
) ⇒

1:707 approximation for the case where random 

variables are only i.i.d. within each group but arrive in 
uniform random order (Theorem 7). In Section 3.3, we 
consider a version of the multicolor prophet problem 
with samples. We argue that if we are given the proba-
bilities q1, : : : , qn, then Oε(logn) samples from each dis-
tribution suffice to recover the factor two approximation 
for the general case up to an additive error of ε, whereas 
Oε(n) samples suffice for the i.i.d. result.

We summarize our findings for the multicolor 
prophet problem in Table 2. In Section 3.4, we provide 
further empirical evaluations of our fair online algo-
rithms and compare their performance and fairness 
guarantees with additional online algorithms that have 
been proposed in the literature.

1.3. Related Work
An important precursor to our work is Buchbinder et al. 
(2014). Their starting point is the observation that the 
optimal policy for the classic secretary problem intro-
duces incentives for candidates to arrive late. Indeed, 
that optimal policy skips the first 1=e fraction of candi-
dates and then, selects the first candidate who is best so 
far. With this in mind, Buchbinder et al. (2014) look for 
incentive-compatible policies: that is, policies in which 
the acceptance probabilities for each of the arrival posi-
tions have to be the same. This can also be interpreted 
as a fairness constraint, according to which selection 
probabilities should not depend on the time of arrival. 
Khatibi and Jacobson (2018) use this paradigm to study 
fairness in the online allocation of tasks to workers. 
They model this problem through the weighted secre-
tary problem with k positions and design incentive- 
compatible algorithms for this problem. The incentive- 
compatibility constraint studied in these two papers 
has some similarities with the quota approach that we 
take in the multicolor prophet problem, with the differ-
ence that we aim to balance selection probabilities 
based on the candidates’ identities rather than their 
arrival times.

The poset approach for modeling biased evaluations 
in secretary problems was initiated by Salem and Gupta 
(2024). In their model, every secretary has a score, 
which induces a total order on the secretaries. The 
online algorithm only has access to a partial order that 
is consistent with the total order. The goal is to hire d 
secretaries whose weight is competitive with that of the 
d highest-scoring secretaries. As a special case of their 
model, they consider the group bias model, which coin-
cides with our model, where secretaries are partitioned 

Figure 3. (Color online) We Plot the Selection Frequencies as 
a Function of Arrival Position for the i.i.d. Uniform[0, 1] Case 
for n ↓ 50 Candidates Aggregated Over 100,000 Runs for the 
Optimal Online Algorithm via DP, the Worst-Case Optimal 
Online Algorithm of Correa et al. (2021b) (CFHOV), and the 
Optimal Fair Online Algorithm (Fair IID) 

Table 2. Competitive Ratios for the Multicolor Prophet 
Problem

General i.i.d. Random order

2 (Theorem 5) 3=2 (Theorem 6) 1 +
"""
2

↔
=2 ⇒ 1:707 (Theorem 7)

Note. These guarantees hold for any number of colors.
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into k groups and can only be compared with secretar-
ies in their own group. They insist on their algorithms 
to satisfy ordinal fairness; secretaries with the same rank 
within their group should be accepted with the same 
probability, and these probabilities should decrease 
with rank. They consider both an adversarial model 
and a stochastic model. In the adversarial model, both 
the scores and the group membership are decided 
adversarially. In the stochastic model, each secretary 
selects a group independently with probability 
q ↓ (q1, : : : , qk), and scores are sampled independently 
from a common distribution. They show how to paral-
lelize algorithms for the d-choice secretary problem to 
obtain a k(1 + o(1))-competitive algorithm for the adver-
sarial model and a 2e(1 + o(1))-competitive algorithm 
for the stochastic setting (as d↗↘). For the single- 
choice problem, they obtain O(k) and O(1) competitive 
algorithms. They also show a !(k) lower bound for the 
adversarial setting, which follows by considering the 
case where all of the value comes from one group, and 
the ordinal fairness constraint forces the algorithm to 
select low scores. In summary, although the models 
considered by Salem and Gupta (2024) share some fea-
tures of our problems—comparisons are only possible 
within groups, like in the multicolor secretary problem, 
or candidates have scores drawn from a distribution, 
like in the multicolor prophet problem—they also differ 
from our problems in significant ways. In particular, 
the notion of ordinal fairness is based on ranks, whereas 
our notions of fairness are based on selection probabili-
ties by group.

Kumar et al. (2011) and Feldman and Tennenholtz 
(2012) do not take a fairness perspective but study sec-
retary problems that share features of our model. 
Kumar et al. (2011) consider the problem of selecting a 
maximal secretary from a partially ordered set of candi-
dates. Their algorithm skips the first τ(k) elements, 
where k is the number of maximal secretaries. After-
ward, it takes any undominated candidate, provided 
that among the candidates seen so far, there are at most 
k undominated secretaries. This latter condition may 
make them pass on undominated candidates who 
arrive early in the sequence, but it will never pass on 
the last maximal candidate in the permutation. They 
show that this algorithm succeeds with probability at 
least k k=(k 1)((1 + logk1=(k 1))k 1). This approaches 1=e 
as k↗ 1 and one as k grows large. For the special case 
where the poset consists of k chains, they show that their 
algorithm succeeds with probability k 1=(k 1) O(k=n), 
whereas no online algorithm can achieve a better success 
probability than k 1=(k 1) o(1) (for k ↓ o(

"""
n

↔
) and 

n↗↘). This final result also applies to our problem but 
only in the special case where the best secretary is equally 
likely to come from any of the groups. Our result in Cor-
ollary 1 strengthens the bounds for this case by showing 
that for all n, the tight bound for this case is k 1=(k 1). This 

improvement is enabled by Lemma 1, which shows that 
for all k, the worst case is when n↗↘.

Feldman and Tennenholtz (2012) study the problem 
of selecting secretaries in parallel; each of n candidates 
in total is randomly assigned to one of Q queues, and 
the order of candidates within each queue is random as 
well. Candidates can only be compared with other can-
didates in the same queue. Only the first D candidates 
in each queue can be hired. The objectives are to select d 
secretaries and to hire as many of the top d secretaries 
as possible. For a given parameter k → N, they show that 
if d ↓ 1 and D ↓ n=k, then with Q ↓ 1 queue, the best- 
possible ratio is (de) 1, whereas with Q ↓ k queues, it is 
possible to achieve a ratio of k k=(k 1) o(1). The con-
nection to the poset model and our model is that the 
uniform random assignment to queues can be inter-
preted as assigning each secretary one of Q colors uni-
formly at random, with all secretaries assigned to the 
same color forming a chain. The best secretary in a 
chain is the best secretary overall with probability 1=Q. 
So, this model is again restricted to the case where the 
best secretary overall is equally like to come from any 
of the groups.

In follow-up work, Arsenis and Kleinberg (2022) 
study the single-choice prophet inequality problem 
with individual fairness constraints. They consider two 
fairness conditions. The identity-independent fairness 
(IIF) condition requires that the probability that the 
algorithm hires a candidate is independent of the candi-
date’s identity. The time-independent fairness (TIF) condi-
tion requires that the probability that the algorithm 
hires a candidate is independent of their arrival time. 
They show that the gap between the best online IIF 
algorithm and the best offline (IIF or not) algorithm is 
1=2 and that the gap between the best online TIF algo-
rithm and the best offline algorithm is 1=2. These results 
are related because they also consider fairness in a 
prophet inequality setting, but the approach is more 
closely related to Buchbinder et al. (2014). Indeed, the 
IIF and TIF requirements are two natural variations of 
the incentive-compatibility constraint studied in this 
earlier work.

A different approach to modeling fairness in online 
allocation problems is that of Lien et al. (2014). They 
consider the online allocation of a scarce resource but 
not from a revenue optimization viewpoint. Rather, 
they study the fill rate—the ratio of the allocated 
amount to observed demand—and seek algorithms 
maximizing the minimum fill rate. This approach cap-
tures a natural notion of fairness that seeks to make the 
least happy customer as happy as possible, but it is 
rather different from the approaches discussed so far.

Alpern and Baston (2017) study a variant of the clas-
sic secretary problem, in which candidates are evalu-
ated independently by two committee members with 
different objectives. In their model, each candidate is 

Correa et al.: Fairness and Bias in Online Selection 
6 Operations Research, Articles in Advance, pp. 1–23, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
71

:b
53

1:
58

54
:4

8d
2:

c6
3a

:8
79

c]
 o

n 
26

 S
ep

te
m

be
r 2

02
5,

 a
t 0

2:
36

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



described by a pair of scores (x, y), where x and y are 
distributed uniformly and independently on [0, 1] and 
observable by both selectors. One committee member is 
interested in x, and the other is interested in y. The util-
ity that the firm derives from a candidate is assumed to 
be (x + y)=2. Unanimous hiring decisions are respected, 
whereas candidates with a split decision are hired with 
probability p. A consensus cost c is deducted from the 
utility of a selector who has rejected a candidate who is 
nevertheless hired. The main result is that each stage 
game has a unique (symmetric) equilibrium, which 
involves setting two thresholds z < v. A selector recom-
mends to hire if her value is at least v or her value is at 
least z and the other value is at least v. They then exam-
ine how p and c affect the utilities of the selectors and 
the firm at equilibrium. So, this work studies “biased” 
committee members and characterizes optimal recom-
mendation strategies for a fixed conflict resolution 
scheme.

A final set of related works considers secretary 
and/or prophet problems with restrictions on which 
information is available to the decision maker without 
considering whether this leads to fair decisions. Bhat-
tacharjya and Deleris (2014), for example, consider an 
optimal stopping problem where the decision maker 
gets imperfect information about random variables 
presented to her one by one, such as the expected 
reward or some multidimensional signal and the 
expected reward conditional on that signal. Similarly 
and closely related to our results for the multicolor sec-
retary problem and the multicolor prophet problem 
with samples is the strand of research studying online 
selection problems with samples. This line of research 
was initiated by Azar et al. (2014), who considered 
combinatorial variants of the prophet inequality prob-
lem where instead of having full distributional knowl-
edge, we only have access to one sample from each 
distribution. The single-choice problem with samples 
was first studied in more detail in Correa et al. (2022). 
In subsequent work, Rubinstein et al. (2020) establish 
that one sample from each distribution is enough to 
achieve the optimal constant factor prophet inequality 
for the single-selection problem with nonidentical dis-
tributions. Related models have been recently studied 
for the secretary problem. Kaplan et al. (2020) consider 
a dependent sampling model in which k of n candi-
dates are first sampled and then, their relative rank-
ings are revealed. Here, we adopt the somewhat 
simpler independent sampling model of Correa et al. 
(2021a), in which each element is observed with proba-
bility q. For a general unifying framework of single- 
selection problems with sampling (advice), we refer 
the reader to the work of Dütting et al. (2021). This 
framework captures cases where the quality of the 
candidate is drawn from a known distribution or from 
an unknown distribution, and the designer receives 

some samples from it. It also encompasses cases where 
the online decision maker has learned a binary classi-
fier that directly recommends whether the current sec-
retary is the best overall or not.

2. The Multicolor Secretary Problem
In the multicolor secretary problem, n candidates arrive in 
uniform random order. Candidates are partitioned into 
k groups C ↓ {C1, : : : , Ck}. We write n ↓ (n1, : : : , nk) for 
the vector of group sizes (i.e., |Cj | ↓ nj) for all 1 ⇑ j ⇑ k. 
We identify each of the groups with a distinct color and 
denote by c(i) the color of candidate i. We can compare 
candidates of the same color, but we cannot compare 
candidates across groups. We assume that comparisons 
are strict and use i ⇓ i≃ to denote that candidate i is bet-
ter than candidate i≃. We write maxCj for the best candi-
date of color j and maxC for the best candidate overall. 
A natural assumption is that the best candidate from a 
group is the best candidate overall with equal probabil-
ity 1=k, but we can also consider the case where these 
probabilities are different. We denote the probabilities 
with which the best candidate of group j is the best can-
didate overall by pj, and we write p ↓ (p1, : : : , pk) for the 
vector of these probabilities. Because candidates are 
incomparable across groups, our decision is indepen-
dent of which group contains the best candidate. There-
fore, it is equivalent to assume that the group that the 
best candidate belongs to is realized after the fact (i.e., if 
we select the best candidate of color j, the selected can-
didate is the overall best with probability pj, indepen-
dently of everything else). The goal is to design an 
online algorithm that maximizes the probability of 
selecting the best candidate overall.

2.1. Key Definitions
2.1.1. Competitive Ratio. We evaluate online algorithms 
by means of their competitive ratio. Consider some online 
algorithm ALG. The algorithm selects the best candidate 
overall if, on the one hand, it selects the best candidate of 
a given color, and, on the other, this color has the best can-
didate overall. For an instance of the multicolor secretary 
problem with group sizes n and probabilities p, we denote 
by ALG(n, p) → {1, : : : , n} ⇔ {φ} the random index at which 
the algorithm stops, where φ�denotes the case when the 
algorithm does not stop. The success probability of ALG is 
the probability that it picks the best candidate overall: namely, 
E[1ALG(n,p)↓max C] ↓ E[pc(ALG(n, p)) · 1ALG(n,p)↓max Cc(ALG(n,p))]. 
We compare this with the optimal offline algorithm OPT 
(i.e., the best algorithm that can select a candidate after all 
candidates have arrived). An optimal strategy is to choose a 
color j with maximum pj and then, choose the best candidate 
of that color. We denote by OPT(n, p) → {1, : : : , n} the ran-
dom index that OPT selects. The success probability of OPT 
is E[1OPT(n, p)↓maxC] ↓max{p1, : : : , pk}.
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Definition 1. (Competitive Ratio). Fix k and p ↓ (p1, : : : , pk). 
An online algorithm ALG is β(k, p)-competitive if for 
all input lengths n and partition sizes n ↓ (n1, : : : , nk),

E[1OPT(n, p)↓maxC]
E[1ALG(n, p)↓maxC]

⇑ β(k, p):

Note that β(k, p) ↑ 1 and that the smaller β(k, p) is, the 
better the approximation guarantee is.

2.1.2. Unbiased Selection. We also examine the extent 
to which online or offline algorithms are biased where 
ideally, selection should be unbiased. One way to mea-
sure this is by quantifying how much the probability of 
selecting from any given color class j can differ from the 
corresponding probability pj. The goal of abiding to the 
probabilities p as much as possible can be viewed as a 
form of meritocratic fairness (Joseph et al. 2016).

Definition 2. (Fairness). Fix k and p ↓ (p1, : : : , pk). An 
offline or online algorithm ALG is α(n, p)-fair, where 
α(n, p) ↑ 1, if for all colors j → [k],

pj

α(n, p) ⇑ P(c(ALG(n, p)) ↓ j |ALG(n, p) ≠ φ)
⇑ α(n, p) · pj:

2.1.3. Uniform Arrival Times. We model uniform ran-
dom arrival order through uniform random arrival times. 
For this, we sample n independent realizations of the 
Uniform[0, 1] distribution and denote them by τ1 <
τ2 < ⋯ < τn indexed in increasing order.

2.2. Optimal Online Algorithm
We derive the optimal online algorithm (without fair-
ness considerations) and observe that—in sharp con-
trast to the optimal offline algorithm—it is robustly fair 
and provides an “equal treatment of equals” (Aristotle) 
guarantee.

2.2.1. The Algorithm. We show that the optimal online 
algorithm is from the class of algorithms given by Algo-
rithm 1. Algorithms from this class receive as input a 
vector of thresholds t ↓ (t1, : : : , tk), one for each color 
j → [k]. When a candidate i arrives, the algorithm first 
checks if the candidate arrived after the time threshold 
for its color tc(i), and if it did, then it accepts the candi-
date if it is the best candidate of that color so far.
Algorithm 1 (GroupThresholds(t))

Input: t → [0, 1]k, a threshold in time for each group
Output: i → [n], index of chosen candidate
/* assuming arrival times τ1 < ⋯ < τn */
for i↖ 1 to n do

if τi > tc(i) then
if i ⇓max{i≃ | τi≃ ⇑ τi, c(i≃) ↓ c(i)} then

return i
end

end
end

Notice that the time-based arrival model considered 
in this section is equivalent to the random order arrival 
model and is used for the sake of simplicity of presen-
tation and proofs. If we are given an algorithm in the 
time-based model (such as Algorithm 1), then we can 
translate it into the random arrival model by having 
the algorithm draw n arrival times from Uniform[0, 1]
and assign the ith smallest arrival time to the ith candi-
date in the input stream. If, on the other hand, we are 
given an algorithm in the uniform arrival model, then 
we can translate it into the time-based model by just 
ignoring the time component and just using that the 
candidate who arrived at τi was the ith candidate to 
arrive.

Therefore, any algorithm in one model can be easily 
used in the other model with identical properties.

2.2.2. Competitive Ratio. Surprisingly, we can show 
that for any probabilities p ↓ (p1, : : : , pk), there exist opti-
mal thresholds t↙ ↓ (t↙1, : : : , t↙k) that achieve the best com-
petitive ratio. Later on, we show how these thresholds 
can be computed explicitly (see Lemma 4). Using these 
thresholds in Algorithm 1 results in the promised optimal 
online algorithm. Let us start by presenting the success 
probability of our algorithm for general probabilities and 
then, for the special case that p ↓ (1=k, : : : , 1=k). After-
ward, we provide an overview of the proof of 
these results.

Theorem 1. (Competitive Ratio, General Probabilities). Fix 
k and p ↓ (p1, : : : , pk). Assume w.l.o.g. that pj ↑ pj+1 for all 
j < k. Then, there exist thresholds t↙ ↓ (t↙1, : : : , t↙k) such that 
t↙j ⇑ t↙j+1 for all j < k that depend only on the number of 
colors k and the probabilities p but not on the number of 
candidates n or the partition sizes n ↓ (n1, : : : , nk) such 
that Algorithm 1 with thresholds t↙ succeeds with probabil-
ity at least

Xk

j↓1

Z t↙j+1

t↙j

Xj

j≃↓1
pj≃

0

@

1

AT↙j
τj dτ , 

where T↙j ↓
Qj

j≃↓1 tj≃ . For all k and p ↓ (p1, : : : , pk), no 
online algorithm can achieve a better competitive ratio in 
the worst case over all numbers of candidates n and parti-
tion sizes n ↓ (n1, : : : , nk).

For the special case where p ↓ (1=k, : : : , 1=k), we 
obtain the following corollary. It shows that in this 
case, we can set a single threshold, and it also pro-
vides a simpler-to-parse formula for the competitive 
ratio.

Corollary 1. (Competitive Ratio, Equal Probabilities). Fix k 
and p ↓ (1=k, : : : , 1=k). Then, there exists a single threshold 
t↙ such that Algorithm 1 with thresholds t↙ ↓ (t↙, : : : , t↙)
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achieves a competitive ratio of

k 1
k 1:

This is two for k ↓ 2, 
"""
3

↔
for k ↓ 3, and 1 + O(logk

k ) as 
k↗↘. For all k and p ↓ (1=k, : : : , 1=k), no online algo-
rithm can achieve a better competitive ratio in the worst 
case over all numbers of candidates n and partition sizes 
n ↓ (n1, : : : , nk).

The main difficulty in proving Theorem 1 and Corol-
lary 1 is that in the point-wise optimal online algorithm, 
which can be obtained by backward induction, thresh-
olds depend on the number of candidates of each color 
that have already arrived. This dependency leads to a 
blowup in algorithm complexity and complicates the 
analysis of the success probability. Our high-level 
approach is to argue that in the worst case, all nj’s are 
large and that in this case, the point-wise optimal online 
algorithm is well approximated by the optimal algo-
rithm from the class of algorithms described in Algo-
rithm 1, which simply sets time-dependent thresholds. 
So, we can optimize over these.

A first ingredient in our proof is Lemma 1, which 
shows that for the class of algorithms in Algorithm 1, 
for any vector of thresholds t, the worst case arises 
when all nj’s are large.

Lemma 1. (Monotonicity). Fix the probabilities p ↓ (p1, : : : , 
pk) and a vector of thresholds t → [0, 1]k. For all j ↓ 1, : : : k, the 
success probability of GROUPTHRESHOLDS(t) is decreasing in nj.
Proof. By symmetry, it is enough to prove the lemma 
for j ↓ 1. Fix values for n1, n2, : : : , nk, and consider an 
instance with these sizes. We prove that the success 
probability of GROUPTHRESHOLDS(t) in this instance is 
lower than the success probability in the instance with 
n1 1 candidates of group 1 and nj candidates of 
groups j > 1 that results from removing the worst can-
didate of group 1. In fact, we can couple the realiza-
tions of the arrival times of the two instances by 
taking the arrival times of the smaller instance and 
sampling the arrival time of the worst candidate of 
group 1. Consider a realization for the smaller 
instance where GROUPTHRESHOLDS(t) fails. Then, either 
it never accepts a candidate, or it accepts a candidate 
who is not the overall maximum. In any of the two 
cases, adding the worst candidate of group 1 does not 
alter the relative ranks of other candidates, so the only 
possible difference is that the algorithm now selects 
him. Because he cannot be the best candidate, the 
algorithm also fails. w

Our next pair of lemmas, Lemma 2 and Lemma 3, 
allows us to bound the success probability of the point- 
wise optimal online algorithm by the limit success 
probability of the best algorithm, which sets time- 
dependent thresholds (Algorithm 1).

Lemma 2. For given probabilities p and thresholds t that sat-
isfy minjtj ↑ c > 0, there is a value GT(p, t) such that the suc-
cess probability of GROUPTHRESHOLDS(t) is at least GT(p, t)
and at most GT(p, t) + k · (1 c)z, where z ↓minjnj. We 
call this value the limit success probability.

Proof. Fix a vector of probabilities p. Consider a vec-
tor t such that minjtj ↑ c and two vectors of sizes n, n≃
such that nj < n≃j for all j → [k]. Denote by GT(p, t, n)
and GT(p, t, n≃) the success probabilities of Group-
ThresholdS(t) when the instance is of size n and n≃, 
respectively.

Couple the arrival times of the two instances in the 
following way. For each color j, identify the nj candi-
dates of color j of the smaller instance with the best nj 
candidates of color j in the larger instance. Now, we 
run in parallel GROUPTHRESHOLDS(t) in the two coupled 
instances. This means that in the smaller instance, we 
will be ignoring the smallest n≃j  nj candidates of the 
larger instance. Note that the smallest elements do not 
alter the relative rank of the largest elements. Thus, if 
the algorithm in the smaller instance stops, then the 
algorithm running in the larger instance either stops 
with the same candidate or stops earlier with one of the 
smallest n≃j  nj candidates of some color j. Now, for a 
given color j, if one of the best nj candidates arrives 
before tj, then the algorithm in the larger instance will 
never select any of the smallest n≃j  nj candidates. 
Therefore, if for all colors j, at least one of the largest nj 
candidates of color j arrives before tj, the two algo-
rithms stop with the same candidate. In other words, if 
the two algorithms stop with different candidates nec-
essarily for some color j, the best nj candidates arrived 
all after tj. Using a union bound, the latter event hap-
pens with probability at most 

Pk
j↓1 (1 tj)nj , which in 

turn, is at most k · (1 c)z, where z ↓minjnj. Therefore,
GT(p, t, n) k · (1 c)z ⇑ GT(p, t, n≃):

Note that only the right-hand side depends on n≃, so 
we can take a limit when minjn≃j tends to infinity, which 
by Lemma 1, exists, and conclude the result. w

Lemma 3. For any vector of probabilities p and sizes n, 
denote by ON(n, p) the optimal success guarantee of an online 
algorithm. Then, for every p, n, there exists a vector t such 
that On(n, p) ⇑ GT(p, t) + o(1), where minjtj ↑ 1=(2e).
Proof. Consider the optimal online algorithm obtained 
doing backward induction. This is when facing a candi-
date i that is the best seen so far of color c(i) and having 
seen rj candidates of color j, for j → [k], accept candidate i 
if the probability that i is the overall best is larger than or 
equal to the probability that we select the best overall if 
we do not stop with i and continue using the optimal 
policy. Denote by b(c(i), r) the former probability and by 
B(r) the latter probability. Thus, the optimal algorithm 
stops if b(c(i), r) ↑ B(r).
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On the one hand, we can calculate exactly b(c(i), r). 
Let j ↓ c(i). It is the probability that the best of the first 
rj candidates of color j is the best candidate overall. 
Now, the best of the first rj candidates of color j is the 
best of color j with probability rj=nj, and the best of 
color j is the best overall with probability pj. There-
fore, b(c(i), r) ↓ b(j, r) ↓ pj · rj=nj, which is an increasing 
function of rj. On the other hand, B(r) is not as easy to 
calculate, but it is easy to see that it is a decreasing 
function of rj, for all j → [k].

Suppose we are considering a candidate arriving at 
time t. If minj≃nj≃ is large, we have that rj=nj ⇒ t. Taking 
advantage of this fact, we approximate the optimal 
online algorithm with the following that we denote by 
ON≃(n, p). We accept a candidate of color j that arrives 
at time t if he is the best of color j seen so far, and 
b(j, ∝tn′) ↑ B(∝tn′), where ∝tn′ :↓ (∝tr1′, : : : , ∝trk′). By 
the monotonicity of b and B, for each color j, there is a 
value t≃j such that b(j, ∝tn′) ↑ B(∝tn′) if and only if 
t ↑ t≃j . Thus, it turns out that for t≃ defined this way, 
ON≃(n, p) is actually GROUPTHRESHOLDS(t≃).

We prove first that minjt≃j ↑ 1=(2e). In fact, note that 
the success probability of the optimal algorithm must 
be at least 1

e maxjpj because we can always apply the 
regular secretary algorithm in the color with highest pj. 
Also, the probability that the optimal online algorithm 
selects the overall best candidate before time 1=(2e) is 
at most 1

2e maxjpj because the best of a color arrives 
before time 1=(2e) with probability 1=(2e). Therefore, 
the probability that the optimal algorithm finds the 
overall best candidate after time 1=(2e) is at least 
1
2e maxjpj, and therefore, B(∝n=(2e)′) ↑ 1

2e maxjpj. Recall 
that b(j, r) ↓ pjrj=nj, so b(j, ∝n=(2e)′) ⇑ pj=(2e). Thus, we 
conclude that t≃j ↑ 1=(2e) for every j → [k]. Using Lemma 
2, we have that ON≃(n, p) ⇑ GT(p, t≃) + k · (1 1

2e)
minjnj .

Now, we prove that ON≃(n, p) approximates well 
ON(p, n). Consider some small ε > 0. We show that 
(1) for large minjnj, the probability that either of the 
two algorithms stops with a color j in [t≃j  ε, t≃j + ε] is 
small and that (2) outside that interval, the two algo-
rithms make the same decisions with high probability.

For the first fact, note that both algorithms stop 
only with a candidate who is the best seen so far of 
the same color. Now, if the best candidate of color j in 
the interval [0, t≃j + ε] arrives in [0, t≃j  ε], the algo-
rithm will not stop with a candidate of color j in 
[t≃j  ε, t≃j + ε]. Thus, either of the two algorithms stops 
in [t≃j  ε, t≃j + ε] with a candidate of color j for some 
j → [k], with probability at most 

Pk
j↓1

2ε
t≃j
⇑ 4eεk.

For the second fact, we prove that with high proba-
bility, for each j → [k], at time t ↓ t≃j  ε, r ⇑ t≃j n and at 
time t ↓ t≃j + ε, r ↑ t≃j n, where the comparisons are ele-
ment wise. We use the following standard Chernoff 
bounds. If X is a binomial random variable and 

0 < δ < 1, then

P(X ↑ (1 + δ)E(X)) ⇑ e 1
3δ

2E(X), and

P(X ⇑ (1 δ)E(X)) ⇑ e 1
3δ

2E(X):

Because rj at time t distributes as a Binomial(nj, t), 
we can use these bounds to get that at time t ↓ t≃j  ε,

P(rj ↑ t≃j nj) ⇑ exp  1
3ε

2nj(t≃j  ε)
 !

and at time t ↓ t≃j + ε,

P(rj ⇑ t≃j nj) ⇑ exp  1
2ε

2nj(t≃j + ε)
 !

:

Because t≃j ↑ 1=(2e) for all j, we can take ε ↓ 20 lognj"""nj
↔ and 

use a union bound to obtain that with probability 
1 O k

minj≃nj≃

% &
, for each j → [k], at time t ↓ t≃j  ε, r ⇑ t≃j n 

and at time t ↓ t≃j + ε, r ↑ t≃j n. From the monotonicity of 
b and B, we have that with probability 1 O k

minj≃nj≃

% &
, 

for all j → [k], before time t≃j  ε, it holds that b(j, r) < B(r), 
and after time t≃j + ε, it holds that b(j, r) > B(r).

Putting together facts (1) and (2), we get that with 
probability 1 O k log(minjnj)""""""""""

minjnj
↔

 !
, ON≃(n, p) and ON(n, p)

select the same candidate. Thus, when minjnj tends to 
infinity,

ON(n, p) ⇑ ON≃(n, p) + o(1) ⇑ GT(p, t≃) + o(1):

This concludes the proof of the lemma. w

The final ingredient is the following pair of lemmas, 
Lemma 4 and Lemma 5; they solve for the optimal 
time-dependent thresholds and give a formula for eval-
uating the limit success probability in terms of these 
thresholds.
Lemma 4. Consider a vector p such that pj ↑ pj+1 for all 
j < k. The optimal thresholds t↙ are given by

t↙k ↓ (1 (k 1)pk)
1

k 1 ,

t↙j ↓ t↙j+1 ·
Pj

r↓1
pr

j 1 pj
Pj

r↓1
pr

j 1 pj+1

0

@

1

A

1
j 1

for 2 ⇑ j ⇑ k 1

t↙1 ↓ t↙2 · e
p2
p1
 1 :

Proof. From the formula in Lemma 5, we can check 
that in the optimal vector t↙, it holds that t↙j ⇑ t↙j≃ if pj ↑
pj≃ by simply interchanging consecutive tj’s. With this 
in hand, we can assume w.l.o.g. that p1 ↑ p2 ↑⋯↑ pk 
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and t↙1 ⇑ t↙2 ⇑ ⋯ ⇑ t↙k. We impose first-order conditions 
to obtain the recursive formula.

Consider 1 ⇑ j ⇑ k. We have that

ε
εtj

GT(p, t) ↓ 1
tj

Xk

(↓j

Z t(+1

t(

X(

r↓1
pr

 !
T(
τ(

dτ pj
Tj

tj
j
:

Setting this derivative equal to zero, we obtain the 
equation

pj
T↙j

t↙j 1
j

↓
Xk

(↓j

Z t↙(+1

t↙(

X(

r↓1
pr

 !
T↙(
τ(

dτ (1) 

for all 1 ⇑ j ⇑ k.
For the case of j ↓ k, note that 

Pk
r↓1 pr ↓ 1, so we 

obtain the following formula for t↙k:

pk

t↙k 1
k

↓ 1
k 1

1
t↙k 1
k

 1
 !

� t↙k ↓ (1 (k 1)pk)
1

k 1:

For 1 ⇑ j ⇑ k 1, we can subtract Equation (1) for two 
consecutive indices, obtaining

pj
T↙j

t↙j 1
j

 pj+1
T↙j+1

t↙jj+1
↓
Z t↙j+1

t↙j

Xj

r↓1
pr

 !
T↙j
τj dτ �

pj

t↙j 1
j
 pj+1

t↙j 1
j+1

↓
Z t↙j+1

t↙j

Xj

r↓1
pr

 !
1
τj dτ:

(2) 

For i ↑ 2, this is equivalent to

pj

t↙j 1
j

 pj+1

t↙j 1
j+1

↓ 1
j 1

Xj

r↓1
pr

 !
1

t↙j 1
j

 1
t↙j 1
j+1

0

@

1

A �

t↙j ↓ t↙j+1

Pj
r↓1

pr
j 1 pj

Pj
r↓1

pr
j 1 pj+1

0

@

1

A

1
j 1

:

For j ↓ 1, Equation (2) becomes

p1 p2 ↓ p1

Z t↙2

t↙1

1
τ

dτ � p1 p2 ↓ p1log(t↙2=t↙1) �

t↙1 ↓ t↙2exp p2
p1
 1

 !
:

This concludes the proof of the lemma. w

Lemma 5. Consider vectors of probabilities p and thresh-
olds t, and assume ti ⇑ ti+1 for all i < k. The limit success 
probability of GROUPTHRESHOLDS(t) is given by

GT(p, t) ↓
Xk

j↓1

Z tj+1

tj

Xj

j≃↓1
pj≃

0

@

1

ATj

τj dτ , 

where Tj ↓
Qj

j≃↓1 tj≃ .

Proof. Because we are interested in the limit probabil-
ity, we can assume that in every interval, at least one 
candidate of each color arrives. First, note that the 
algorithm does not stop before time τ�if and only if for 
every color j, the best candidate who arrives in [0,τ]
arrives before tj. This happens with probability

Yk

j↓1

min{τ, tj}
τ

:

Now, the algorithm stops with the best candidate of 
color j≃ if this candidate arrives at a time τ ↑ tj≃ and the 
algorithm does not stop before time τ. Therefore, con-
ditioning on τ, the probability that the algorithm 
selects the best candidate of color j≃ is

Z 1

tj≃

Yk

j↓1

min{τ, tj}
τ

dτ:

If the algorithm stops with the best candidate of color 
j≃, the algorithm succeeds with probability pj≃ . There-
fore, in total, the algorithm succeeds with probability

Xk

j≃↓1
pj≃

Z 1

tj≃

Yk

j↓1

min{τ, tj}
τ

dτ ↓
Xk

j≃↓1
pj≃
Xk

j↓j≃

Z tj+1

tj

Tj

τj dτ

↓
Xk

j↓1

Z tj+1

tj

Xj

j≃↓1
pj≃

0

@

1

ATj

τj dτ, 

where tj+1 :↓ 1 and Tj ↓
Qj

r↓1 tr. w

Putting together these lemmas yields Theorem 1.

Proof of Theorem 1. From Lemma 1, we have that the 
success probability of the algorithm is at least its limit. 
Lemma 4 characterizes the optimal thresholds; from 
Lemma 3, we have that in the limit, the optimal online 
algorithm has the same success guarantee as 
GROUPTHRESHOLDS(t↙), so no other algorithm can have a 
better worst-case guarantee. w

2.2.3. Fairness. The optimal offline algorithm is 1-fair 
for p ↓ (1=k, : : : , 1=k), but as soon as probabilities are 
unbalanced, it will choose only from the colors that 
have maximum pj. In the worst case, |pj  pj≃ | < ω for 
all j, j≃, but the optimal offline algorithm is forced to 
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choose from the unique color j, which has maximum pj. 
We show that in the case where pj ↓ 1=k for all j, the 
optimal online algorithm is not exactly 1-fair but 
approaches 1-fairness exponentially fast in the mini-
mum group size minjnj.
Theorem 2. (Fairness Result, Equal Probabilities). For any 
k and p ↓ (1=k, : : : , 1=k), Algorithm 1 with the optimal sin-
gle threshold t↙ is 1 + O(k2(1 1

e)
minjnj)-fair.

Proof. From the first-order conditions, we have that
ε
εt1

GT(p, t↙) ↓ 0 �

1
t↙1

GT(p, t↙) p1 ↓ 0 � GT(p, t↙) ↓ p1 · t↙1:

Because the optimal success probability is at least 
p1=e, we have that t↙1 ↑ 1=e.

To see that the algorithm is 1 + O(k2(1 1=e)minjnj)-fair, 
consider an instance of sizes n≃1 ↓ n≃2 ↓⋯↓ n≃k ↓maxjnj. 
Certainly in this other instance, the algorithm is 1-fair 
because all of the thresholds are equal. We couple the 
two instances by identifying the best nj candidates of 
color j of the larger instance with the candidates of 
color j of the smaller instance, and we run the algo-
rithm in both in parallel. In color j, the worst n≃j  nj 
candidates do not alter the relative rank of the best nj 
candidates, and if one of the best nj candidates arrives 
before time t↙j , then the algorithm in the larger instance 
will not select one of the worst n≃j  nj candidates. 
Therefore, in order for the two algorithms to select a 
different candidate, we need that for some color j, all 
of the best nj candidates arrive after t↙j . This happens 
with probability at most 

Pk
j↓1 (1 t↙j )

nj ⇑ k(1 1
e)

minjnj . 
In the larger instance, the algorithm stops with each 
color with probability Θ(1=k), so k(1 1

e)
minjnj is an 

O(k2(1 1
e)

minjnj) fraction of it; therefore, the algorithm 
in the smaller instance is 1 + O(k2(1 1

e)
minjnj)-fair. w

Moreover, we show that the optimal online algo-
rithm is robust and degrades gracefully as we move 
away from perfectly balanced probabilities.

Theorem 3. (Fairness Result, General Probabilities). Fix k 
and p ↓ (p1, : : : , pk). Algorithm 1 with the optimal choice of 
thresholds t↙ ↓ (t↙1, : : : , t↙k) ensures that if pj ↓ pj≃ , then 
t↙j ↓ t↙j≃ . Moreover, t↙ is a continuous function of p. So, if pj 
and pj≃ are close, so are t↙j and t↙j≃ , and so is the probability of 
selection. More precisely, if pj > pj≃ > (1 ω)pj, then 
t↙j≃ > t↙j > (1 ω)t↙j≃ , and furthermore,

0 < P(GROUPTHRESHOLDS(t↙) selects color j)
 P(GROUPTHRESHOLDS(t↙) selects color j≃) < ω:

Proof. The facts that pj ↓ pj≃ implies t↙j ↓ t↙j≃ and that t↙
is continuous in p follow directly from the formulas in 
Lemma 4.

We prove now the more precise bound. Assume 
p1 ↑ p2 ↑⋯↑ pk and that pj+1 ↑ (1 ε)pj. We will prove 
first that t↙j ↑ e εt↙j+1. From Lemma 4, it holds trivially 
for j ↓ 1. For j ↑ 2, we have that t↙j=t↙j+1 equals

Pj
r↓1

pr
j 1 pj

Pj
r↓1

pr
j 1 pj+1

0

@

1

A

1
j 1

↑
Pj

r↓1
pj

j 1 pj
Pj

r↓1
pj

j 1 pj+1

0

@

1

A

1
j 1

↑
j

j 1 1
j

j 1 (1 ε)

0

@

1

A

1
j 1

↓ 1
1 + (j 1)ε

 ! 1
j 1

↓ exp  log(1 + (j 1)ε)
j 1

 !

↑ e ε:

Consider now nonconsecutive j < j≃. Assume pj≃ ↓
(1 ε)pj, and for j ⇑ r ⇑ j≃ 1, define εr such that 
(1 εr) ↓ pr+1

pr
. This means that (1 ε) ↓Qj≃ 1

r↓j (1 εr). 
Now, we have that

t↙j
t↙j≃
↓
Yj≃ 1

r↓j

t↙r
t↙r+1

↑ exp  
Xj≃ 1

r↓j
εr

 !

↑
Yj≃ 1

r↓j
(1 εr) ↓ (1 ε):

To bound the difference between the probabilities of 
selecting colors j and j≃ when pj ↑ pj≃ ↑ (1 ε)pj, note 
first that conditional on that the algorithm does not 
stop before t↙j≃ , it stops with either of the two colors 
with equal probability. Thus, the difference is the 
probability that the algorithm stops with color j in 
the interval [t↙j , t↙j≃]. Now, this is upper bounded by the 
probability that the best candidate of color j from 
those who arrive in [0, t↙j≃] arrives in [t↙j , t↙j≃], which is at 
most

t↙j≃  t↙j
t↙j≃

↓ 1 
t↙j
t↙j≃
⇑ 1 (1 ε) ↓ ε, 

concluding the proof of the theorem. w

To exemplify the conclusion of the last theorem, con-
sider that we have two colors, say men and women, 
and that the prior is such that the top candidate is a 
woman with probability 60% and a man with probabil-
ity 40%. This translates into having ω ↓ 1=3 in the state-
ment of the theorem, which implies that the algorithm 
will pick a woman at most 33% more often than a man. 
See Section 2.4 for more examples and empirical valida-
tions of these results.

To wrap up the section, observe that for the case of 
equal probabilities (i.e., p ↓ (1=k, : : : , 1=k)), Corollary 1
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and Theorem 2 imply that Algorithm 1 is 1 + o(1)-com-
petitive and 1 + o(1)-fair. Unfortunately, these two 
properties cannot be simultaneously achieved for a 
general p. Indeed, consider an instance where p1 ↓
1=

"""
k

↔
and pi ↓ (1 p1)=(k 1) for all 2 ⇑ i ⇑ k. Let ALG 

be an α-fair algorithm. Its success probability is
Xk

i↓1
pi · P(ALG selects the best of color i)

⇑
Xk

i↓1
αp2

i ↓
α
k +α (1 p1)2

k 1 ⇑ 2α
k :

On the other hand, the optimal offline algorithm always 
selects from color 1 and therefore, gets the best candi-
date with probability p1 ↓ 1=

"""
k

↔
. So, the competitive 

ratio of any α-fair algorithm is not better than 
"""
k

↔
=(2α). 

In particular, if we want an algorithm that is β-competi-
tive and γ-fair, then max{β,γ} ↑ k1=4=2.

2.3. Sample-Driven Multicolor Secretary Problem
In this section, we formulate a sample-driven version of 
our multicolor secretary problem inspired by Correa 
et al. (2021a). This model interpolates between the case 
where candidates have adversarially chosen values 
(when q ↓ 0) and the case where candidate values are 
independent draws from a known distribution (as 
q↗ 1). In this version of the problem, we have n candi-
dates partitioned into k groups C ↓ {C1, : : : , Ck} of sizes 
n ↓ (n1, : : : , nk). Each of the n candidates is placed in the 
set S (the samples) independently with a given proba-
bility q, and in the set V otherwise. We get to observe all 
candidates in S before the selection process starts. That 
is, we get to see the colors of all of these candidates and 
the relative ranks within their color. Then, the candi-
dates in V arrive one by one in uniform random order, 
and we can select one of them. For each new candidate, 
we observe the candidate’s color and the candidate’s 
relative rank within the candidates of the same color 
that we have already observed (including those in S). 
As before, we are given prior probabilities (p1, : : : , pk), 
where pj is the probability that the best candidate of V is 
of color j. We want to maximize the probability of 
selecting the best candidate of V. In other words, if we 
denote by Vj the set of candidates of color j in V, then 
we want to choose an algorithm ALG that maximizes

Xk

j↓1
pj · P(ALG selects best of Vj), 

which we call the success probability of ALG. To avoid 
some technical issues, when Vj ↓ ∞, we interpret “ALG 
selects the best of Vj” as true. Notice that for fixed q, as 
nj grows, the probability that Vj ↓ ∞ decays exponen-
tially fast to zero.

We extend the definition of GROUPTHRESHOLDS in the 
following way. First, we use independent Uniform[0, 1] 

arrival times to model both the arrival order and the 
partition into S and V; given arrival times τ1 < τ2 
< ⋯ < τn, we place all candidates i with arrival times 
τi < q in S and the rest in V. Our algorithm SD- 
GROUPTHRESHOLDS(t) is parameterized by thresholds t ↓
(tj, ()1⇑ j⇑k, 1⇑ (�in [q, 1]. Upon observing a candidate of 
color j at time τ�that is best so far in Vj, the algorithm 
computes the candidate’s relative rank with respect to 
the set of candidates of color j with arrival time in [0,τ]. 
If the relative rank is (, the candidate is selected if 
tj, ( ⇑ τ.

As for the regular version of the algorithm, we can 
show that its success probability decreases with nj, for 
all j. A proof of this lemma appears in Appendix A.
Lemma 6. (Monotonicity, with Samples). For fixed q, 
(p1, : : : , pk), and t, the success probability of the algorithm 
SD-GROUPTHRESHOLDS(t) is decreasing with nj for all 
j ↓ 1: : : k.

Now, similar to Lemma 5, we can calculate the limit 
success probability of SD-GROUPTHRESHOLDS(t). Detailed 
calculations that lead to the formula in the following 
theorem can be found in Appendix A.
Theorem 4. (Competitive Ratio, with Samples). The limit 
success probability of SD-GROUPTHRESHOLDS(t) is
Xk

j↓1
pj

Z 1

q

X

(:tj,(⇑τ
q( 1 · 1 

X

s↑(:tj,s⇑τ

q
τ

% &s ( τ max{q,tj,s}
τ

 !0

@

1

A

·
Y

j≃≠j
1 

X

s:tj≃,s⇑τ

q
τ

% &s 1 τ max{q,tj≃,s}
τ

 !0

@

1

Adτ:

(3) 

2.3.1. Computation of the Optimal Thresholds. For 
fixed q < 1 and given ε > 0, it is possible to approxi-
mate the optimal solution numerically by setting tj, ( ↓ 1 
for ( > logq(ε) ↓O(1=ε(1 q)) and optimizing over the 
finitely many remaining thresholds. Doing this results 
in a reduction in the success probability that is not 
larger than 

P
(>logq(ε)(1 q)q( 1 ↓O(ε).

2.3.2. Numerical Evaluation. We provide a numerical 
evaluation of the competitive ratio and fairness proper-
ties of our sample-based algorithm in Figure 2 and 
Appendix B. Note that for the special case of k ↓ 1 and 
as q↗ 1, our result recovers the classic result of Gilbert 
and Mosteller (1966).

2.4. Additional Empirical Evaluation
We conclude this section by returning to the basic set-
ting without samples and providing two additional 
sets of numerical evaluations that illustrate how our 
algorithms perform in situations where the prior proba-
bilities are initially incorrect.
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In Figure 4, we examine the effect of incorrect priors 
p≃ ≠ p on the competitive ratio of our fair online algo-
rithms. In Figure 4(a), we look at k ↓ 2 groups and three 
different true priors for the two groups ((0:5, 0:5), 
(0:7, 0:3), and (0:9, 0:1)) as a function of the assumed 
prior for group 1 (i.e., p≃1) ranging from zero to one. The 
competitive ratio peaks when the assume prior coin-
cides with the actual prior and deteriorates more 
quickly when the largest true prior is underestimated. 
In Figure 4(b), we look at three groups where priors fol-
low a power law with varying exponent γ → [0, 2] (i.e., 
we set (p1, p2, p3) proportional to (1, 1=2γ, 1=3γ)). Figure 
4(b) shows the effect of running the algorithm with an 
assumed γ≃ that is different from the true underlying γ. 
Again, the competitive ratio peaks when the assumed 
prior coincides with the actual prior and deteriorates 
away from it. The deterioration effect is not as pro-
nounced as in the setup of Figure 4(a) because in Figure 
4(b), all priors are affected proportionally.

In our second experiment, we investigate how, in the 
long run, our algorithm might help mitigate the bias 
generated by incorrectly set priors. For this, we con-
sider a Bayesian model, in which candidates have a 
true value drawn independently from an exponential 
distribution with parameters λ1 and λ2 for each of the 
two groups, but these parameters are unknown to the 
decision maker. The decision maker has a prior belief 
that we assume is the gamma distribution (conjugate of 
the exponential). The decision maker only observes 
ordinal information until a candidate is selected. Only 
once a candidate is selected is the true value observed 
(and only of that candidate). Under these assumptions, 
every time a candidate is selected, an easy update rule 
can be derived to obtain a posterior belief. In the experi-
ment, we draw all of the true values from an 
Exponential(1) (i.e., λ1 ↓ λ2 ↓ 1). For group 1, we initial-
ize the parameters of the gamma distribution (the belief 

of the decision maker) so that it matches the truth, with 
some uncertainty. For group 2, we initialize the belief 
with worse parameters so that the decision maker 
believes that the probability of containing the best can-
didate is significantly higher for group 1, around 2=3 
versus 1=3. Because the belief for group 1 is consistent 
with λ1 ↓ 1, selecting only from group 1 will not modify 
the relation between the two groups. In Figure 5, we 
show the results of 1 run and 100 runs of this experi-
ment using our algorithm, with sequences of 500 itera-
tions. We observe that the priors get closer to 0.5 as the 
number of iterations grows, so in fact, our algorithm 
allows the decision maker to learn the true priors.

3. The Multicolor Prophet Problem
We next consider the following multicolor prophet prob-
lem. In this model, n candidates arrive one by one, and 
the arrival order is either a fixed arbitrary permutation 
or a uniformly random permutation. Candidates are 
partitioned into k groups C ↓ {C1, : : : , Ck}. We write n ↓
(n1, : : : , nk) for the vector of group sizes (i.e., |Cj | ↓ nj) 
for all 1 ⇑ j ⇑ k. We identify each of the groups with a 
distinct color and let c(i), vi denote the color and value of 
candidate i, respectively. The value vi is revealed upon 
the arrival of i and is drawn independently from a given 
distribution Fi. We use F ↓ (F1, : : : , Fn) to refer to the vec-
tor of distributions. We are also given a probability vec-
tor p ↓ (p1, : : : , pk). The goal is to select a candidate in an 
online manner in order to maximize the expectation of 
the value of the selected candidate while selecting from 
each color with probability proportional to p. We distin-
guish between the basic setting, in which pj is the propor-
tion of candidates who belong to group j (i.e., pj ↓ nj=n), 
and the general setting, in which p is arbitrary. We com-
pare ourselves with the fair optimum, which is the opti-
mal offline algorithm that respects the pj’s.

Figure 4. (Color online) Competitive Ratios for k ↓ 2 and 3 When We Use the Optimal Algorithm for an Incorrect Prior 

(a) (b)

Notes. For k ↓ 3, we use the same parameterization as in Figure 1. (a) Competitive ratios for k ↓ 2 and incorrect priors. (b) Competitive ratios for 
k ↓ 3 and incorrect priors.
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3.1. Key Definitions
3.1.1. Fair Optimum. We define FAIROPT(n, C, F, p) as 
the optimal offline algorithm that selects a candidate of 
group j with probability pj for all j, and we write 
E[FAIROPT(n, C, F, p)] for the expected value that it 
achieves. More precisely, among the class of random-
ized rules to select a candidate that (a) chooses a candi-
date from each color j with probability pj and (b) can 
observe the realizations of all values, FAIROPT(n, C, F, p)
is the one that maximizes the expectation of the value of 
the selected candidate.

Intuitively, one can think of FAIROPT as the limit of 
the following experiment. We draw m times, with 
m∈ 1, an independent sample of the vector (v1, : : : , vn), 
so we obtain {(vi, s)n

i↓1}
m
s↓1. In each of the vectors, we 

select a candidate i↙(s) so that 1
m
Pm

s↓1 vi↙(s), s is maximized 
and i↙(s) belongs to color j in m · pj of the vectors.

3.1.2. Ex Ante Relaxation. We denote by qi the proba-
bility with which FAIROPT(n, C, F, p) selects candidate i. 
Using these probabilities, we can obtain the following 
upper bound on the performance of FairOpt, which is 
known in the prophets literature as the ex ante relaxation 
(see, for example, Feldman et al. 2016):

EXANTE(n, C, F, p) ↓
Xn

i↓1
qi · E(vi | vi ↑ F 1

i (1 qi)):

3.1.3. Fair Selection. We say that an online algorithm 
ALG is fair if it selects a candidate of each color j with 
probability proportional to pj.
Definition 3. (Fair Online Algorithm). We say that an 
online algorithm ALG is fair if

P(c(ALG) ↓ j |ALG stops) ↓ pj ∀1 ⇑ j ⇑ k:

Note that this is analogous to being 1-fair in Definition 2.

3.1.4. Approximation Ratio. Our goal is to find the fair 
online algorithm FairAlg with the best-possible 
approximation ratio with respect to FairOpt. To for-
mally define this, let E[FAIRALG(n, C, F, p)] denote the 
expected value achieved by FAIRALG.
Definition 4. (Approximation Ratio). We say that online 
algorithm FAIRALG provides an α-approximation if

sup
n,C,F,p

E[FAIROPT(n, C, F, p)]
E[FAIRALG(n, C, F, p)] ⇑ α:

Note that the smaller α ↑ 1, the better. Specifically, if 
α ↓ 1, then the expected value achieved by the fair online 
algorithm matches that of the fair offline algorithm.

3.2. Optimal Online Algorithms
We develop optimal fair online algorithms with surpris-
ingly small competitive ratio under different assump-
tions on the setting. In the first setting (Section 3.2.1), we 
consider an arbitrary fixed order of the candidates, non-
identical distributions, and general probabilities p. In the 
second setting, we assume that variables are i.i.d. and 
make the natural additional assumption that the pj’s are 
proportional to the group sizes (Section 3.2.2). In the 
third and final setting (Section 3.2.3), we relax the i.i.d. 
assumption to hold only within groups and assume that 
candidates arrive in uniform random order.

Our high-level approach is the following. We design 
online algorithms that accept each candidate i with 
probability α · qi, where q ↓ (q1, : : : , qn) are the marginal 
probabilities with which the optimal fair offline algo-
rithm FairOpt accepts candidate i ↓ 1, : : : , n. Note that 
for a fixed choice of α, this uniquely determines 

Figure 5. (Color online) Experiment Evaluating How the Priors Evolve as We Select Candidates from Both Groups When We 
Start with Incorrect Priors 

(a) (b)

Notes. (a) One run of the experiment. (b) Average of 100 runs of the experiment. 
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thresholds t ↓ (t1, : : : , tn) that we have to set for candi-
date i ↓ 1, : : : , n. We are still free to choose the parame-
ter α, and we choose it to optimize the worst-case 
approximation ratio.

Intuitively, choosing a smaller α�makes us accept less 
frequently, but conditional on stopping, we choose 
higher values. The right trade-off between these two 
forces and hence, the right choice of α�turn out to be dif-
ferent in each of the three settings. We find that in each 
of the three settings, the optimal approximation ratio is 
equal to 1=α↙, where α↙ is the optimal choice of α.

Our algorithms and analysis share features of several 
papers in the prophets inequality literature that obtain 
competitive algorithms through comparison with the 
ex ante relaxation (e.g., Alaei 2014, Lee and Singla 2018, 
Ezra et al. 2020). A novel aspect of our work is that we 
compare with the fair offline optimum and provide 
bounds on the worst-case loss from ensuring propor-
tional selection probabilities in an online algorithm.

3.2.1. General Distributions. We start by considering 
the setting in which candidates arrive in any fixed 
order, candidate values are drawn from not necessarily 
identical distributions, and the probabilities p can 
be arbitrary.

Our algorithm for this case (Algorithm 2) receives as 
input the probabilities q1, : : : , qn with which FAIROPT 
accepts candidate 1, : : : , n. It then sets thresholds so that 
it accepts each of the candidates with probability qi=2.

Note that for i ↓ 1, we can achieve this by setting the 
threshold to t1 ↓ F 1

1 (1 q1=2). For i ↓ 2, we have to set 
a slightly lower threshold than F 1

2 (1 q2=2) because 
with some probability, namely q1=2, we stop at i ↓ 1. 
Indeed, if we set the threshold to t2 ↓ F 1

2 (1 q2=2
1 q1=2), we 

reach candidate i ↓ 2 with probability 1 q1=2, and 
conditional on reaching it, we accept it with probability 

q2=2
1 q1=2; so, we accept it with probability exactly qi=2 as 
desired. Continuing like this yields the thresholds used 
in the algorithm.
Algorithm 2 (Fair General Prophet)

Input: Distributions F1, : : : , Fn and q1, : : : , qn
Output: i → [n], index of chosen candidate
s↖ 0
for i↖ 1 to n do

if vi ↑ F 1
i (1 qi=2

1 s=2) then
return i

end
s↖ s + qi

end

We show that this algorithm is fair and that it 
achieves an optimal approximation guarantee. Fairness 
follows quite directly from the fairness of FairOpt 
because our algorithm accepts with the same marginal 

probabilities just scaled down by 1=2. For the approxi-
mation guarantee, we compare the expected value col-
lected by the online algorithm with the expected value 
achieved by the ex ante relaxation, which is constrained 
to use the marginal probabilities q of FairOpt. Because 
the latter is only higher than the expected value 
achieved by FairOpt, it also implies an approximation 
guarantee with respect to FairOpt. We formalize this 
discussion in the following theorem. Note that the 
bound of two in this theorem is incomparable with the 
well-known factor 2 in the regular prophet inequality 
(Samuel-Cahn 1984), and indeed, we prove it via a sub-
stantially different method.

Theorem 5. For general settings and general distributions, 
Algorithm 2 is fair and achieves a 2-approximation to Fair-
Opt. No fair online algorithm can achieve a better approxi-
mation ratio.

Proof. We prove first that for all i → [n], Algorithm 2
selects candidate i with probability qi=2. In fact, for 
i ↓ 1, the algorithm stops if v1 ↑ F 1

1 (1 q1=2), which 
happens with probability 1 F1(F 1

1 (1 q1=2)) ↓ q1=2. 
Inductively, assume that it holds true for candidates 
1, : : : , i 1. Because the values are independent, the 
probability that the algorithm selects candidate i is the 
probability that the algorithm does not stop before i 
times the probability that vi is above the threshold. By 
the inductive argument, the former is 1 

Pi 1
i≃↓1 qi≃=2, 

and from the definition of the threshold, we get that 
the latter is (qi=2)=(1 Pi 1

i≃↓1 qi≃=2). Multiplying the two 
numbers, we get that the algorithm selects candidate i 
with probability qi=2. This concludes the inductive argu-
ment. Now, notice that FairOpt satisfies the fairness con-
straint, and therefore, the algorithm also satisfies it.

To prove that the algorithm is a 2-approximation with 
respect to FairOpt, note first that because 

Pn
i≃↓1 qi≃ ⇑ 1, 

we have that 1 
Pi

i≃↓1 qi≃=2 ↑ 1=2 for all i, and then, 1 
qi=2

1 
Pi

i≃↓1 qi≃=2
↑ 1 qi for all i. With this in hand, we can 

now compare the expectation of the value of the selected 
candidate:

E(ALG) ↓
Xn

i↓1

qi
2E vi | vi ↑ F 1

i 1 qi=2
1 

Xi
i≃↓1qi≃=2

0

@

1

A

0

@

1

A

↑ 1
2
Xn

i↓1
qiE(vi | vi ↑ F 1

i (1 qi))

↑ E(FAIROPT):

The last step follows from the ex ante relaxation, 
assuming that qi is the probability that FairOpt selects 
candidate i.

To see that there is no fair online algorithm with a 
better guarantee, it is enough to adapt the tight bound 
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for the classic prophet inequality. Consider an 
instance with two candidates, candidates 1 and 2, of 
colors 1 and 2, respectively. Their values are v1 ↓ 1 
with probability 1; for some small ε > 0, v2 ↓ 0 with 
probability 1 ε, and v2 ↓ 1=ε�with probability ε. We 
set the pi’s to be the probability that each candidate is 
the maximum (i.e., p1 ↓ 1 ε�and p2 ↓ ε). With this, 
E(FAIROPT) ↓ 2 ε, but any online algorithm (not nec-
essarily fair) has expected value at most one. w

3.2.2. Identical Distributions. We next consider the 
i.i.d. setting, where all values vi are independent sam-
ples from a common distribution F. In this case, pj ↓
nj=n for all groups j is a natural assumption because 
this is the probability with which the maximum overall 
is from group j. Also, note that in this case, the optimal 
offline algorithm is fair and chooses each element with 
probability 1=n. That is, qi ↓ 1=n for all i.

Algorithm 3 tries to mimic the optimal fair offline 
algorithm but aims at slightly lower marginal accep-
tance probabilities of 2=(3n). The derivation of the 
thresholds t that achieve this follows the same logic as 
in our algorithm for general distributions.
Algorithm 3 (Fair IID Prophet)

Input: Distributions F
Output: i → [n], index of chosen candidate
for i↖ 1 to n do

if vi ↑ F 1(1 2=(3n)
1 2(i 1)=(3n)) then

return i
end

end

We prove that this algorithm is fair and achieves an 
optimal approximation ratio of 3=2. To show fairness, 
we again exploit that the algorithm accepts each candi-
date i with a rescaled version of the marginal probabil-
ity qi ↓ 1=n with which FairOpt accepts a candidate. In 
the previous proof, it was key that the threshold was 
always larger than F 1

i (1 qi), which is not the case 
here. For i > n=2, the threshold is, in fact, smaller. To cir-
cumvent this, we use a stochastic dominance argument 
to establish the approximation factor.

Theorem 6. For basic settings and i.i.d. distributions Algo-
rithm 3 is fair and achieves a 3=2-approximation to FairOpt. No 
fair online algorithm can achieve a better approximation ratio.
Proof. We prove first that Algorithm 3 selects each 
candidate with probability 2=(3n). For candidate 1, it 
is clear that P(v1 ↑ F 1(1 1=(3n))) ↓ 2=(3n). Induc-
tively, assume that candidates 1, : : : , i 1 are selected 
each with probability 2=(3n). Because the values are 
independent, the probability that the algorithm selects 
i is the probability that it does not stop before i times 
the probability that vi surpasses the threshold. The 
former happens with probability 1 (i 1) 2

3n, and the 
latter happens, by definition of the threshold, with 

probability 2=(3n)
1 2(i 1)=(3n). If we multiply these two quan-

tities, we obtain that the probability of selecting i is 
2=(3n). Therefore, the algorithm stops with probability 
2=3, and a candidate of color j is selected with proba-
bility exactly nj

2
3n ↓ pj

2
3; so, it is fair.

To prove the approximation factor, we prove an 
approximate stochastic dominance between the algo-
rithm and FairOpt. More specifically, we prove that 
for all q → [0, 1], it holds that

P(ALG ↑ F 1(q))
P(FAIROPT ↑ F 1(q)) ↑

2
3 : (4) 

If this is true, then 3
2 P(ALG ↑ x) ↑ P(FAIROPT ↑ x) for 

all x ↑ 0. Thus, by simply integrating on both sides, 
we obtain that 32 E(ALG) ↑ E(FAIROPT).

Now, to calculate the left-hand side of Equation (4), 
note that because the values are i.i.d. and pj ↓ nj=n for 
all colors j, we have FAIROPT ↓maxivi. For the case of 
the algorithm, we can condition on which candidate is 
selected. The algorithm selects candidate i w.p. 2=(3n), 
and conditional on that, the probability that the value vi 
is above F 1(q) is just the ratio between 1 q and the 
probability that vi is above the corresponding threshold 
or one if the ratio is larger that one. So, we obtain that 
the left-hand side of Equation (4) is equal to
Pn

i↓1
2

3n min 1, 1 q
2=(3n)

1 (i 1)2=(3n)

’ (

1 qn ↓
Pn

i↓1 min 2
3n,(1 q)(1 2(i 1)

3n )
n o

1 qn :

(5) 
Consider a given q → [0, 1] such that for all i → [n],

2
3n ⇑ (1 q) 1 2(i 1)

3n

 !
:

Then, Equation (5) is equal to 2
3(1 qn) ↑ 2

3.
If, in turn, q is such that for all i → [n],

2
3n ↑ (1 q) 1 2(i 1)

3n

 !
, 

then Equation (5) can be rewritten as

(1 q)
(1 qn)

Xn

i↓1
1 2(i 1)

3n

 !
↓ 1
Pn 1
(↓0 q(

n 2
3 · 1

n · (n 1)n
2

 !

↓ 1
Pn 1
(↓0 q(

n n 1
3

 !

↑ 1
n n n 1

3

 !

↑ 2
3 :

Finally, consider all other cases for q. Because (1 
q) 1 2(i 1)

3n

% &
is decreasing in i, this means that q is 

such that for i ↓ 1, 2
3n is the minimum in Equation (5), 

and for i ↓ n, (1 q) 1 2(i 1)
3n

% &
is the minimum. In 
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other words,
2

3n < (1 q) , 
and

2
3n > (1 q) 1 2(n 1)

3n

 !
, 

which is equivalent to

1 2
n + 2 < q < 1 2

3n :

Let us set q ↓ 1 x
n, where x → (2

3 , 2 4
n+2). Note that the 

interval is empty if n ↓ 1, so we assume n ↑ 2. We can 
rewrite Equation (5) as follows:

Pn
i↓1 min 2

3 , x 1 2
3 · i 1

n
# $) *

· 1
n

1 1 x
n

# $n

↓
R 1

0 min 2
3 , x 1 2

3 ·
∝tn′

n

% &n o
dt

1 1 x
n

# $n

↑
R 1

0 min 2
3 , x 1 2

3 t
# $) *

dt
1 1 x

n
# $n

↓
2
3

3
2 1

x
# $

+
R 1

3
2 1

x
x 1 2

3 t
# $

dt
1 1 x

n
# $n

↓ 1 2
3x + x 1 3

2 + 1
x

# $
 2

3 x · 1
2 (1 3

2 1
x

# $2)
1 1 x

n
# $n

↓ 1 1
12 x 1

3x
1 1 x

n
# $n :

This last expression is increasing in n, so we show that 
for n ↓ 2 and x → (2

3 , 2), it is at least 2=3. This would be 
equivalent to

1 1
12 x 1

3x

1 (1 x
2)

2 ↑
2
3 for x → 2

3 , 2
 !

� 2x3 9x2 + 12x 4 ↑ 0 for x → 2
3 , 2
 !

� (x 2)2(2x 1) ↑ 0 for x → 2
3 , 2
 !

:

The last statement is clearly true, so we conclude that 
the algorithm is a 3=2-approximation.

To finish the proof of the theorem, we have to show 
that no fair online algorithm can achieve an approxima-
tion ratio better than 2=3. In fact, consider the instance 
where the value of every candidate distributes as

v1 ↓
2
3 · 1
ε with probability ε

n
1
3 with probability 1 εn :

(

On the one hand, in this instance, E(FAIROPT) ↓ 1+
O ε

n
# $

. On the other hand, a fair algorithm must select 

each candidate with equal probability. Consider a fair 
algorithm ALG, and let β=n be this probability for 
some β → [0, 1]. We have that

E(ALG) ↓ 1
3 P ALG ↓ 1

3

 !
+ 2

3εP ALG ↓ 2
3ε

 !
:

Because ALG stops with probability β, we have that 
P(ALG ↓ 1

3) ⇑ β. Now, P(ALG ↓ 2
3ε) is maximized if 

the algorithm stops whenever it sees a value of 2
3ε. 

Because a candidate has value 2
3ε�with probability εn 

and the algorithm reaches the ith candidate with prob-
ability 1 (i 1) βn, we obtain that

P ALG ↓ 2
3ε

 !
⇑
Xn

i↓1

ε
n 1 β i 1

n

 !

↓ ε
Z 1

0
1 βt dt + O(ε=n)

↓ ε 1 β2

 !
+ O(ε=n):

Therefore,

E(ALG) ⇑ 1
3 β +

2
3 1 β2

 !
+ O(1=n) ↓ 2

3 + O(1=n):

Making n large and ε�small, we can conclude that no fair 
algorithm can be better than a 3=2-approximation. w

3.2.3. Random Order. Finally, we consider a setting 
where values are only i.i.d. within each group but may 
differ across groups. We assume that candidates arrive 
in uniform random order and that pj ↓ nj=n for all col-
ors j.
Algorithm 4 (Fair Random Order Prophet)

Input: Distributions F1, : : : , Fk
Output: i↙ → [n], index of chosen candidate
for i↖ 1 to n do

if vi ↑ F 1
c(i)(1 

1=(n
""
2

↔
)

1 (i 1)=(n
""
2

↔
)) then

return i↙ ↓ i
end

end

For this case, we show that Algorithm 4, which sets 
thresholds to achieve an acceptance probability of 1=

"""
2

↔

that is fair and achieves an optimal approximation ratio 
of 1=(2 

"""
2

↔
) ⇒ 1:707. The proof of this result appears in 

Appendix C.
Theorem 7. For basic settings with i.i.d. valuations within 
groups and uniform arrival order, there is a 1=(2 """

2
↔

)-approximation with respect to FairOpt.

3.3. Sample-Driven Multicolor Prophet Problem
If instead of the distributions of the random variables, 
we only have sample access to them, we still can obtain 
approximate versions of our results if we are given the 
probabilities of stopping with each variable. The 
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analysis is similar to that of Rubinstein et al. (2020) for 
the i.i.d. prophet inequality with samples.

For the case of general distributions, if we are given 
the probabilities q1, : : : , qn, we can obtain an approxi-
mate version of Algorithm 2. Using Mi ↓O(log(n=ε)=
(ε2qi)) samples of Fi, we can replace the threshold 
F 1

i (1 qi=2
1 s=2) with the ∝Mi · (1 ε) · qi=2

1 s=2′th largest sam-
ple. Let τi be the resulting threshold. A simple Chernoff 
bound indicates that the probability that (1 Fi(τi)) is 
in the interval [(1 ε) · qi=2

1 s=2 , qi=2
1 s=2] is at least 1 ε=n. 

This means that with probability at least 1 ε, all of the 
thresholds are larger than the thresholds of Algorithm 
2, but for every variable, the probability that it is larger 
than its threshold is only a factor (1 ε) smaller.

For the case of i.i.d. random variables, 1=qi ↓O(n), so 
in total, we need O(n2log(n=ε)=ε2) samples to repeat 
the same argument. Now, because in Algorithm 3, we 
only want to approximate quantiles 2=3n

1 2(i 1)=3n, which 
range from 2=3n to 2=n, we can reduce the number of 
samples. In fact, we only need to approximate well the 
O(1=ε) elements of the grid {2=3n, (1 + ε) · 2=3n, (1 + ε)2 

·2=3n, : : : , 2=n}. Therefore, M ↓O(n log(1=ε)=ε2) sam-
ples are enough.

3.4. Additional Empirical Evaluation
We conclude this section with an empirical comparison 
of our multicolor prophet algorithms (Algorithm 2
(Fair PA) and Algorithm 3 (Fair IID)) against other stan-
dard algorithms. We focus on the case where values are 
distributed i.i.d. and each candidate is a group on its 
own. We compare with the following baselines. 

• SC algorithm (Samuel-Cahn 1984). This algorithm 
sets a single threshold so that the maximum is above 
this threshold with probability exactly 1=2. It achieves 
an optimal 2-approximation for possibly nonidentical 
independent distributions and arbitrary arrival order.

• EHKS algorithm (Ehsani et al. 2018). This algorithm 
sets a single threshold so that an individual candidate is 
accepted with probability 1=n. It achieves an approxima-
tion of (e + 1)=e ⇒ 1:58 for possibly nonidentical indepen-
dent distributions and random arrival order.

• CFHOV algorithm (Correa et al. 2021b). This algo-
rithm sets a sequence of thresholds based on acceptance 
probabilities that result from solving a differential equa-
tion. It achieves an optimal 1.342-approximation for IID 
distributions.

• DP algorithm (e.g., Chow et al. 1971). This algorithm 
is the optimal threshold algorithm for the prophet prob-
lem, where thresholds are obtained by backward induc-
tion. This algorithm is optimal, even when distributions 
are different and candidates arrive in arbitrary order.

We consider two settings. In the first one, the input 
stream consists of 50 samples from the uniform distribu-
tion in the range [0, 1], and in the second one, the input 

consists of 1,000 samples from the binomial distribution 
with 1,000 trials and 1=2 probability of success of a single 
trial. For better comparability with existing algorithms, 
in both cases, we assume that each candidate is a group 
on its own. We run each algorithm 100,000 times.

In Figure 6, we compare the number of times that our 
algorithms, SC, EHKS, CFHOV, and DP pick from each 
position of the stream. We observe that the SC, EHKS, 
and DP baselines pick candidates more from the first 
half of the stream compared with the second half (by 
more than a factor of 1.75), whereas CFHOV picks 
mostly from the second half of the stream (by more 
than a factor of 4). So, all of these algorithms are unfair. 
In contrast, our algorithms select the same number of 
candidates throughout the stream. The average values 
of the chosen candidate for Algorithm 2 (Fair PA), 
Algorithm 3 (Fair IID), SC, EHKS, CFHOV, and DP for 
the uniform distribution are 0.501, 0.661, 0.499, 0.631, 
0.752, and 0.964, respectively, whereas for the binomial 
distribution, they are 298.34, 389.24, 277.63, 363.97, 
430.08, and 548.94, respectively.

In conclusion, for both settings, both of our algo-
rithms (Algorithm 2 and Algorithm 3) provide perfect 
fairness while giving 51.97% and 68.57% (for the uni-
form case), respectively, and giving 54.35% and 70.91% 
(for the binomial case), respectively, of the value of the 
optimal but unfair online algorithm.

It should be noted that the fact that DP picks mostly 
from the first half is not a general phenomenon. It heavily 
depends of the distribution from which the input is 
drawn. On the contrary, SC and EHKS always pick more 
often from the early parts of the stream because their con-
ditional stopping probability is constant.

4. Conclusion and Open Problems
In this work, we explored questions of fairness and bias 
in natural multicolor variants of the two canonical pro-
blems of online selection: the secretary problem and the 
prophet problem. We designed optimal fair online 
algorithms for these problems and provided a compre-
hensive empirical evaluation of these algorithms and 
their properties.

Specifically, we explored a multicolor variant of the 
secretary problem, where we assumed that comparisons 
within a group are accurate, whereas comparisons 
across groups are impossible. This assumption was 
motivated by situations where the evaluator makes 
biased evaluations of the candidates’ abilities that are 
consistent within the groups but not across groups or 
where candidates take different tests (say at different 
institutions). In the psychology literature, this kind of 
bias has been referred to as a lack of measurement equiva-
lence (Drasgow 1984). A mathematical model complying 
with this notion of bias arises naturally when for each 
candidate i, there is a ground truth Xi that is not directly 
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observable. Through a test or an interview, we observe 
fc(Xi) if candidate i belongs to group c, where fc is an 
unknown monotone function. Our work can be seen as 
capturing the case where the choice of these functions is 
adversarial, and hence, no comparisons across groups 
can be made. It would be interesting to relax this 
assumption and explore under which assumptions bet-
ter approximation guarantees are possible.

Another crucial assumption in our multicolor secre-
tary model was that we assumed that we are given prob-
abilities, with which the best candidate of a color is the 
best candidate overall. Our algorithms were given these 
probabilities, but the actual coin flips were only realized 
after a candidate has been selected. This is in line with 
standard models of discrimination in labor markets 
(Becker 1971). This literature has found that although 
signals about candidates who are available in the hiring 
process often exhibit an implicit or even explicit bias 
(e.g., SAT scores), candidates have “true” unobservable 
qualities, which are only measurable via long-term out-
comes. We analyzed numerically what happens with 
our algorithms if they are fed incorrect priors. It would, 
of course, also be interesting to explore the design of 
algorithms that optimally trade off approximation guar-
antees and robustness to inaccurate priors.

We also studied a multicolor variant of the prophet 
inequality problem and assumed that both online and 
offline solutions have to obey certain “quotas” for each 
color. Imposing quotas is one way to take affirmative 
action (Sowell 2004) but not the only one. It would be 
interesting to propose and study models that capture 
other more proactive forms of affirmative action, such 
as targeted outreach and recruiting or alternate hiring 
and admission practices.

Finally, there is ample opportunity to extend our 
work to combinatorial settings. We expect that building 
on the respective lines of work in the secretary, prophet, 
and optimal stopping literature in general could prove 
very fruitful. Particularly exciting directions include an 
extension to matching problems (Kesselheim et al. 2013, 
Gravin and Wang 2019, Ezra et al. 2020), allocation pro-
blems with matroid structure (Kleinberg and Weinberg 

2012, Feldman et al. 2015b, Babaioff et al. 2018, Dütting 
et al. 2020b), or even general combinatorial allocation 
problems (Feldman et al. 2015a, Dütting et al. 2020a).
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Appendix A. Proofs Omitted from Section 2.3
Proof of Lemma 6. We take an instance with sizes n ↓
(n1, : : : , nk) and increase it in one candidate. W.l.o.g. assume 
that the new candidate is of color 1, so we get an instance 
n≃ ↓ (n1 + 1, n2, : : : , nk). We couple the decisions of the algo-
rithm in both instances by first drawing the arrival times of the 
best nj candidates of each color j and separately drawing the 
arrival time of the (n1 + 1)th candidate of color 1. We argue that 
in a realization of the arrival times where the algorithm fails 
with n, it also fails with n≃. In fact, for such a realization, in the 
smaller instance Vj ≠ ∞ for all j and for some j, the algorithm 
selects a candidate who is not the best of Vj or never stops. 
Adding the (n1 + 1)th candidate of color 1 does not affect the 
relative ranks of the rest, so the only different action that the 
algorithm could do in the larger instance would be to select 
the (n1 + 1)th candidate of color 1. But, V1 was nonempty 
before adding this candidate, so she cannot be the best of V1. 
Therefore, the algorithm also fails in the larger instance. w

Proof of Theorem 4. Within this proof, we refer to SD- 
GROUPTHRESHOLDS(t) simply as ALG. For a given color j, we 
want to calculate P(ALG selects best of Vj). We say a candidate 
is acceptable if the algorithm would accept her if it had not 
stopped when she arrived. For a given time τ → [q, 1], we 
define Nj,τ�as the event that no candidate of color j who arrives 
in [q,τ) is acceptable. Note that Nj,τ�only depends on the 
arrival times of candidates of color j, so these events are inde-
pendent across colors. Now, in the limit, Vj is nonempty, so 

Figure 6. (Color online) In This Plot, We Present the Number of Times That Our Algorithms (Fair PA and Fair IID) and the Base-
lines (SC, EHKS, CFHOV, and DP) Pick from Each Position of the Input Prophet Problem Stream 

(a) (b)

Notes. In panel (a), the stream consists of 50 samples from the uniform distribution, and in panel (b), the stream consist of 1,000 samples from the 
binomial distribution. (a) Uniform distribution. (b) Binomial distribution.
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we can condition on the arrival time of the best in Vj. Thus,

P(ALG selects best of Vj)

↓ 1
1 q

Z 1

q
P(ALG selects best of Vj | best of Vj arrives at τ) dτ

↓ 1
1 q

Z 1

q
P(⇐k

j≃↓1 Nj≃ ,τ and best of Vj is acceptable | best of Vj

arrives at τ)dτ

↓ 1
1 q

Z 1

q
P(Nj,τ and best of Vj is acceptable | best of Vj

arrives at τ) ·
Y

j≃≠j
P(Nj≃ ,τ)dτ

↓
Z 1

q

X↘

(↓1
q( 1 ·P(Nj,τ and best of Vj is acceptable | best of

Vj arrives at τ and has rank () ·
Y

j≃≠j
P(Nj≃,τ)dτ

↓
Z 1

q

X↘

(↓1
q( 1 ·1tj,(⇑τ ·P(Nj,τ | best of Vj arrives at τ

and has rank () ·
Y

j≃≠j
P(Nj≃,τ)dτ

↓
Z 1

q

X↘

(↓1
q( 1 ·1tj,(⇑τ · 1 

X↘

s↓(
1tj,s⇑τ

q
τ

% &s ( τ max{q,tj,s}
τ

 ! !

·
Y

j≃≠j
1 
X↘

s↓1
1tj≃ ,s⇑τ

q
τ

% &s 1 τ max{q,tj≃,s}
τ

 ! !

dτ:

Moving the indicator functions to the conditions on the indi-
ces of the sums, we obtain the formula of the lemma. w

Appendix B. Additional Numerical Evaluation of 
SD-GROUPTHRESHOLDS

As we did in Figure 1 for the base model, we examine here 
the competitive ratio and fairness properties of our sample- 
based algorithm for the multicolor secretary problem. Unlike 
in the base model, we do not have an explicit formula for 
these values. However, we can efficiently compute them 
using the procedure described in Section 2.3. In Figure B.1, 
we consider the case for k ↓ 2 and k ↓ 3 groups with sampling 
rate q ↓ 1=2. For Figure B.1(a), we look at k ↓ 2 groups and 
vary the prior p1 (p2 ↓ 1 p1) linearly in [1=2, 1]. In Figure 
B.1(b), we look at k ↓ 3 groups in the power law setup 
described above, where we vary γ → [0, 2]. We observe that 
the competitive ratio is declining in p1 and γ. The algorithm 
achieves perfect fairness with balanced priors. As we move 
away from balanced priors, the selection probabilities first 
start to diverge from the priors, but then, they return back to 
them.

Appendix C. Proofs Omitted from Section 3.2.3
Proof of Theorem 7. Denote α ↓ 1=

"""
2

↔
and ri ↓ α=n

1 α(i 1)=n for 

Figure B.1. (Color online) For k ↓ 2, k ↓ 3, and Varying Priors, We Show the Competitive Ratio of Our Algorithm for the 
Sample-Driven Version of the Multicolor Secretary Problem with q ↓ 0:5 

(a) (b)

(c) (d)

Notes. These were obtained by numerically optimizing Equation (3). We also show the probabilities that it selects a candidate from each color 
conditional on stopping. For k ↓ 2, we vary p1 linearly in [1=2, 1] (and p2 ↓ 1 p1). For k ↓ 3, we set priors following a power law with varying 
exponent γ → [0, 2] (i.e., we set (p1, p2, p3) proportional to (1, 1=2γ, 1=3γ)). (a) Competitive ratio for k ↓ 2. (b) Conditional selection probabilities for 
k ↓ 2. (c) Competitive ratio for k ↓ 3. (d) Conditional selection probabilities for k ↓ 3.
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i → [n]. Note that Algorithm 4 stops with probability α�and 
accepts a candidate i of color j if vi ↑ F 1

j (1 ri). We have that

E(ALG) ↓
Xn

i↓1
E(vi | ALG selects i) · P(ALG selects i)

↓
Xn

i↓1

α
n · E(vi | ALG selects i)

↓
Xn

i↓1

α
n
Xk

j↓1

nj

n · E(vi | ALG selects i and c(i) ↓ j)

↓
Xn

i↓1

Xk

j↓1

αnj

n2 · E(vi |vi ↑ F 1
j (1 ri) and c(i) ↓ j)

↓
Xn

i↓1

Xk

j↓1

αnj

n2 · E(v1 |v1 ↑ F 1
j (1 ri) and c(1) ↓ j):

Note that FairOpt selects each candidate with probability 
1=n, so we have that by the ex ante relaxation,

E(FAIROPT) ⇑
Xk

j↓1

nj

n · E v1 v1 ↑ F 1
j 1 1

n

 !
, and c(1) ↓ j

++++

!
:

 

Now, in order to compare E(ALG) and E(FAIROPT), note that

E
%

v1 |v1 ↑ F 1
j (1 ri), and c(1) ↓ j

&

↑min 1, 1
nri

’ (
· E v1 v1 ↑ F 1

j 1 1
n

 !
, and c(1) ↓ j

++++

!
:

 

Therefore, we obtain that

E(ALG) ↑ E(FAIROPT)
Xn

i↓1

α
n min 1, 1

nri

’ (
:

Using the definition of ri, we get the following expression.
Xn

i↓1

α
n min 1, 1

nri

’ (
↓
Xn

i↓1
min α, 1 α i 1

n

’ (
1
n

↑
Z 1

0
min{α, 1 αt}dt

↓
Z 1

α 1

0
αdt +

Z 1

1
α 1

1 αt dt

↓ 1 α+ 2 1
α
 α2 1 1

α
 1

 !2
 !

↓ 2 α 1
2α :

This last expression is maximized when α ↓ 1=
"""
2

↔
, and its 

value is 2 
"""
2

↔
.

The tight instance is where all candidates have a different 
color and all values are zero with probability 1, except for 
one, which is zero with probability 1 1=n and n with proba-
bility 1=n. In this instance, E(FAIROPT) ↓ 1. If we repeat the 
previous analysis, all inequalities are equality except for the 
last one, where we only lose an additive O(1=n) term. w
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