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Abstract. There is growing awareness and concern about fairness in machine learning and
algorithm design. This is particularly true in online selection problems, where decisions
are often biased: for example, when assessing credit risks or hiring staff. We address the
issues of fairness and bias in online selection by studying multicolor versions of the classic
secretary and prophet problems. In the multicolor secretary problem, we consider that
each candidate has a color, and we can only compare candidates of the same color. In addi-
tion, we are given probabilities with which the best candidate of a given color is the best
candidate overall. These probabilities but not the outcome of the random coin flip are
known to both the online and offline algorithms. We characterize the optimal online algo-
rithm and show that unlike the optimal offline algorithm, it enjoys very desirable fairness
properties. In the multicolor prophet problem that we study, candidates can again be parti-
tioned into groups of different colors. To counteract imbalanced selection, each color is
associated with a target selection probability. We design fair online algorithms that condi-
tional on stopping, select from the different colors with the given target probabilities and
achieve optimal approximation guarantees against the fair offline optimum. We also study
data-driven (sampling-based) variants of both the multicolor secretary problem and the
multicolor prophet problem, and we provide an empirical evaluation of our algorithms.
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1. Introduction

more unexplored from an algorithmic perspective
(Kearns and Roth 2019).

The sharp growth in data availability that characterizes
modern society challenges our processing capabilities
not only because of its massiveness but also because of
the increasingly strict social norms that society seeks in
the algorithms processing it. For instance, machine
learning algorithms are now used to make credit and
lending decisions, to estimate the success of a kidney
transplant, to inform hiring decisions, and to recom-
mend schools to pupils among others. Therefore, there
is a founded concern over the use of algorithms that
may violate social norms. Two basic such norms that
are receiving significant attention are fairness and
privacy, and although a formalization of the latter is rel-
atively well established through the notion of differen-
tial privacy (Dwork et al. 2006), the former is much

In this paper, we are particularly interested in the
study of fairness in (machine learning) algorithms in
the context of sequential decision making under sto-
chastic input. We consider two fundamental problems
in fair online selection, both concerned with selecting a
single candidate. In both problems, candidates are par-
titioned into different groups or colors. The candidates
arrive sequentially, and upon the arrival of a candidate,
we have to irrevocably decide whether we want to
select the candidate or not.

1.1. The Multicolor Secretary Problem
In the multicolor secretary problem, candidates arrive in
uniform random order; we can rank candidates within
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a group, but we cannot compare candidates across
groups. We are thus looking at a secretary problem
with a (particular) partially ordered set of secretaries.
The use of poset models as a versatile tool to evaluate
fairness and bias in online selection was initiated by
Salem and Gupta (2024). Related problems with poset
structure were previously studied by Preater (1999),
Georgiou et al. (2008), and Kumar et al. (2011).

In our model, there is also a prior probability that the
best candidate from a group is the best candidate over-
all. We model this as an independent, random coin flip
that occurs after the selection. The problem models
situations in which different qualities of the candidates
make them largely incomparable (e.g., performance in
final examinations at two different schools A and B in
two different countries), but there is some probabilistic
“ground truth” that the best candidate of a group is the
best overall (for example, it may be known that the best
student of a year is more likely to come from school A
than from school B). In situations like this, it is natural
to evaluate the fairness of an algorithm by how closely
its selection probabilities match the prior probabilities.
Namely, if p; is the probability with which the maximal
candidate of group i € [k] is the best candidate overall,
then we say that the algorithm is a-fair for a > 1 if for all
groups i, conditional on stopping, the algorithm selects
a candidate of group i with probability in [p;/a, a - p;]
(Definition 2). Intuitively, the closer « is to one, the bet-
ter the algorithm reflects the prior probabilities, and the
fairer it is.

Putting fairness considerations aside for the moment,
we consider the goal of designing an online algorithm
that maximizes the probability of selecting the best
overall candidate and compare it with the offline opti-
mum (that is oblivious to the random coin flip that
determines the color of the best candidate). Note that
here, the offline optimum simply picks the best candi-
date from the group of largest prior probability. So, for
example, if there are two groups with priors 51% and
49%, then the optimum offline algorithm always
chooses the best candidate from the first group. This is
precisely the type of behavior that we seek to avoid.
Indeed, in situations like this, the offline optimum is not
a-fair for any a>1. One may think that the
best-possible online algorithm is to mimic the offline
optimum: namely, to select the group of largest prior
probability and then, run the classic secretary algorithm
on that group. We prove that this is not the case, and
indeed, our main result is to obtain the best-possible
online algorithm for the problem and to establish that it
satisfies very desirable fairness properties. Hence, for
this variant of online selection, fairness follows as a con-
sequence of being online optimal.

Example 1. (Multicolor Secretary). Suppose you are hir-
ing a professional for a position and have four

candidates for filling it. Two come from school A, and
two come from school B. You can compare candidates
coming from the same school, but you cannot com-
pare across schools. Suppose, in addition, that from
previous experience, you know that 60% of the time,
the best candidate comes from school A. If the process
is offline and you can see all candidates simulta-
neously, the best strategy is to pick the best candidate
from school A. This guarantees you a probability of
picking the overall best of 0.6. On the contrary, if the
process is online as in the secretary problem and can-
didates come in random order, the situation changes
dramatically. A natural idea would be to simply
ignore the candidates from school B and run the secre-
tary algorithm on the candidates from school A. For
n=2, the secretary algorithm selects the best with
probability 1/2, so you end up selecting the overall
best candidate with probability 0.3. You could instead
do something that is more fair to the candidates from
school B: wait until you see the second candidate of
any of the two schools. If they are the best of their
school, select them. If not, select a candidate of the
other school. One can easily show that with this pol-
icy, you end up selecting the best candidate with
probability 0.375. Indeed, the probability that the sec-
ond candidate of a school arrives before the second of
the other school is 1/2, and this candidate is the best
of their school with probability 1/2; so, the probability
of selecting the overall best is
1/1 11 1/1 11 3
5 <20.6 +2-20.4> +5 <20.4+2-20.6> =3 0.375.

Thus, in the online setting, we can take advantage of
the fact that in some realizations, we observe both
candidates from school B before the second candidate
from school A. Our general result leverages this idea
by skipping a fraction of the candidates of each color,
where the fraction depends continuously on the prior
probability that the overall best candidate is of that
color.

1.1.1. Our Results. Our main result for the multicolor
secretary problem (Theorem 1) characterizes the opti-
mal online algorithm and gives a closed formula for its
competitive ratio. We model the random order arrival
by associating uniformly distributed arrival times with
the candidates. An important ingredient in our proof is
a lemma (Lemma 1) that establishes that the competi-
tive ratio is decreasing as the number of candidates #;
of any given color i increases. We show that the online
optimum algorithm employs time-dependent thresh-
olds for each color that depend on the number of
groups k and the prior probabilities p = (p1,...,pi) but
not on the number of candidates from each group. The
algorithm then accepts the first candidate who arrives
after the threshold for its color and is the best candidate
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from that color so far. We visualize the approximation
guarantees of the optimal online algorithm for different
k and a range of prior probabilities p = (p1,...,px) in
panels (a) and (c) of Figure 1. In the case where there
are k groups and the maximum is equally likely to come
from any of these groups, our algorithm achieves a
competitive ratio of k!/*~1) (Corollary 1). This is two for
k=2, V3 for k=3, and 1+ O(logk/k) as k — c0. With
regard to fairness, we show that for equal priors over k
groups and arbitrary group sizes, the optimal online
algorithm does not choose from all groups with equal
probability (a property that we coin 1-fairness) but
approaches this property exponentially fast in the mini-
mum group size (Theorem 2). For general priors over k
groups, we show that when two groups j,j* have a simi-
lar prior p; > py > (1 — €)pj, then the probability that the
optimal online algorithm selects color j and the proba-
bility that it selects color j are within € of each other
(Theorem 3). To exemplify this bound, consider the
case where there are two groups, men and women, and
the prior is such that the top candidate is a woman with

probability 60% and a man with probability 40%. This
translates into having € = 1/3 in the theorem statement,
and thus, the optimal online algorithm will pick a
woman at most 33% more often than a man. A pictorial
view of the actual selection probabilities of the optimal
online algorithm compared with the priors is shown in
panels (b) and (d) of Figure 1.

We also study a data-driven version of the multicolor
secretary problem. Intuitively, this model interpolates
between a model with adversarial qualities, as assumed
so far, and one in which the qualities are sampled from
known distributions. As before, we assume that the
ground set of candidates is partitioned into k groups (or
colors) and that we can only compare candidates of the
same color. We use C; to denote the candidates of color
i. We write n; for the number of candidates of color i
and n = Y%, n, for the total number of candidates. Each
candidate chooses to be in S (the set of samples) inde-
pendently with probability 4 and to be part of V other-
wise. The samples are visible at the outset. Afterward,
the candidates in V arrive in uniform random order,
and we can select one of them. As in our base model,

Figure 1. (Color online) For k = 2, k = 3, and Varying Priors, We Show the Competitive Ratio of the Optimal Algorithm Along
with the Probabilities That It Selects a Candidate from Each Color Conditional on Stopping
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we again assume that the best candidate in V N C; is the
best candidate overall with probability p;. Our goal is to
maximize the probability of selecting the best candidate
in V, where we compare ourselves with the best offline
algorithm. For g =0, this model reduces to our base
model, and as 4 — 1, the model approaches a setting
where ranks are drawn from a known distribution. We
show that the competitive ratio is again decreasing
with the number of candidates #; of any given color i
(Lemma 6). We also give a closed formula for the com-
petitive ratio of any online algorithm that sets group-
specific thresholds t = (fy,...,f) (Theorem 4), and we
argue how this can be used to computationally solve
for the optimal such algorithm. We visualize the result-
ing competitive ratios for k=1,2,3 groups and equal
priors p; =1/k as a function of the sampling rate g in
Figure 2. We note that in the special case where k=1
and g — 1, our result recovers the classic result of Gil-
bert and Mosteller (1966).

Our results for the multicolor secretary problem are
summarized in Table 1. In Section 2.4, we provide addi-
tional numerical evaluations. We first explore the effect
of a wrong prior p’ # p on the competitive ratio, show-
ing that the competitive ratio degrades gracefully.
Then, using a simple model of belief update dynamics,
we show how wrong priors can be corrected over time.
For this, it is important that our algorithm (unlike the
offline optimum) selects from all groups with positive
probability.

1.2. The Multicolor Prophet Problem

In our second problem, which we call the multicolor
prophet problem, candidates have values drawn inde-
pendently from given distributions and arrive in an
arbitrary order. The goal is to maximize the expectation
of the value of the selected candidate while selecting

Figure 2. (Color online) Competitive Ratio of Our Algorithm
for the Sample-Driven Multicolor Secretary Problem for k =
1,2,3 and Balanced Priors
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Note. This was obtained by numerically optimizing Equation (3).

Table 1. Competitive Ratios for the Multicolor Secretary
Problem

General priors,

Equal priors General priors sample based

k'/®=1 (Corollary 1) Optimal guarantee Optimal threshold-based
(Theorem 1) guarantee (Theorem 4)

Note. The parameter k denotes the number of colors.

from each color with probability proportional to a pre-
scribed vector. We compete with the optimal offline
algorithm satisfying the same fairness constraint. More
formally, for a given partition of the candidates into col-
ors C; for i € [k] such that |C;| = n; and a vector of prob-
abilities p = (p1,...,px), we denote by FairOpt the
expected value of the optimal offline algorithm that
selects from color i with probability p; (see Section 3.1).
We say that an online algorithm is fair if conditioned on
stopping, it stops at color i with probability p; for all i €
[k] (see Definition 3). In other words, in a fair online
algorithm conditioned on the algorithm making a selec-
tion, the probability that a candidate is picked from
group i is exactly p;.

We seek to bound the ratio between the expected
value achieved by FairOpt and the best fair online
algorithm. So, the underlying paradigm here is that
although we can compare, we understand that selection
probabilities can be unfair or biased (for example,
because of differences in the value distributions or
because of different arrival positions), and we want to
correct this using the prior probabilities.

Example 2. (Multicolor Prophet). Consider again the
problem of hiring one of four professionals for a posi-
tion. Now, our goal is to maximize the expected
grades of the selected candidate. For simplicity,
assume that they are i.i.d. realizations of a Uniform][0,
1] distribution. A natural fairness constraint in this
case is that we should select candidates with the same
probability. We can achieve this in our framework by
making each candidate a group on its own and letting
pi=1/4for i€ {1,2,3,4}. The optimal offline algorithm
for this problem is perfectly fair. It selects each candi-
date with probability 1/4 and achieves an expected
value of 4/5=0.8. We can also calculate the optimal
online policy via dynamic programming (DP); a candi-
date should be accepted if their grades are above the
expectation of what comes next if we skip them. If the
threshold for candidate i + 1 is z, the threshold for can-
didate i is T(z) = max{z, X} = z+ E[(X — 2). ], where X
is a Uniform[0, 1] random variable. With this,
T(z) =z +(1—2z) /2. The threshold for the last candi-
date is, of course, zero. So, for the third candidate, it is
T(0) =1/2. For the second, it is T(1/2) =5/8, and for
the first one, it is T(5/8) = 89/128 ~ 0.695. This policy
gives an expected grade of T(89/128) ~ 0.741, but the
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first candidate is accepted with probability 0.305,
which is rather unfair to the other three candidates.
We can instead calculate thresholds so that all candi-
dates are selected with equal probability, namely
a-1/4, for some a €[0,1]. For the uniform distribu-
tion, setting a = 1 gives in expectation = 0.739. We can
thus regain fairness while losing relatively little value.
In Figure 3, we visualize the selection frequencies as a
function of the arrival position for the same problem
with 50 candidates. We plot the selection frequencies
for the optimal online algorithm obtained via dynamic
programming, the worst-case optimal algorithm of
Correa et al. (2021b), and the optimal fair online algo-
rithm that we develop for this case. The optimal
online algorithm obtained via dynamic programming
chooses much more often from the beginning,
whereas the worst-case optimal algorithm chooses
mostly from the end. In contrast, our algorithm selects
candidates with equal probability. Our algorithm
obtains an expected value of 0.661, whereas the fair
offline algorithm has a value of 50/51 ~0.98. If the
distributions are more skewed, the asymmetry of the
selection probabilities in the DP becomes much
sharper, but we show in Theorem 6 that if we set
a =2/3, then the ratio between the optimal fair offline
value and the value of a fair online algorithm stays
below 3/2 for any distribution.

1.2.1. Our Results. We derive the optimal online algo-
rithms and prove tight bounds on their competitive
ratio for a range of settings. Our general approach is to
mimic the selection probabilities g; with which FairOpt
selects candidate i. We then set up our online algo-
rithms so that they select candidate i with probability
a - q; for some « € [0, 1]. In the most general version, we
prove that an approximation factor of two is best possi-
ble (Theorem 5), whereas improved factors can be
obtained by making natural assumptions on the prior
probabilities and the arrival order. This includes a tight
factor 3/2 approximation for the special case of ii.d.
random variables (Theorem 6) and a tight 1/(2 — V2) ~
1.707 approximation for the case where random

Figure 3. (Color online) We Plot the Selection Frequencies as
a Function of Arrival Position for the i.i.d. Uniform[0, 1] Case
for n =50 Candidates Aggregated Over 100,000 Runs for the
Optimal Online Algorithm via DP, the Worst-Case Optimal
Online Algorithm of Correa et al. (2021b) (CFHOV), and the
Optimal Fair Online Algorithm (Fair IID)
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variables are only i.i.d. within each group but arrive in
uniform random order (Theorem 7). In Section 3.3, we
consider a version of the multicolor prophet problem
with samples. We argue that if we are given the proba-
bilities 41, . .., q,, then O,(logn) samples from each dis-
tribution suffice to recover the factor two approximation
for the general case up to an additive error of ¢, whereas
O¢(n) samples suffice for the i.i.d. result.

We summarize our findings for the multicolor
prophet problem in Table 2. In Section 3.4, we provide
further empirical evaluations of our fair online algo-
rithms and compare their performance and fairness
guarantees with additional online algorithms that have
been proposed in the literature.

1.3. Related Work

An important precursor to our work is Buchbinder et al.
(2014). Their starting point is the observation that the
optimal policy for the classic secretary problem intro-
duces incentives for candidates to arrive late. Indeed,
that optimal policy skips the first 1/e fraction of candi-
dates and then, selects the first candidate who is best so
far. With this in mind, Buchbinder et al. (2014) look for
incentive-compatible policies: that is, policies in which
the acceptance probabilities for each of the arrival posi-
tions have to be the same. This can also be interpreted
as a fairness constraint, according to which selection
probabilities should not depend on the time of arrival.
Khatibi and Jacobson (2018) use this paradigm to study
fairness in the online allocation of tasks to workers.
They model this problem through the weighted secre-
tary problem with k positions and design incentive-
compatible algorithms for this problem. The incentive-
compatibility constraint studied in these two papers
has some similarities with the quota approach that we
take in the multicolor prophet problem, with the differ-
ence that we aim to balance selection probabilities
based on the candidates” identities rather than their
arrival times.

The poset approach for modeling biased evaluations
in secretary problems was initiated by Salem and Gupta
(2024). In their model, every secretary has a score,
which induces a total order on the secretaries. The
online algorithm only has access to a partial order that
is consistent with the total order. The goal is to hire d
secretaries whose weight is competitive with that of the
d highest-scoring secretaries. As a special case of their
model, they consider the group bias model, which coin-
cides with our model, where secretaries are partitioned

Table 2. Competitive Ratios for the Multicolor Prophet
Problem

General iid. Random order

2 (Theorem 5)  3/2 (Theorem 6) 1+ V2/2~1.707 (Theorem 7)

Note. These guarantees hold for any number of colors.
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into k groups and can only be compared with secretar-
ies in their own group. They insist on their algorithms
to satisfy ordinal fairness; secretaries with the same rank
within their group should be accepted with the same
probability, and these probabilities should decrease
with rank. They consider both an adversarial model
and a stochastic model. In the adversarial model, both
the scores and the group membership are decided
adversarially. In the stochastic model, each secretary
selects a group independently with probability
q=1(q1,...,qx), and scores are sampled independently
from a common distribution. They show how to paral-
lelize algorithms for the d-choice secretary problem to
obtain a k(1 + o(1))-competitive algorithm for the adver-
sarial model and a 2e(1 + o(1))-competitive algorithm
for the stochastic setting (as d — oo0). For the single-
choice problem, they obtain O(k) and O(1) competitive
algorithms. They also show a Q)(k) lower bound for the
adversarial setting, which follows by considering the
case where all of the value comes from one group, and
the ordinal fairness constraint forces the algorithm to
select low scores. In summary, although the models
considered by Salem and Gupta (2024) share some fea-
tures of our problems—comparisons are only possible
within groups, like in the multicolor secretary problem,
or candidates have scores drawn from a distribution,
like in the multicolor prophet problem—they also differ
from our problems in significant ways. In particular,
the notion of ordinal fairness is based on ranks, whereas
our notions of fairness are based on selection probabili-
ties by group.

Kumar et al. (2011) and Feldman and Tennenholtz
(2012) do not take a fairness perspective but study sec-
retary problems that share features of our model.
Kumar et al. (2011) consider the problem of selecting a
maximal secretary from a partially ordered set of candi-
dates. Their algorithm skips the first 7(k) elements,
where k is the number of maximal secretaries. After-
ward, it takes any undominated candidate, provided
that among the candidates seen so far, there are at most
k undominated secretaries. This latter condition may
make them pass on undominated candidates who
arrive early in the sequence, but it will never pass on
the last maximal candidate in the permutation. They
show that this algorithm succeeds with probability at
least k~/®-1((1 + logk!/*~D)* —1). This approaches 1/e
as k — 1 and one as k grows large. For the special case
where the poset consists of k chains, they show that their
algorithm succeeds with probability k~1/*~1 — O(k/n),
whereas no online algorithm can achieve a better success
probability than k~V/* =1 —o(1) (for k=o(y/n) and
n — o0). This final result also applies to our problem but
only in the special case where the best secretary is equally
likely to come from any of the groups. Our result in Cor-
ollary 1 strengthens the bounds for this case by showing
that for all n, the tight bound for this case is k~*/*~1. This

improvement is enabled by Lemma 1, which shows that
for all k, the worst case is when 11 — oo.

Feldman and Tennenholtz (2012) study the problem
of selecting secretaries in parallel; each of n candidates
in total is randomly assigned to one of Q queues, and
the order of candidates within each queue is random as
well. Candidates can only be compared with other can-
didates in the same queue. Only the first D candidates
in each queue can be hired. The objectives are to select d
secretaries and to hire as many of the top d secretaries
as possible. For a given parameter k € N, they show that
if d=1 and D =n/k, then with Q =1 queue, the best-
possible ratio is (de) ™", whereas with Q = k queues, it is
possible to achieve a ratio of k—*/(=1) _o(1). The con-
nection to the poset model and our model is that the
uniform random assignment to queues can be inter-
preted as assigning each secretary one of Q colors uni-
formly at random, with all secretaries assigned to the
same color forming a chain. The best secretary in a
chain is the best secretary overall with probability 1/Q.
So, this model is again restricted to the case where the
best secretary overall is equally like to come from any
of the groups.

In follow-up work, Arsenis and Kleinberg (2022)
study the single-choice prophet inequality problem
with individual fairness constraints. They consider two
fairness conditions. The identity-independent fairness
(IIF) condition requires that the probability that the
algorithm hires a candidate is independent of the candi-
date’s identity. The time-independent fairness (TIF) condi-
tion requires that the probability that the algorithm
hires a candidate is independent of their arrival time.
They show that the gap between the best online IIF
algorithm and the best offline (IIF or not) algorithm is
1/2 and that the gap between the best online TIF algo-
rithm and the best offline algorithm is 1/2. These results
are related because they also consider fairness in a
prophet inequality setting, but the approach is more
closely related to Buchbinder et al. (2014). Indeed, the
IIF and TIF requirements are two natural variations of
the incentive-compatibility constraint studied in this
earlier work.

A different approach to modeling fairness in online
allocation problems is that of Lien et al. (2014). They
consider the online allocation of a scarce resource but
not from a revenue optimization viewpoint. Rather,
they study the fill rate—the ratio of the allocated
amount to observed demand—and seek algorithms
maximizing the minimum fill rate. This approach cap-
tures a natural notion of fairness that seeks to make the
least happy customer as happy as possible, but it is
rather different from the approaches discussed so far.

Alpern and Baston (2017) study a variant of the clas-
sic secretary problem, in which candidates are evalu-
ated independently by two committee members with
different objectives. In their model, each candidate is
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described by a pair of scores (x,y), where x and y are
distributed uniformly and independently on [0, 1] and
observable by both selectors. One committee member is
interested in x, and the other is interested in y. The util-
ity that the firm derives from a candidate is assumed to
be (x +y)/2. Unanimous hiring decisions are respected,
whereas candidates with a split decision are hired with
probability p. A consensus cost c is deducted from the
utility of a selector who has rejected a candidate who is
nevertheless hired. The main result is that each stage
game has a unique (symmetric) equilibrium, which
involves setting two thresholds z < v. A selector recom-
mends to hire if her value is at least v or her value is at
least z and the other value is at least v. They then exam-
ine how p and c affect the utilities of the selectors and
the firm at equilibrium. So, this work studies “biased”
committee members and characterizes optimal recom-
mendation strategies for a fixed conflict resolution
scheme.

A final set of related works considers secretary
and/or prophet problems with restrictions on which
information is available to the decision maker without
considering whether this leads to fair decisions. Bhat-
tacharjya and Deleris (2014), for example, consider an
optimal stopping problem where the decision maker
gets imperfect information about random variables
presented to her one by one, such as the expected
reward or some multidimensional signal and the
expected reward conditional on that signal. Similarly
and closely related to our results for the multicolor sec-
retary problem and the multicolor prophet problem
with samples is the strand of research studying online
selection problems with samples. This line of research
was initiated by Azar et al. (2014), who considered
combinatorial variants of the prophet inequality prob-
lem where instead of having full distributional knowl-
edge, we only have access to one sample from each
distribution. The single-choice problem with samples
was first studied in more detail in Correa et al. (2022).
In subsequent work, Rubinstein et al. (2020) establish
that one sample from each distribution is enough to
achieve the optimal constant factor prophet inequality
for the single-selection problem with nonidentical dis-
tributions. Related models have been recently studied
for the secretary problem. Kaplan et al. (2020) consider
a dependent sampling model in which k of n candi-
dates are first sampled and then, their relative rank-
ings are revealed. Here, we adopt the somewhat
simpler independent sampling model of Correa et al.
(2021a), in which each element is observed with proba-
bility g. For a general unifying framework of single-
selection problems with sampling (advice), we refer
the reader to the work of Diitting et al. (2021). This
framework captures cases where the quality of the
candidate is drawn from a known distribution or from
an unknown distribution, and the designer receives

some samples from it. It also encompasses cases where
the online decision maker has learned a binary classi-
fier that directly recommends whether the current sec-
retary is the best overall or not.

2. The Multicolor Secretary Problem

In the multicolor secretary problem, n candidates arrive in
uniform random order. Candidates are partitioned into
k groups C ={C;,...,Cx}. We write n = (ny,...,1;) for
the vector of group sizes (i.e., |C;| =n;) forall1 < j < k.
We identify each of the groups with a distinct color and
denote by c(i) the color of candidate i. We can compare
candidates of the same color, but we cannot compare
candidates across groups. We assume that comparisons
are strict and use i > i’ to denote that candidate i is bet-
ter than candidate i’. We write maxC; for the best candi-
date of color j and maxC for the best candidate overall.
A natural assumption is that the best candidate from a
group is the best candidate overall with equal probabil-
ity 1/k, but we can also consider the case where these
probabilities are different. We denote the probabilities
with which the best candidate of group j is the best can-
didate overall by p;, and we write p = (p1, ..., px) for the
vector of these probabilities. Because candidates are
incomparable across groups, our decision is indepen-
dent of which group contains the best candidate. There-
fore, it is equivalent to assume that the group that the
best candidate belongs to is realized after the fact (i.e., if
we select the best candidate of color j, the selected can-
didate is the overall best with probability p;, indepen-
dently of everything else). The goal is to design an
online algorithm that maximizes the probability of
selecting the best candidate overall.

2.1. Key Definitions

2.1.1. Competitive Ratio. We evaluate online algorithms
by means of their competitive ratio. Consider some online
algorithm ALG. The algorithm selects the best candidate
overall if, on the one hand, it selects the best candidate of
a given color, and, on the other, this color has the best can-
didate overall. For an instance of the multicolor secretary
problem with group sizes n and probabilities p, we denote
by ALG(n,p) € {1,...,n} U {¢} the random index at which
the algorithm stops, where ¢ denotes the case when the
algorithm does not stop. The success probability of ALG is
the probability that it picks the best candidate overall: namely,
E[1aLG(m,p)=maxc] = E[PoaLGm, p)) * TALG(,p)=max Conr cimpy )+
We compare this with the optimal offline algorithm OPT
(ie., the best algorithm that can select a candidate after all
candidates have arrived). An optimal strategy is to choose a
color j with maximum p; and then, choose the best candidate
of that color. We denote by OPT(n, p) € {1,...,n} the ran-
dom index that OPT selects. The success probability of OPT

is E[10PT(n,p):maxC] = maX{Plz o -rPk}-
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Definition 1. (Competitive Ratio). Fixkand p = (p1, ..., px)-
An online algorithm ALG is B(k, p)-competitive if for
all input lengths n and partition sizes n = (1, ..., 1),

< Bk, p).
E[lALG(n,p)=maxC] ‘8( p)

Note that (k, p) > 1 and that the smaller B(k, p) is, the
better the approximation guarantee is.

E[]-OPT(n, p):maxC] <

2.1.2. Unbiased Selection. We also examine the extent
to which online or offline algorithms are biased where
ideally, selection should be unbiased. One way to mea-
sure this is by quantifying how much the probability of
selecting from any given color class j can differ from the
corresponding probability p;. The goal of abiding to the
probabilities p as much as possible can be viewed as a
form of meritocratic fairness (Joseph et al. 2016).

Definition 2. (Fairness). Fix k and p = (ps,...,pr). An
offline or online algorithm ALG is a(n, p)-fair, where
a(n, p) = 1, if for all colors j € [k],

a(l’ff ) < PEALG(,p) = /| ALGn,p) # 0)
< a(n,p)-p;.
2.1.3. Uniform Arrival Times. We model uniform ran-
dom arrival order through uniform random arrival times.
For this, we sample n independent realizations of the
Uniform[0, 1] distribution and denote them by 7; <
T <+ < T, indexed in increasing order.

2.2. Optimal Online Algorithm

We derive the optimal online algorithm (without fair-
ness considerations) and observe that—in sharp con-
trast to the optimal offline algorithm—it is robustly fair
and provides an “equal treatment of equals” (Aristotle)
guarantee.

2.2.1. The Algorithm. We show that the optimal online
algorithm is from the class of algorithms given by Algo-
rithm 1. Algorithms from this class receive as input a
vector of thresholds t=(ty,...,t), one for each color
j € [k]. When a candidate i arrives, the algorithm first
checks if the candidate arrived after the time threshold
for its color t;), and if it did, then it accepts the candi-
date if it is the best candidate of that color so far.

Algorithm 1 (GroupThresholds(t))
Input: t € [0,1]%, a threshold in time for each group
Output: i € [n], index of chosen candidate
/*assuming arrival times 11 < -+ < T, */
fori— 1tondo
if 7; > t.;) then
if i >max{/’ | 1y < 1;,¢(i") = c(i)} then
return i
end
end
end

Notice that the time-based arrival model considered
in this section is equivalent to the random order arrival
model and is used for the sake of simplicity of presen-
tation and proofs. If we are given an algorithm in the
time-based model (such as Algorithm 1), then we can
translate it into the random arrival model by having
the algorithm draw # arrival times from Uniform[0, 1]
and assign the ith smallest arrival time to the ith candi-
date in the input stream. If, on the other hand, we are
given an algorithm in the uniform arrival model, then
we can translate it into the time-based model by just
ignoring the time component and just using that the
candidate who arrived at 7; was the ith candidate to
arrive.

Therefore, any algorithm in one model can be easily
used in the other model with identical properties.

2.2.2. Competitive Ratio. Surprisingly, we can show
that for any probabilities p = (p1, . .., px), there exist opti-
mal thresholds t* = (#], ..., ;) that achieve the best com-
petitive ratio. Later on, we show how these thresholds
can be computed explicitly (see Lemma 4). Using these
thresholds in Algorithm 1 results in the promised optimal
online algorithm. Let us start by presenting the success
probability of our algorithm for general probabilities and
then, for the special case that p =(1/k,...,1/k). After-
ward, we provide an overview of the proof of
these results.

Theorem 1. (Competitive Ratio, General Probabilities). Fix
kand p = (p1,...,px). Assume w.l.o.g. that p; > pj1 for all
j < k. Then, there exist thresholds t* = (t}, ..., t;) such that
t; <ty for all j <k that depend only on the number of
colors k and the probabilities p but not on the number of
candidates n or the partition sizes n=(ny,...,ny) such
that Algorithm 1 with thresholds t* succeeds with probabil-
ity at least

koo [ T
DDA DI P
=17 /=1

where T]’f = Hj.,:l ty. For all k and p=(py,...,px), no
online algorithm can achieve a better competitive ratio in
the worst case over all numbers of candidates n and parti-
tion sizesn = (ny,...,1).

For the special case where p=(1/k,...,1/k), we
obtain the following corollary. It shows that in this
case, we can set a single threshold, and it also pro-
vides a simpler-to-parse formula for the competitive
ratio.

Corollary 1. (Competitive Ratio, Equal Probabilities). Fix k
and p = (1/k,...,1/k). Then, there exists a single threshold
t* such that Algorithm 1 with thresholds t' = (t*,...,t")
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achieves a competitive ratio of

ke,
This is two for k=2, \V3 for k=3, and 1+O(#) as
k — oco. For all k and p=(1/k,...,1/k), no online algo-
rithm can achieve a better competitive ratio in the worst
case over all numbers of candidates n and partition sizes
n=(n,...,n.

The main difficulty in proving Theorem 1 and Corol-
lary 1is that in the point-wise optimal online algorithm,
which can be obtained by backward induction, thresh-
olds depend on the number of candidates of each color
that have already arrived. This dependency leads to a
blowup in algorithm complexity and complicates the
analysis of the success probability. Our high-level
approach is to argue that in the worst case, all n;’s are
large and that in this case, the point-wise optimal online
algorithm is well approximated by the optimal algo-
rithm from the class of algorithms described in Algo-
rithm 1, which simply sets time-dependent thresholds.
So, we can optimize over these.

A first ingredient in our proof is Lemma 1, which
shows that for the class of algorithms in Algorithm 1,
for any vector of thresholds t, the worst case arises
when all ;s are large.

Lemma 1. (Monotonicity). Fix the probabilities p = (p1, ...,
pr) and a vector of thresholds t € [0,1]. Forall j=1,.. .k, the
success probability of GROUPTHRESHOLDS(t) is decreasing in n;.

Proof. By symmetry, it is enough to prove the lemma
for j =1. Fix values for ny,n,...,n;, and consider an
instance with these sizes. We prove that the success
probability of GrourTHRESHOLDs(t) in this instance is
lower than the success probability in the instance with
n; —1 candidates of group 1 and n; candidates of
groups j > 1 that results from removing the worst can-
didate of group 1. In fact, we can couple the realiza-
tions of the arrival times of the two instances by
taking the arrival times of the smaller instance and
sampling the arrival time of the worst candidate of
group 1. Consider a realization for the smaller
instance where GrROUPTHRESHOLDS(t) fails. Then, either
it never accepts a candidate, or it accepts a candidate
who is not the overall maximum. In any of the two
cases, adding the worst candidate of group 1 does not
alter the relative ranks of other candidates, so the only
possible difference is that the algorithm now selects
him. Because he cannot be the best candidate, the
algorithm also fails. O

Our next pair of lemmas, Lemma 2 and Lemma 3,
allows us to bound the success probability of the point-
wise optimal online algorithm by the limit success
probability of the best algorithm, which sets time-
dependent thresholds (Algorithm 1).

Lemma 2. For given probabilities p and thresholds t that sat-
isfy min;t; > ¢ > 0, there is a value GT(p, t) such that the suc-
cess probability of GROUPTHRESHOLDS(t) is at least GT(p,t)
and at most GT(p,t)+k- (1 —c)*, where z=minyn;. We
call this value the limit success probability.

Proof. Fix a vector of probabilities p. Consider a vec-
tor t such that min;t; > c and two vectors of sizes n,n’
such that n; < n]’. for all j € [k]. Denote by GT(p,t,n)
and GT(p,t,n’) the success probabilities of Group-
Thresholds(t) when the instance is of size n and n’,
respectively.

Couple the arrival times of the two instances in the
following way. For each color j, identify the n; candi-
dates of color j of the smaller instance with the best 7;
candidates of color j in the larger instance. Now, we
run in parallel GRouPTHRESHOLDS(t) in the two coupled
instances. This means that in the smaller instance, we
will be ignoring the smallest n; —n; candidates of the
larger instance. Note that the smallest elements do not
alter the relative rank of the largest elements. Thus, if
the algorithm in the smaller instance stops, then the
algorithm running in the larger instance either stops
with the same candidate or stops earlier with one of the
smallest 7} —n; candidates of some color j. Now, for a
given color j, if one of the best n; candidates arrives
before t, then the algorithm in the larger instance will
never select any of the smallest n; —n; candidates.
Therefore, if for all colors j, at least one of the largest 7;
candidates of color j arrives before t;, the two algo-
rithms stop with the same candidate. In other words, if
the two algorithms stop with different candidates nec-
essarily for some color j, the best n; candidates arrived
all after t;. Using a union bound, the latter event hap-
pens with probability at most Z;'(ﬂ (1—t)", which in
turn, is at most k- (1 — ¢)*, where z = min;n;. Therefore,

GT(p,t,n) —k-(1—c)* < GT(p,t,n’).

Note that only the right-hand side depends on n’, so
we can take a limit when min;n} tends to infinity, which
by Lemma 1, exists, and conclude the result. O

Lemma 3. For any vector of probabilities p and sizes n,
denote by ON(n, p) the optimal success guarantee of an online
algorithm. Then, for every p,n, there exists a vector t such
that On(n,p) < GT(p,t) +o(1), where min;t; > 1/(2e).

Proof. Consider the optimal online algorithm obtained
doing backward induction. This is when facing a candi-
date 7 that is the best seen so far of color c(i) and having
seen 7; candidates of color j, for j € [k], accept candidate i
if the probability that i is the overall best is larger than or
equal to the probability that we select the best overall if
we do not stop with i and continue using the optimal
policy. Denote by b(c(i), r) the former probability and by
B(r) the latter probability. Thus, the optimal algorithm
stops if b(c(i), 1) > B(r).



Downloaded from informs.org by [2800:300:6a71:b531:5854:48d2:c63a:879c] on 26 September 2025, at 02:36 . For personal use only, all rights reserved.

10

Correa et al.: Fairness and Bias in Online Selection
Operations Research, Articles in Advance, pp. 1-23, © 2025 INFORMS

On the one hand, we can calculate exactly b(c(i), r).
Let j = c(i). It is the probability that the best of the first
rj candidates of color j is the best candidate overall.
Now, the best of the first r; candidates of color j is the
best of color j with probability r;/n;, and the best of
color j is the best overall with probability p;. There-
fore, b(c(i), 1) = b(j, 1) = p; - rj/n;, which is an increasing
function of ;. On the other hand, B(r) is not as easy to
calculate, but it is easy to see that it is a decreasing
function of r;, for all j € [k].

Suppose we are considering a candidate arriving at
time . If min; 1y is large, we have that 7;/n; ~ t. Taking
advantage of this fact, we approximate the optimal
online algorithm with the following that we denote by
ON’(n, p). We accept a candidate of color j that arrives
at time t if he is the best of color j seen so far, and
b(j,|in]) > B(|tn]), where [tn]:=(|tr1],...,|trc]). By
the monotonicity of b and B, for each color j, there is a
value f; such that b(j,[fn]) > B(|tn]) if and only if

t> t]'- . Thus, it turns out that for t’ defined this way,

ON'(n, p) is actually GROUPTHRESHOLDs(t').

We prove first that min;t; > 1 /(2e). In fact, note that
the success probability of the optimal algorithm must
be at least 1max;p; because we can always apply the
regular secretary algorithm in the color with highest p;.
Also, the probability that the optimal online algorithm
selects the overall best candidate before time 1/(2e) is
at most 5 max;p; because the best of a color arrives
before tlme 1/(2e) with probability 1/(2¢). Therefore,
the probability that the optimal algorithm finds the
overall best candidate after time 1/ (2@) is at least
2emax]p], and therefore, B(|n/(2¢)]) > 2emax]p] Recall
that b(j, x) = p;r;/n;, so b(j,|n/(2e)]) < p;/(2e). Thus, we
conclude that t]’. >1/(2e) for every j € [k]. Using Lemma

2, we have that ON'(n,p) < GT(p,t') +k-(1—

Now, we prove that ON’(n,p) approximates well
ON(p,n). Consider some small ¢ >0. We show that
(1) for large min;n;, the probability that either of the
two algorithms stops with a color jin [t} — ¢,/ +¢] is
small and that (2) outside that interval, the two algo-
rithms make the same decisions with high probability.

For the first fact, note that both algorithms stop
only with a candidate who is the best seen so far of
the same color. Now, if the best candidate of color j in
the interval [O,t]’- +¢] arrives in [0, t]’- —¢], the algo-
rithm will not stop with a candidate of color j in
[t; — &,t] + ¢]. Thus, either of the two algorithms stops
in [t]f -, t]f + ¢] with a candidate of color j for some

j € [k], with probability at most Zf 1 ztf < 4eck.

l)minjnj
2e )

For the second fact, we prove that w1th high proba-
bility, for each j € [k], at time ¢ = t]'- —¢&,1r< t]'-n and at
time t = t]f +e,1r> t]’.n, where the comparisons are ele-
ment wise. We use the following standard Chernoff
bounds. If X is a binomial random variable and

0 < 06 < 1, then
P(X > (1+8)E(X)) < e ¥EX and

P(X < (1-6)E(X)) < e B,

Because 7; at time t distributes as a Binomial(n;, t),
we can use these bounds to get that at time t = {{ — ¢,

1
P(r; > t]’.nj) < exp <—§eznj(t]f - e))

and at time f = t]’. +¢,
P(r; < tinj) < ex _152,1,(,5' +¢)
j = L) = exp 2 Y] ’

Because t’ >1/(2e) for all j, we can take ¢ =20 lwﬁ] and

use a union bound to obtain that with probability
1- O(W) for each j € [k], at time ¢ = ti—er<tn
and at time f =/ + ¢, r > t/n. From the monotonicity of
b and B, we have that with probability 1 — O(mm]/n] )
for all j € [k], before time t]’. — ¢, it holds that b(j, r) < B(r),
and after time t]’. + ¢, it holds that b(j, r) > B(r).

Putting together facts (1) and (2), we get that with

probability 1 —O<kl°g(’;‘%) ON’(n,p) and ON(n,p)

select the same candidate. Thus, when min;n; tends to
infinity,

ON(n,p) < ON'(n,p)+0(1) < GT(p, ) +0(1).

This concludes the proof of the lemma. O

The final ingredient is the following pair of lemmas,
Lemma 4 and Lemma 5; they solve for the optimal
time-dependent thresholds and give a formula for eval-
uating the limit success probability in terms of these
thresholds.

Lemma 4. Consider a vector p such that p; > pj.1 for all
j < k. The optimal thresholds t* are given by

f=(1—(k—Dp)FT,

A

j‘p,-_P' 1
Bty | S fr2<js<k-1
J Pr
1

r=1j-1  Pj+1

o 21
tlztz.eﬂl

Proof. From the formula in Lemma 5, we can check
that in the optimal vector t, it holds that {7 <t if p; >
py by simply interchanging consecutive t;’s. With this
in hand, we can assume w.l.o.g. that p1 >pp >--- > py
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and t] < #; <--- < t;. We impose first-order conditions
to obtain the recursive formula.

Consider 1 < j < k. We have that

a 73%) 4 T T:
GT(p,t) / (Zm)—" —p=L.
é’—] te r=1 t;

Setting this derivative equal to zero, we obtain the

equation
p]ﬂl Z/( )gah (1)

foralll <j <k
For the case of j=k, note that Z, 1Pr=1, so we
obtain the following formula for #:

Pk _ 1 1
gl =1\ gkt

For1 <j < k—1, we can subtract Equation (1) for two
consecutive indices, obtaining

T; T* un
p]t*] 1 p]+1 t*] _/t

(Zp,) Jir =
I Jj+1 j

pj P/+1
g /t <Zpr>
7

] ]+1

- 1) = =1 (k—Dp).

(2)

For i > 2, this is equivalent to

pj P]+1 1
t*]'_l t § :Pr taej—l - tx—j—l =
i ]+1 j j+1
- .
J pr . =
r=1j-1 " Pj
= joop
r=1j-1 Pj+1

For j =1, Equation (2) becomes

£1
pr—p2=p1| _dt = pi-p=plogtr/t) =
t:

] = texp (Z— )

This concludes the proof of the lemma. O

Lemma 5. Consider vectors of probabilities p and thresh-
olds t, and assume t; < tiq for all i < k. The limit success
probability of GROUPTHRESHOLDS(t) is given by

k tis1 J T;
GT(p,H=Y /t oo | e,
=17t \ =l

TV
where Tj = [Tj -

Proof. Because we are interested in the limit probabil-
ity, we can assume that in every interval, at least one
candidate of each color arrives. First, note that the
algorithm does not stop before time 7 if and only if for
every color j, the best candidate who arrives in [0, 7]
arrives before t;. This happens with probability

ﬁmm{T t}

=t

Now, the algorithm stops with the best candidate of
color j’ if this candidate arrives at a time 7 > t; and the
algorithm does not stop before time 7. Therefore, con-
ditioning on 7, the probability that the algorithm
selects the best candidate of color j’ is

1k o
s £
/ Hmm{T i} it
t/-/ j=1 T
If the algorithm stops with the best candidate of color
J', the algorithm succeeds with probability p;. There-
fore, in total, the algorithm succeeds with probability

ZP]/ Hmm{T,t] ZPJZ/MT

tr =1
k t j ,
3 j+1 T]

= p]/ —].dT,
=17\ = T

wheretj;;:=1and T} = H{zl t,. O
Putting together these lemmas yields Theorem 1.

Proof of Theorem 1. From Lemma 1, we have that the
success probability of the algorithm is at least its limit.
Lemma 4 characterizes the optimal thresholds; from
Lemma 3, we have that in the limit, the optimal online
algorithm has the same success guarantee as
GROUPTHRESHOLDS(t*), so no other algorithm can have a
better worst-case guarantee. O

2.2.3. Fairness. The optimal offline algorithm is 1-fair
for p=(1/k,...,1/k), but as soon as probabilities are
unbalanced, it will choose only from the colors that
have maximum p;. In the worst case, |p; —p; | < € for
all j,j’, but the optimal offline algorithm is forced to
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choose from the unique color j, which has maximum p;.
We show that in the case where p; =1/k for all j, the
optimal online algorithm is not exactly 1-fair but
approaches 1-fairness exponentially fast in the mini-
mum group size min;#;.

Theorem 2. (Fairness Result, Equal Probabilities). For any
kand p=(1/k,...,1/k), Algorithm 1 with the optimal sin-
gle threshold t* is 1+ O(k*(1 — 1)™™")fair.

Proof. From the first-order conditions, we have that

P o
a—thT(p,t)—O N

1
= GT(p,t) —p1 =0 = GT(p,t) =p1 - £;.
1

Because the optimal success probability is at least
p1/e, we have that ] > 1/e.

To see that the algorithm is 1+ O(K*(1 — 1/e)™"")-fair,
consider an instance of sizes n} = nj =---=n; = max;n;.
Certainly in this other instance, the algorithm is 1-fair
because all of the thresholds are equal. We couple the
two instances by identifying the best 1; candidates of
color j of the larger instance with the candidates of
color j of the smaller instance, and we run the algo-
rithm in both in parallel. In color j, the worst n; —n;
candidates do not alter the relative rank of the best 7;
candidates, and if one of the best n; candidates arrives
before time #;, then the algorithm in the larger instance
will not select one of the worst n; —n; candidates.
Therefore, in order for the two algorithms to select a
different candidate, we need that for some color j, all
of the best n; candidates arrive after #;. This happens

with probability at most Z;{:l (1-£)" < k(1 - Lyeingth
In the larger instance, the algorithm stops with each
color with probability ©(1/k), so k(1 — %)mmf"f is an
O(KX(1 — H™™™) fraction of it; therefore, the algorithm
in the smaller instance is 1+ O(k*(1 — %)mm’ "-fair. O

Moreover, we show that the optimal online algo-
rithm is robust and degrades gracefully as we move
away from perfectly balanced probabilities.

Theorem 3. (Fairness Result, General Probabilities). Fix k
and p = (p1, ..., px). Algorithm 1 with the optimal choice of
thresholds t =(t],...,t;) ensures that if p;=pjy, then
t; = t;,. Moreover, t" is a continuous function of p. So, if p;
and p; are close, so are t; and t;,, and so is the probability of
selection. More precisely, if p;>py>(1—¢€)p;, then
t, >t > 1- e)tj*-,, and furthermore,

0 < P(GrourTHRESHOLDS(t") selects color f)

— P(GrourTHRESHOLDs(t") selects color ') < e.
Proof. The facts that p; = py implies £; =, and that t'

is continuous in p follow directly from the formulas in
Lemma 4.

We prove now the more precise bound. Assume
p12p2 22 pg and that pj11 > (1 — ¢)p;. We will prove
first that £; > e™“t;,;. From Lemma 4, it holds trivially

for j=1. Forj>2, we have that £ /;,; equals
j = ' =
S Pr S\ N B W
r=17-1  Pj r=1j-1 Vi
P , S
r=1j-1" Pj+1 r=1j-1 Pj+1
' =
i =
it
Fi-1-¢)

()

- exp(-oBL+ 1))

>e ¢,

Consider now nonconsecutive j < j’. Assume p; =
(1—¢)pj, and for j <r <j —1, define ¢ such that

(1—¢)= p;:l. This means that (1—¢)= H]f]l(l —&).

Now, we have that

t

A 7-1 -1

i t

i_ H : Y= .
5 =11 t*r > exp <— ;:j ér> > L]I I-¢e)=1-¢).

r=j r+1

To bound the difference between the probabilities of
selecting colors j and j* when p; > p; > (1 — ¢)p;, note
first that conditional on that the algorithm does not
stop before £, it stops with either of the two colors
with equal probability. Thus, the difference is the
probability that the algorithm stops with color j in
the interval [#],£;]. Now, this is upper bounded by the
probability that the best candidate of color j from
those who arrive in [0, ;] arrives in [#],; ], which is at
most
=4 _,_ 5
£ £

<1-(1-¢)=¢,

concluding the proof of the theorem. O

To exemplify the conclusion of the last theorem, con-
sider that we have two colors, say men and women,
and that the prior is such that the top candidate is a
woman with probability 60% and a man with probabil-
ity 40%. This translates into having € = 1/3 in the state-
ment of the theorem, which implies that the algorithm
will pick a woman at most 33% more often than a man.
See Section 2.4 for more examples and empirical valida-
tions of these results.

To wrap up the section, observe that for the case of
equal probabilities (i.e., p = (1/k,...,1/k)), Corollary 1
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and Theorem 2 imply that Algorithm 1 is 1 + o(1)-com-
petitive and 1+ o(1)-fair. Unfortunately, these two
properties cannot be simultaneously achieved for a
general p. Indeed, consider an instance where p; =
1/Vkand p;=(1 —p1)/(k—1) forall2 < i < k. Let ALG
be an a-fair algorithm. Its success probability is

k
Zp,- - P(ALG selects the best of color 7)
i=1

k 2
a (1-p1) 2a
_;ap pra—o <
On the other hand, the optimal offline algorithm always
selects from color 1 and therefore, gets the best candi-
date with probability p; = 1/Vk. So, the competitive

ratio of any a-fair algorithm is not better than Vk/(2a).
In particular, if we want an algorithm that is -competi-
tive and y-fair, then max{g, y} > k/*/2.

2.3. Sample-Driven Multicolor Secretary Problem
In this section, we formulate a sample-driven version of
our multicolor secretary problem inspired by Correa
et al. (2021a). This model interpolates between the case
where candidates have adversarially chosen values
(when g =0) and the case where candidate values are
independent draws from a known distribution (as
g — 1). In this version of the problem, we have n candi-
dates partitioned into k groups C = {Cy, ..., Cy} of sizes
n = (n,...,1). Each of the n candidates is placed in the
set S (the samples) independently with a given proba-
bility g, and in the set V otherwise. We get to observe all
candidates in S before the selection process starts. That
is, we get to see the colors of all of these candidates and
the relative ranks within their color. Then, the candi-
dates in V arrive one by one in uniform random order,
and we can select one of them. For each new candidate,
we observe the candidate’s color and the candidate’s
relative rank within the candidates of the same color
that we have already observed (including those in S).
As before, we are given prior probabilities (p1,...,pk),
where p; is the probability that the best candidate of V'is
of color j. We want to maximize the probability of
selecting the best candidate of V. In other words, if we
denote by V; the set of candidates of color j in V, then
we want to choose an algorithm ALG that maximizes

k

ij - P(ALG selects best of V),

j=1
which we call the success probability of ALG. To avoid
some technical issues, when V; = (), we interpret “ALG
selects the best of V;” as true. Notice that for fixed g, as
n; grows, the probability that V; =0 decays exponen-
tially fast to zero.

We extend the definition of GRouPTHRESHOLDs in the

following way. First, we use independent Uniform][0, 1]

arrival times to model both the arrival order and the
partition into S and V; given arrival times 71 < 1,
< -+ < 14, we place all candidates i with arrival times
7; < g in S and the rest in V. Our algorithm SD-
GROUPTHRESHOLDS(t) is parameterized by thresholds t =
(t,h1<j<k,1<¢ in [g, 1]. Upon observing a candidate of
color j at time 7 that is best so far in V, the algorithm
computes the candidate’s relative rank with respect to
the set of candidates of color j with arrival time in [0, 7].
If the relative rank is ¢, the candidate is selected if
t]‘/g <

As for the regular version of the algorithm, we can
show that its success probability decreases with n;, for
allj. A proof of this lemma appears in Appendix A.

Lemma 6. (Monotonicity, with Samples). For fixed g,
(p1,-..,px), and t, the success probability of the algorithm
SD-GroOUPTHRESHOLDS(t) is decreasing with n; for all
j=1...k

Now, similar to Lemma 5, we can calculate the limit
success probability of SD-GrouPTHRESHOLDs(t). Detailed
calculations that lead to the formula in the following
theorem can be found in Appendix A.

Theorem 4. (Competitive Ratio, with Samples). The limit
success probability of SD-GROUPTHRESHOLDs(t) is

S0 o (o )

Ut <t s>ty s <t
s=1 /T —max{g,t;
(- = 07 () )«
J'#i Slt/r,SST T T

®)

2.3.1. Computation of the Optimal Thresholds. For
fixed g < 1 and given ¢ >0, it is possible to approxi-
mate the optimal solution numerically by setting t; , = 1
for £> logq(e) =0(1/¢(1 —g)) and optimizing over the
finitely many remaining thresholds. Doing this results
in a reduction in the success probability that is not

larger than Zblogq(é,)(l — )1 = O(e).

2.3.2. Numerical Evaluation. We provide a numerical
evaluation of the competitive ratio and fairness proper-
ties of our sample-based algorithm in Figure 2 and
Appendix B. Note that for the special case of k=1 and
as g — 1, our result recovers the classic result of Gilbert
and Mosteller (1966).

2.4. Additional Empirical Evaluation

We conclude this section by returning to the basic set-
ting without samples and providing two additional
sets of numerical evaluations that illustrate how our
algorithms perform in situations where the prior proba-
bilities are initially incorrect.
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In Figure 4, we examine the effect of incorrect priors
p’ # p on the competitive ratio of our fair online algo-
rithms. In Figure 4(a), we look at k = 2 groups and three
different true priors for the two groups ((0.5,0.5),
(0.7,0.3), and (0.9,0.1)) as a function of the assumed
prior for group 1 (i.e., p;) ranging from zero to one. The
competitive ratio peaks when the assume prior coin-
cides with the actual prior and deteriorates more
quickly when the largest true prior is underestimated.
In Figure 4(b), we look at three groups where priors fol-
low a power law with varying exponent y € [0,2] (i.e.,
we set (p1,p2, p3) proportional to (1,1/27,1/3")). Figure
4(b) shows the effect of running the algorithm with an
assumed )’ that is different from the true underlying .
Again, the competitive ratio peaks when the assumed
prior coincides with the actual prior and deteriorates
away from it. The deterioration effect is not as pro-
nounced as in the setup of Figure 4(a) because in Figure
4(b), all priors are affected proportionally.

In our second experiment, we investigate how, in the
long run, our algorithm might help mitigate the bias
generated by incorrectly set priors. For this, we con-
sider a Bayesian model, in which candidates have a
true value drawn independently from an exponential
distribution with parameters A; and A, for each of the
two groups, but these parameters are unknown to the
decision maker. The decision maker has a prior belief
that we assume is the gamma distribution (conjugate of
the exponential). The decision maker only observes
ordinal information until a candidate is selected. Only
once a candidate is selected is the true value observed
(and only of that candidate). Under these assumptions,
every time a candidate is selected, an easy update rule
can be derived to obtain a posterior belief. In the experi-
ment, we draw all of the true values from an
Exponential(1) (i.e.,, A; = A, = 1). For group 1, we initial-
ize the parameters of the gamma distribution (the belief

of the decision maker) so that it matches the truth, with
some uncertainty. For group 2, we initialize the belief
with worse parameters so that the decision maker
believes that the probability of containing the best can-
didate is significantly higher for group 1, around 2/3
versus 1/3. Because the belief for group 1 is consistent
with Ay =1, selecting only from group 1 will not modify
the relation between the two groups. In Figure 5, we
show the results of 1 run and 100 runs of this experi-
ment using our algorithm, with sequences of 500 itera-
tions. We observe that the priors get closer to 0.5 as the
number of iterations grows, so in fact, our algorithm
allows the decision maker to learn the true priors.

3. The Multicolor Prophet Problem

We next consider the following multicolor prophet prob-
lem. In this model, n candidates arrive one by one, and
the arrival order is either a fixed arbitrary permutation
or a uniformly random permutation. Candidates are
partitioned into k groups C = {Cy, ..., Ci}. We write n =
(n1,...,ny) for the vector of group sizes (ie., |C;| =n;)
for all 1 < j < k. We identify each of the groups with a
distinct color and let ¢(i), v; denote the color and value of
candidate 7, respectively. The value v; is revealed upon
the arrival of i and is drawn independently from a given
distribution F;. Weuse F = (Fy, ..., F,) to refer to the vec-
tor of distributions. We are also given a probability vec-
tor p = (p1,...,pk). The goal is to select a candidate in an
online manner in order to maximize the expectation of
the value of the selected candidate while selecting from
each color with probability proportional to p. We distin-
guish between the basic setting, in which p; is the propor-
tion of candidates who belong to group j (i.e., p; = n;/n),
and the general setting, in which p is arbitrary. We com-
pare ourselves with the fair optimum, which is the opti-
mal offline algorithm that respects the p;’s.

Figure 4. (Color online) Competitive Ratios for k = 2 and 3 When We Use the Optimal Algorithm for an Incorrect Prior
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Notes. For k = 3, we use the same parameterization as in Figure 1. (a) Competitive ratios for k = 2 and incorrect priors. (b) Competitive ratios for

k = 3 and incorrect priors.
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Figure 5. (Color online) Experiment Evaluating How the Priors Evolve as We Select Candidates from Both Groups When We

Start with Incorrect Priors
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Notes. (a) One run of the experiment. (b) Average of 100 runs of the experiment.

3.1. Key Definitions

3.1.1. Fair Optimum. We define FAROprt(12,C,F,p) as
the optimal offline algorithm that selects a candidate of
group j with probability p; for all j, and we write
E[FAROP1(11,C,F,p)] for the expected value that it
achieves. More precisely, among the class of random-
ized rules to select a candidate that (a) chooses a candi-
date from each color j with probability p; and (b) can
observe the realizations of all values, FAIROpr1(11, C, F, p)
is the one that maximizes the expectation of the value of
the selected candidate.

Intuitively, one can think of FAROPT as the limit of
the following experiment. We draw m times, with
m > 1, an independent sample of the vector (vy, ..., v,),
so we obtain {(v;s)i;}ir;. In each of the vectors, we
select a candidate i*(s) so that % > it Up(s),s is maximized
and i*(s) belongs to color j in 1 - p; of the vectors.

3.1.2. Ex Ante Relaxation. We denote by g; the proba-
bility with which FAROrt1(n, C, F, p) selects candidate i.
Using these probabilities, we can obtain the following
upper bound on the performance of FairOpt, which is
known in the prophets literature as the ex ante relaxation
(see, for example, Feldman et al. 2016):

ExANTE(n, C,F,p) = Zlﬁ “E(v; | v > F7'(1—q))).
P

3.1.3. Fair Selection. We say that an online algorithm
ALG is fair if it selects a candidate of each color j with
probability proportional to p;.

Definition 3. (Fair Online Algorithm). We say that an
online algorithm ALG is fair if

P(c(ALG) = j|ALG stops) =p; V1 <j<k

Note that this is analogous to being 1-fair in Definition 2.

3.1.4. Approximation Ratio. Our goal is to find the fair
online algorithm FairAlg with the best-possible
approximation ratio with respect to FairOpt. To for-
mally define this, let E[FaRALG(11,C,F, p)] denote the
expected value achieved by FAIRALG.

Definition 4. (Approximation Ratio). We say that online
algorithm FAIRALG provides an a-approximation if
E[FAIRO CF
up FFAROM,CE P _
n,c,F,p EIFAIRALG(11, C, F, p)]

Note that the smaller a > 1, the better. Specifically, if
a =1, then the expected value achieved by the fair online
algorithm matches that of the fair offline algorithm.

3.2. Optimal Online Algorithms

We develop optimal fair online algorithms with surpris-
ingly small competitive ratio under different assump-
tions on the setting. In the first setting (Section 3.2.1), we
consider an arbitrary fixed order of the candidates, non-
identical distributions, and general probabilities p. In the
second setting, we assume that variables are ii.d. and
make the natural additional assumption that the p;’s are
proportional to the group sizes (Section 3.2.2). In the
third and final setting (Section 3.2.3), we relax the i.i.d.
assumption to hold only within groups and assume that
candidates arrive in uniform random order.

Our high-level approach is the following. We design
online algorithms that accept each candidate i with
probability « - g;, where q = (44, . .., q.) are the marginal
probabilities with which the optimal fair offline algo-
rithm FairOpt accepts candidate i =1,...,n. Note that
for a fixed choice of a, this uniquely determines
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thresholds t = (t4,...,t,) that we have to set for candi-
datei=1,...,n. We are still free to choose the parame-
ter a, and we choose it to optimize the worst-case
approximation ratio.

Intuitively, choosing a smaller & makes us accept less
frequently, but conditional on stopping, we choose
higher values. The right trade-off between these two
forces and hence, the right choice of a turn out to be dif-
ferent in each of the three settings. We find that in each
of the three settings, the optimal approximation ratio is
equal to 1/a”, where a" is the optimal choice of .

Our algorithms and analysis share features of several
papers in the prophets inequality literature that obtain
competitive algorithms through comparison with the
ex ante relaxation (e.g., Alaei 2014, Lee and Singla 2018,
Ezra et al. 2020). A novel aspect of our work is that we
compare with the fair offline optimum and provide
bounds on the worst-case loss from ensuring propor-
tional selection probabilities in an online algorithm.

3.2.1. General Distributions. We start by considering
the setting in which candidates arrive in any fixed
order, candidate values are drawn from not necessarily
identical distributions, and the probabilities p can
be arbitrary.

Our algorithm for this case (Algorithm 2) receives as
input the probabilities g3, ...,4, with which FAIROpT
accepts candidate 1, .. ., n. It then sets thresholds so that
itaccepts each of the candidates with probability g;/2.

Note that for i = 1, we can achieve this by setting the
threshold to t; = F;1(1 — g1/2). For i = 2, we have to set
a slightly lower threshold than F; 1 - q2/2) because
with some probability, namely g;/2, we stop at i =1.

Indeed, if we set the threshold to t, = F;1(1 — 122{1/1 2/2), we

reach candidate i =2 with probability 1—g,/2, and
conditional on reaching it, we accept it with probability

P/2_.
1 71]1 /2’
desired. Continuing like this yields the thresholds used
in the algorithm.

so, we accept it with probability exactly g;/2 as

Algorithm 2 (Fair General Prophet)
Input: Distributions Fy,...,F, and q1,...,4
Output: i € [n], index of chosen candidate
s<—0
fori<—1tondo

if ;> F;1(1 - {2) then

| return i

end

S<s5+gq;
end

We show that this algorithm is fair and that it
achieves an optimal approximation guarantee. Fairness
follows quite directly from the fairness of FairOpt
because our algorithm accepts with the same marginal

probabilities just scaled down by 1/2. For the approxi-
mation guarantee, we compare the expected value col-
lected by the online algorithm with the expected value
achieved by the ex ante relaxation, which is constrained
to use the marginal probabilities q of FairOpt. Because
the latter is only higher than the expected value
achieved by FairOpt, it also implies an approximation
guarantee with respect to FairOpt. We formalize this
discussion in the following theorem. Note that the
bound of two in this theorem is incomparable with the
well-known factor 2 in the regular prophet inequality
(Samuel-Cahn 1984), and indeed, we prove it via a sub-
stantially different method.

Theorem 5. For general settings and general distributions,
Algorithm 2 is fair and achieves a 2-approximation to Fair-
Opt. No fair online algorithm can achieve a better approxi-
mation ratio.

Proof. We prove first that for all i € [n], Algorithm 2
selects candidate i with probability g;/2. In fact, for
i=1, the algorithm stops if v > F; 1(1 — g1/2), which
happens with probability 1 — F;(F;1(1 —g1/2)) = q1/2.
Inductively, assume that it holds true for candidates
1,...,i—1. Because the values are independent, the
probability that the algorithm selects candidate i is the
probability that the algorithm does not stop before i
times the probability that v; is above the threshold. By
the inductive argument, the former is 1 — 25;11 qi /2,
and from the definition of the threshold, we get that
the latter is (g;/2)/(1 — 3242, g /2). Multiplying the two
numbers, we get that the algorithm selects candidate i
with probability g;/2. This concludes the inductive argu-
ment. Now, notice that FairOpt satisfies the fairness con-
straint, and therefore, the algorithm also satisfies it.

To prove that the algorithm is a 2-approximation with
respect to FairOpt, note first that because Y ,_,qr < 1,

we have that 1 — E§'=1 g /2 >1/2 for all i, and then, 1 —

",’f# >1—g; for all i. With this in hand, we can
1_Zi’:l qr /2
now compare the expectation of the value of the selected
candidate:

n i ,
E(ALG) =Y TE(ofo>F (1~ @2
! 1= /2

1 n
> EZ%E(U:' lv; > F7H (1 —gq1))
i=1
> E(FAROPT).

The last step follows from the ex ante relaxation,
assuming that g; is the probability that FairOpt selects
candidate i.

To see that there is no fair online algorithm with a
better guarantee, it is enough to adapt the tight bound
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for the classic prophet inequality. Consider an
instance with two candidates, candidates 1 and 2, of
colors 1 and 2, respectively. Their values are v; =1
with probability 1; for some small ¢ >0, v, =0 with
probability 1 — ¢, and v, = 1/¢ with probability ¢. We
set the p;’s to be the probability that each candidate is
the maximum (i.e.,, py =1—¢ and p, = ¢). With this,
E(FAIROPT) = 2 — ¢, but any online algorithm (not nec-
essarily fair) has expected value at most one. O

3.2.2. Identical Distributions. We next consider the
ii.d. setting, where all values v; are independent sam-
ples from a common distribution F. In this case, p; =
n;/n for all groups j is a natural assumption because
this is the probability with which the maximum overall
is from group j. Also, note that in this case, the optimal
offline algorithm is fair and chooses each element with
probability 1/n. Thatis, g; = 1/n for all i.

Algorithm 3 tries to mimic the optimal fair offline
algorithm but aims at slightly lower marginal accep-
tance probabilities of 2/(3n). The derivation of the
thresholds t that achieve this follows the same logic as
in our algorithm for general distributions.

Algorithm 3 (Fair 1ID Prophet)
Input: Distributions F
Output: i € [n], index of chosen candidate
fori < 1tondo

ifo,>F'(1- %) then
| return i
end

end

We prove that this algorithm is fair and achieves an
optimal approximation ratio of 3/2. To show fairness,
we again exploit that the algorithm accepts each candi-
date i with a rescaled version of the marginal probabil-
ity q; = 1/n with which FairOpt accepts a candidate. In
the previous proof, it was key that the threshold was
always larger than F; (1 —g;), which is not the case
here. For i > n1/2, the threshold is, in fact, smaller. To cir-
cumvent this, we use a stochastic dominance argument
to establish the approximation factor.

Theorem 6. For basic settings and iid. distributions Algo-
rithm 3 is fair and achieves a 3 /2-approximation to FairOpt. No
fair online algorithm can achieve a better approximation ratio.

Proof. We prove first that Algorithm 3 selects each
candidate with probability 2/(3n). For candidate 1, it
is clear that P(v; > F7'(1—1/(3n))) =2/(3n). Induc-
tively, assume that candidates 1,...,i — 1 are selected
each with probability 2/(31). Because the values are
independent, the probability that the algorithm selects
i is the probability that it does not stop before i times
the probability that v; surpasses the threshold. The
former happens with probability 1 — (i — 1) 2, and the
latter happens, by definition of the threshold, with

probability % If we multiply these two quan-

tities, we obtain that the probability of selecting i is
2/(3n). Therefore, the algorithm stops with probability
2/3, and a candidate of color j is selected with proba-
bility exactly n;Z = p;3; so, it is fair.

To prove the approximation factor, we prove an
approximate stochastic dominance between the algo-
rithm and FairOpt. More specifically, we prove that
for all g € [0,1], it holds that

P(ALG > F'(g) _2
P(FaROPT > F-1(g)) ~ 3

If this is true, then 3P(ALG > x) > P(FAIROPT > x) for
all x> 0. Thus, by simply integrating on both sides,
we obtain that 3 E(ALG) > E(FAIROPT).

Now, to calculate the left-hand side of Equation (4),
note that because the values are ii.d. and p; =n;/n for
all colors j, we have FAIROPT = max;v;. For the case of
the algorithm, we can condition on which candidate is
selected. The algorithm selects candidate i w.p. 2/(3n),
and conditional on that, the probability that the value v;
is above F~1(g) is just the ratio between 1—q and the
probability that v; is above the corresponding threshold
or one if the ratio is larger that one. So, we obtain that
the left-hand side of Equation (4) is equal to

. 1— .
PO rmn{1<—‘7>} S min{sln,(l —)(1- 2<;;1>)}

(4)

T—-12/Gn)

1—g" 1—g"

©)
Consider a given g € [0, 1] such that for all i € [n],

3%1 <(1-gq) (1 —2(i3; 1)) .

Then, Equation (5) is equal to 3(%% >2

If, in turn, q is such that for all i € [n],

Z2(1-9) (1 —2(i3;1)) ,

then Equation (5) can be rewritten as

(1-7) & 20i—-1)\ 1
()

i=1 =0

21 (n—l)n)

Il
7
IR
S
K

A
N N
= =
|

Iy

W |

—_
~_

Finally, consider all other cases for 4. Because (1 —
q) (1 —%) is decreasing in i, this means that g is
such that fori =1, % is the minimum in Equation (5),

and for i=n, (1—¢q) (1 —%) is the minimum. In
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other words,

2
3n <(1-q),

%;41—w<1—“2;”>,

which is equivalent to

and

2 2
1l—-——<g<1——.
n+2 q 3n

Let us set g =1 —2, where x € (3,2 — -15). Note that the
interval is empty if n =1, so we assume 1 > 2. We can
rewrite Equation (5) as follows:

S min{},+(1- 3 5} -}
=’

folmin{%,x(l -z %)}dt
i (

1—

~ g+l 3+%>—%x-%<1—<%—%>2>
- 1-(1-%)"
l-gx— 4
C1-(1-y"

This last expression is increasing in 1, so we show that
forn=2and x € (%,2), it is at least 2/3. This would be
equivalent to

1 1
1—35x—

2 2
Lk il 3 f( 2>
1-(1-%7 3 3’

= 203 —9x%2 +12x —4>0forx € %,2)

= (x—2)*Qx—1)>0forxe (%,2) .

The last statement is clearly true, so we conclude that
the algorithm is a 3 /2-approximation.

To finish the proof of the theorem, we have to show
that no fair online algorithm can achieve an approxima-
tion ratio better than 2/3. In fact, consider the instance
where the value of every candidate distributes as

L1
U1 = ¢

On the one hand, in this instance, E(FAIROPT) =1+
O(£). On the other hand, a fair algorithm must select

with probability £

W= WIN

with probability 1 — .

each candidate with equal probability. Consider a fair
algorithm ALG, and let f/n be this probability for
some f3 € [0,1]. We have that

E(ALG) = —P<ALG > 2 —P <ALG = 3) .
3¢ 3¢

Because ALG stops with probability 5, we have that
P(ALG =1) < B. Now, P(ALG =2) is maximized if
the algorithm stops whenever 1t sees a value of 2 3
Because a candidate has value Z with probability £
and the algorlthm reaches the ith candidate with prob-
ability 1 — (i — 1) we obtain that

P(ALG:%) 21: (1 5—)

_ g/o 1= Btdt + O(e/n)
= g(l —§> + O(e/n).

Therefore,
E(ALG) < 3ﬁ += (1 - E) +0(1/n) == + O(1/n).

Making n large and ¢ small, we can conclude that no fair
algorithm can be better than a 3/2-approximation. O

3.2.3. Random Order. Finally, we consider a setting
where values are only i.i.d. within each group but may
differ across groups. We assume that candidates arrive
in uniform random order and that p; = n;/n for all col-
orsj.

Algorithm 4 (Fair Random Order Prophet)
Input: Distributions Fy, ..., F
Output: i* € [n], index of chosen candidate
fori—1tondo

_Ymv2y)
ifo; > Fc(l)(l — = - ])/(m/_)) then
| returni =
end
end

For this case, we show that Algorithm 4, which sets
thresholds to achieve an acceptance probability of 1/v2
that is fair and achieves an optimal approximation ratio
of 1/(2 — V2) ~ 1.707. The proof of this result appears in
Appendix C.

Theorem 7. For basic settings with i.i.d. valuations within
groups and uniform arrival order, there is a 1/(2—
V2)-approximation with respect to FairOpt.

3.3. Sample-Driven Multicolor Prophet Problem

If instead of the distributions of the random variables,
we only have sample access to them, we still can obtain
approximate versions of our results if we are given the
probabilities of stopping with each variable. The
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analysis is similar to that of Rubinstein et al. (2020) for
the i.i.d. prophet inequality with samples.

For the case of general distributions, if we are given
the probabilities 4, ...,4,, we can obtain an approxi-
mate version of Algorithm 2. Using M; = O(log(n/¢)/
(¢2g;)) samples of F;, we can replace the threshold

Fi(1- 1'f§2) with the [M; - (1 — ¢) - 1‘féfzjth largest sam-
ple. Let 7; be the resulting threshold. A simple Chernoff
bound indicates that the probability that (1 — F;(t;)) is

9/2_ 412
1-s/27 1-s/2

This means that with probability at least 1 — ¢, all of the
thresholds are larger than the thresholds of Algorithm
2, but for every variable, the probability that it is larger
than its threshold is only a factor (1 — ¢) smaller.

For the case of i.i.d. random variables, 1/4; = O(n), so
in total, we need O(n*log(n/¢)/e?) samples to repeat
the same argument. Now, because in Algorithm 3, we

in the interval [(1—¢)- ] is at least 1—¢/n.

only want to approximate quantiles 172?/%%/3", which
range from 2/3n to 2/n, we can reduce the number of
samples. In fact, we only need to approximate well the
O(1/¢) elements of the grid {2/3n, (1 +¢)-2/3n,(1 + e)’
-2/3n,...,2/n}. Therefore, M = O(nlog(1/¢)/e?) sam-
ples are enough.

3.4. Additional Empirical Evaluation

We conclude this section with an empirical comparison
of our multicolor prophet algorithms (Algorithm 2
(Fair PA) and Algorithm 3 (Fair IID)) against other stan-
dard algorithms. We focus on the case where values are
distributed ii.d. and each candidate is a group on its
own. We compare with the following baselines.

e SC algorithm (Samuel-Cahn 1984). This algorithm
sets a single threshold so that the maximum is above
this threshold with probability exactly 1/2. It achieves
an optimal 2-approximation for possibly nonidentical
independent distributions and arbitrary arrival order.

e EHKS algorithm (Ehsani et al. 2018). This algorithm
sets a single threshold so that an individual candidate is
accepted with probability 1/#. It achieves an approxima-
tion of (e + 1) /e ~ 1.58 for possibly nonidentical indepen-
dent distributions and random arrival order.

e CFHOV algorithm (Correa et al. 2021b). This algo-
rithm sets a sequence of thresholds based on acceptance
probabilities that result from solving a differential equa-
tion. It achieves an optimal 1.342-approximation for IID
distributions.

e DP algorithm (e.g., Chow et al. 1971). This algorithm
is the optimal threshold algorithm for the prophet prob-
lem, where thresholds are obtained by backward induc-
tion. This algorithm is optimal, even when distributions
are different and candidates arrive in arbitrary order.

We consider two settings. In the first one, the input
stream consists of 50 samples from the uniform distribu-
tion in the range [0, 1], and in the second one, the input

consists of 1,000 samples from the binomial distribution
with 1,000 trials and 1/2 probability of success of a single
trial. For better comparability with existing algorithms,
in both cases, we assume that each candidate is a group
on its own. We run each algorithm 100,000 times.

In Figure 6, we compare the number of times that our
algorithms, SC, EHKS, CFHOV, and DP pick from each
position of the stream. We observe that the SC, EHKS,
and DP baselines pick candidates more from the first
half of the stream compared with the second half (by
more than a factor of 1.75), whereas CFHOV picks
mostly from the second half of the stream (by more
than a factor of 4). So, all of these algorithms are unfair.
In contrast, our algorithms select the same number of
candidates throughout the stream. The average values
of the chosen candidate for Algorithm 2 (Fair PA),
Algorithm 3 (Fair IID), SC, EHKS, CFHOV, and DP for
the uniform distribution are 0.501, 0.661, 0.499, 0.631,
0.752, and 0.964, respectively, whereas for the binomial
distribution, they are 298.34, 389.24, 277.63, 363.97,
430.08, and 548.94, respectively.

In conclusion, for both settings, both of our algo-
rithms (Algorithm 2 and Algorithm 3) provide perfect
fairness while giving 51.97% and 68.57% (for the uni-
form case), respectively, and giving 54.35% and 70.91%
(for the binomial case), respectively, of the value of the
optimal but unfair online algorithm.

It should be noted that the fact that DP picks mostly
from the first half is not a general phenomenon. It heavily
depends of the distribution from which the input is
drawn. On the contrary, SC and EHKS always pick more
often from the early parts of the stream because their con-
ditional stopping probability is constant.

4. Conclusion and Open Problems

In this work, we explored questions of fairness and bias
in natural multicolor variants of the two canonical pro-
blems of online selection: the secretary problem and the
prophet problem. We designed optimal fair online
algorithms for these problems and provided a compre-
hensive empirical evaluation of these algorithms and
their properties.

Specifically, we explored a multicolor variant of the
secretary problem, where we assumed that comparisons
within a group are accurate, whereas comparisons
across groups are impossible. This assumption was
motivated by situations where the evaluator makes
biased evaluations of the candidates” abilities that are
consistent within the groups but not across groups or
where candidates take different tests (say at different
institutions). In the psychology literature, this kind of
bias has been referred to as a lack of measurement equiva-
lence (Drasgow 1984). A mathematical model complying
with this notion of bias arises naturally when for each
candidate i, there is a ground truth X; that is not directly
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Figure 6. (Color online) In This Plot, We Present the Number of Times That Our Algorithms (Fair PA and Fair IID) and the Base-
lines (SC, EHKS, CFHOV, and DP) Pick from Each Position of the Input Prophet Problem Stream

(a)
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Notes. In panel (a), the stream consists of 50 samples from the uniform distribution, and in panel (b), the stream consist of 1,000 samples from the

binomial distribution. (a) Uniform distribution. (b) Binomial distribution.

observable. Through a test or an interview, we observe
fe(X;) if candidate i belongs to group c, where f. is an
unknown monotone function. Our work can be seen as
capturing the case where the choice of these functions is
adversarial, and hence, no comparisons across groups
can be made. It would be interesting to relax this
assumption and explore under which assumptions bet-
ter approximation guarantees are possible.

Another crucial assumption in our multicolor secre-
tary model was that we assumed that we are given prob-
abilities, with which the best candidate of a color is the
best candidate overall. Our algorithms were given these
probabilities, but the actual coin flips were only realized
after a candidate has been selected. This is in line with
standard models of discrimination in labor markets
(Becker 1971). This literature has found that although
signals about candidates who are available in the hiring
process often exhibit an implicit or even explicit bias
(e.g., SAT scores), candidates have “true” unobservable
qualities, which are only measurable via long-term out-
comes. We analyzed numerically what happens with
our algorithms if they are fed incorrect priors. It would,
of course, also be interesting to explore the design of
algorithms that optimally trade off approximation guar-
antees and robustness to inaccurate priors.

We also studied a multicolor variant of the prophet
inequality problem and assumed that both online and
offline solutions have to obey certain “quotas” for each
color. Imposing quotas is one way to take affirmative
action (Sowell 2004) but not the only one. It would be
interesting to propose and study models that capture
other more proactive forms of affirmative action, such
as targeted outreach and recruiting or alternate hiring
and admission practices.

Finally, there is ample opportunity to extend our
work to combinatorial settings. We expect that building
on the respective lines of work in the secretary, prophet,
and optimal stopping literature in general could prove
very fruitful. Particularly exciting directions include an
extension to matching problems (Kesselheim et al. 2013,
Gravin and Wang 2019, Ezra et al. 2020), allocation pro-
blems with matroid structure (Kleinberg and Weinberg

2012, Feldman et al. 2015b, Babaioff et al. 2018, Diitting
et al. 2020b), or even general combinatorial allocation
problems (Feldman et al. 2015a, Diitting et al. 2020a).
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Appendix A. Proofs Omitted from Section 2.3

Proof of Lemma 6. We take an instance with sizes n =
(n1,...,m) and increase it in one candidate. W.l.o.g. assume
that the new candidate is of color 1, so we get an instance
n’ =(n;+1,n,...,1n,). We couple the decisions of the algo-
rithm in both instances by first drawing the arrival times of the
best 1; candidates of each color j and separately drawing the
arrival time of the (117 + 1)th candidate of color 1. We argue that
in a realization of the arrival times where the algorithm fails
with n, it also fails with n’. In fact, for such a realization, in the
smaller instance V; # @ for all j and for some j, the algorithm
selects a candidate who is not the best of V; or never stops.
Adding the (17 + 1)th candidate of color 1 does not affect the
relative ranks of the rest, so the only different action that the
algorithm could do in the larger instance would be to select
the (11 +1)th candidate of color 1. But, V; was nonempty
before adding this candidate, so she cannot be the best of V.
Therefore, the algorithm also fails in the larger instance. O

Proof of Theorem 4. Within this proof, we refer to SD-
GrourTHRESHOLDS(t) simply as ALG. For a given color j, we
want to calculate P(ALG selects best of V;). We say a candidate
is acceptable if the algorithm would accept her if it had not
stopped when she arrived. For a given time 7 €[g,1], we
define N; . as the event that no candidate of color j who arrives
in [g,7) is acceptable. Note that Nj. only depends on the
arrival times of candidates of color j, so these events are inde-
pendent across colors. Now, in the limit, V; is nonempty, so
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we can condition on the arrival time of the best in V;. Thus,

P(ALG selects best of V)
1 1
e
1
1-qJ,

P(ALG selects best of V; | best of V; arrives at 7) dt
q

1
P(ﬁ}‘,:1 N, and best of V; is acceptable | best of V;

arrives at 7)dt
1 1
= l—q / P(N; . and best of V; is acceptable | best of V;
4
arrives at 7)- H P(N; .)dt
| e J#i
= / qu’] -P(N;,r and best of V; is acceptable | best of
q =1
V; arrives at 7 and has rank £) - H P(Nj,.)dt
| o J'#i
= / Zq[_l “1y;,<c - P(Nj,. | best of V; arrives at T
7 =1
and has rank ¢) - HP(er,T)dT
J'#i

12, 0 s=( (T —max{q,t;s}
-/ zqf1.1”/[9.(1_;11@,&(3) (7 mextats) 1))

(=1

11 (1 - i 1, < (g)’l (T—ma:{qtf}» .

AN

Moving the indicator functions to the conditions on the indi-
ces of the sums, we obtain the formula of the lemma. 0O

Appendix B. Additional Numerical Evaluation of
SD-GRrouPTHRESHOLDS

As we did in Figure 1 for the base model, we examine here
the competitive ratio and fairness properties of our sample-
based algorithm for the multicolor secretary problem. Unlike
in the base model, we do not have an explicit formula for
these values. However, we can efficiently compute them
using the procedure described in Section 2.3. In Figure B.1,
we consider the case for k =2 and k = 3 groups with sampling
rate 4 =1/2. For Figure B.1(a), we look at k=2 groups and
vary the prior p1 (p» =1 —p1) linearly in [1/2,1]. In Figure
B.1(b), we look at k=3 groups in the power law setup
described above, where we vary y € [0,2]. We observe that
the competitive ratio is declining in p; and y. The algorithm
achieves perfect fairness with balanced priors. As we move
away from balanced priors, the selection probabilities first
start to diverge from the priors, but then, they return back to
them.

Appendix C. Proofs Omitted from Section 3.2.3

Proof of Theorem 7. Denote a =1/V2 and r; = % for

Figure B.1. (Color online) For k = 2, k = 3, and Varying Priors, We Show the Competitive Ratio of Our Algorithm for the
Sample-Driven Version of the Multicolor Secretary Problem with g = 0.5
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Notes. These were obtained by numerically optimizing Equation (3). We also show the probabilities that it selects a candidate from each color
conditional on stopping. For k =2, we vary p; linearly in [1/2,1] (and p> = 1 — p1). For k = 3, we set priors following a power law with varying
exponent y € [0,2] (i.e., we set (p1,p2, p3) proportional to (1,1/27,1/3")). (a) Competitive ratio for k = 2. (b) Conditional selection probabilities for
k = 2. (c) Competitive ratio for k = 3. (d) Conditional selection probabilities for k = 3.
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i € [n]. Note that Algorithm 4 stops with probability a and
accepts a candidate 7 of color j if v; > ijl (1 —7;). We have that

E(ALG) = ) "E(v; | ALG selects i) - P(ALG selects i)
i=1

- Z% -E(v; | ALG selects i)
i=1

k

=

1. E(v; | ALG selects i and c(i) = j)

IR
3| S

i=

—_

j=1
n k
.
- O Eilo > F (1 1) and (i) = )
P

N

M)~

an; .
. n—21~E(vl lor = F (1 —7;) and (1) = ).

i=1 j=

Note that FairOpt selects each candidate with probability
1/n, so we have that by the ex ante relaxation,

o > F! (1 —%) and ¢(1) =j).

Now, in order to compare E(ALG) and E(FAIROPT), note that

—_

k
E(FAROPT) < Z% -E (01
=1

E(vl |v1 > Fj_l(l —r;), and ¢(1) :j)

Zmin{l,i} -E<vl 2] 21—71 (1 71), and ¢(1) :j>.
nr; n

Therefore, we obtain that

E(ALG) > E(FAIROPT)Zg min {1, i}
n nr;

Using the definition of r;, we get the following expression.

n n .
E gmin{l,i}= E min{oc,lfa:}1
n nr; — n Jn

i=1

1
2/ min{a, 1 — at}dt
0

This last expression is maximized when a =1/ V2, and its
value is 2 — V2.

The tight instance is where all candidates have a different
color and all values are zero with probability 1, except for
one, which is zero with probability 1 — 1/n and n with proba-
bility 1/n. In this instance, E(FAIROPT) = 1. If we repeat the
previous analysis, all inequalities are equality except for the
last one, where we only lose an additive O(1/n) term. O
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