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Abstract. The apportionment problem constitutes a fundamental problem in democratic 
societies: How to distribute a fixed number of seats among a set of states in proportion to 
the states’ populations? This—seemingly simple—task has led to a rich literature and has 
become well known in the context of the U.S. House of Representatives. In this paper, we 
connect the design of monotone apportionment methods to classic problems from discrete 
geometry and combinatorial optimization and explore the extent to which randomization 
can enhance proportionality. We first focus on the well-studied family of stationary divisor 
methods, which satisfy the strong population monotonicity property, and show that this fam-
ily produces only a slightly superlinear number of different outputs as a function of the 
number of states. While our upper and lower bounds leave a small gap, we show that— 
surprisingly—closing this gap would solve a long-standing open problem from discrete 
geometry, known as the complexity of k-levels in line arrangements. The main downside 
of divisor methods is their violation of the quota axiom, that is, every state should receive 
→qi↑ or ↓qi↔ seats, where qi is the proportional share of the state. As we show that randomiz-
ing over divisor methods can only partially overcome this issue, we propose a relaxed ver-
sion of divisor methods in which the total number of seats may slightly deviate from the 
house size. By randomizing over these methods, we can simultaneously satisfy population 
monotonicity, quota, and ex-ante proportionality. Finally, we turn our attention to quota- 
compliant methods that are house-monotone, that is, no state may lose a seat when the house 
size is increased. We provide a polyhedral characterization based on network flows, which 
implies a simple description of all ex-ante proportional randomized methods that are 
house-monotone and quota-compliant.
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1. Introduction
Deciding how to allocate seats in legislative bodies has been a central topic of discussion in the political organization of 
democratic societies for over 200 years. This has come to be known as the apportionment problem, and, despite its appar-
ent simplicity, its various aspects have challenged mathematicians for several decades. Proportionality stands as a fun-
damental criterion, demanding that each state receive seats in accordance with its population.1 Back in 1792, 
Alexander Hamilton proposed a simple method that first assigns the lower quota—the exact proportional value 
rounded down—to every state and then allocates the remaining seats to the states with the largest remainders.

Despite its clear intuition and ease of implementation, the Hamilton method—also known as Hare method or 
Hare-Niemeyer method—later led to unexpected outcomes, commonly referred to as apportionment paradoxes. 
The first one, known as the “Alabama paradox”, occurred during the United States congressional apportionment 
in 1880. C. W. Seaton, chief clerk of the Census Office, observed that, when transitioning from 299 to 300 repre-
sentatives, the Hamilton method resulted in Alabama losing a seat. The second paradox, termed the “population 
paradox”, occurred between 1900 and 1901 and involved the states of Virginia and Maine. Despite Virginia’s 
larger proportional growth in population compared with Maine, the Hamilton method would have taken a seat 
away from Virginia and allocated it to Maine.
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These paradoxes, together with the fundamental nature and ubiquity of the apportionment problem, sparked 
an interest in its mathematical study. Subsequently, monotonicity and proportionality have become cornerstone 
goals when devising apportionment methods. In particular, two desirable properties are house monotonicity 
and population monotonicity: a method is said to satisfy the former if it escapes the Alabama paradox and the 
latter if it avoids the population paradox. The notion of proportionality does not extend in any obvious way to 
integers. However, a commonly adopted approach is the one of quota compliance, ensuring that each state 
receives its exact proportional value rounded up or down.

The most prevalent population-monotone methods are divisor methods, which entail scaling the population of 
each state by a common factor and rounding the resulting values. In fact, Balinski and Young [8] showed that, 
subject to what they termed “rock-bottom requirements”, divisor methods are the only ones satisfying popula-
tion monotonicity. Each rounding rule yields a particular divisor method. For example, Spain and Brazil use the 
Jefferson/D’Hondt method, based on downward rounding, to distribute the seats of their Chamber of Deputies 
across political parties, whereas Germany and New Zealand use the Webster/Sainte-Laguë method, based on 
nearest-integer rounding. Despite their ubiquity, little is known regarding the diversity of apportionments gener-
ated by different divisor methods. Furthermore, with the emerging interest in randomized apportionment meth-
ods (Aziz et al. [2], Correa et al. [13], Gölz et al. [19], Hong et al. [22]), it is natural to ask whether divisor 
methods with randomized rounding rules may give best-of-both-worlds guarantees by ensuring population 
monotonicity and getting closer to exact proportionality.

House monotonicity, unlike population monotonicity, is compatible with quota compliance. To the best of our 
knowledge, three characterizations of house-monotone and quota-compliant methods have been proposed in the 
literature. Two of them rely on recursive constructions (Balinski and Young [8], Still [34]), while the third one 
associates apportionment vectors generated by these methods with extreme points of a fractional matching poly-
tope (Gölz et al. [19]).

1.1. Our Contribution and Techniques
We present combinatorial descriptions of the space of outcomes generated by the two most common families of 
monotone apportionment methods and study methods that randomize over this space.

In Section 3, we focus on divisor methods with stationary rounding rules—rules that round a fractional value 
upwards if its fractional part exceeds a fixed threshold δ ↗ [0, 1] and downward otherwise. We establish as Theo-
rem 1 a link between the apportionment output by these methods and the k-level in a line arrangement, thus 
drawing a novel connection between two fundamental problems in social choice and computational discrete 
geometry. This provides valuable insights into the behavior of divisor methods as a function of δ. Specifically, it 
implies that for any population vector p and house size H, it is possible to partition the interval [0, 1] into polyno-
mially (almost linearly) many intervals, such that each of them yields a unique common output when δ�lies in its 
interior. It further implies a superlinear lower bound on the number of such intervals, where the gap comes from 
a long-standing open question about the complexity of the k-level in a line arrangement. The k-level in an 
arrangement of n lines is the closure of all line segments that have exactly k lines strictly below them; its complex-
ity corresponds to its (worst-case) number of vertices and is known to lie between n exp(!(

        
ln n

↘
)) and O(n4=3)

(Dey [14], Tóth [36]). Our upper bound leads to an efficient algorithm to compute all apportionment vectors that 
are realized for a nonzero measure domain for δ, as well as a concise combinatorial description of the whole set 
of outputs. Even though nonstationary divisor methods may produce exponentially many outcomes, we discuss 
in Section 3.7 how the upper bound that follows from Theorem 1 can be extended to the family of power-mean 
divisor methods, this time through a connection to pseudoline arrangements. This family is particularly relevant 
as it includes the five traditional divisor methods: Adams, Dean, Huntington-Hill, Webster/Sainte-Laguë, and 
Jefferson/D’Hondt. Furthermore, we generalize results regarding the lower quota compliance of the 
Jefferson/D’Hondt method and the upper quota compliance of the Adams method, where the former requires 
that every state receives at least its exact proportional value rounded down, and the latter that every state 
receives at most its exact proportional value rounded up (Proposition 1). We show that for every instance, there 
is a partition of the interval [0, 1] into two intersecting intervals, one containing 0 and the other containing 1, 
such that upper quota is satisfied when δ�lies in the former and lower quota is satisfied when δ�lies in the latter.

Building upon our comprehension of the set of apportionment vectors produced by stationary divisor 
methods, we study methods that randomize over this set in Section 4. Randomizing over well-studied and 
widely-used apportionment methods, such as divisor methods, constitutes a natural step to make randomized 
apportionment more applicable in practice. The natural goal of randomization in this context is to mitigate the 
main drawback of divisor methods: the potential violation of quota by up to H seats. While positive results arise 
when state populations differ by a constant factor (Proposition 6), we show that the minimum worst-case 
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deviation from quota that randomized stationary divisor methods can achieve is still linear in H (Proposition 4). 
This bound, roughly H=2, is nearly matched by a straightforward method that takes δ�equal to either 0 or 1, each 
with probability 1=2 (Proposition 5). Motivated by this negative result, our focus shifts to methods that meet the 
house size in expectation but may slightly deviate from it ex-post. Within this class, akin to divisor methods, cer-
tain methods satisfy population monotonicity, quota compliance, and ex-ante proportionality. In essence, these 
methods allocate each state its lower quota and subsequently assign an additional seat with a probability equal 
to its remainder. We carefully implement the sampling and rounding schemes to guarantee population monoto-
nicity and ex-ante proportionality, accompanied by probabilistic bounds on the deviation from the house size 
(Theorem 2). Apart from their ease of implementation, these methods can be seen as a randomized version of 
both divisor and Hamilton methods, which provides an intuitive understanding of the underlying design princi-
ples that enable our method to satisfy these three properties simultaneously.

We finally provide in Section 5 a particularly simple polyhedral characterization of house-monotone and 
quota-compliant methods, alternative to that by Gölz et al. [19]. We show as Theorem 3 that, for any given 
instance, the set of apportionment vectors output by such methods is exactly the set of (integral) extreme points 
of (the projection of) a network flow polytope. Our approach is very flexible as it remains valid when incorporat-
ing additional properties in our method as long as these properties can be expressed as constraints that preserve 
the network flow structure. Moreover, combining Proposition 9 and Proposition 10 we provide tight bounds on 
the size of the linear program needed (which can be thought of as the worst-case lookahead in terms of possible 
house size growth), so that we can have a polyhedral description of all such possible apportionment vectors for a 
given house size in a way that house monotonicity and quota compliance are not violated for any higher number 
of seats. As a consequence of Theorem 3, in Theorem 4 we also fully characterize the set of randomized appor-
tionment methods that respect house monotonicity, quota compliance, and ex-ante proportionality up to a house 
size equal to the total population. Informally, the theorem states that since the proportional fractional allocation 
is a feasible point within our polytope, a randomized method with the described properties can be obtained by 
taking any convex combination of its extreme points that results in this point. Conversely, any randomized 
method respecting house monotonicity, quota compliance, and ex-ante proportionality generates the same allo-
cation, for any number of seats not greater than the total population, as some randomization over extreme points 
of this polytope.

1.2. Related Work
There is a rich body of literature on the theory and applications of apportionment methods; for a comprehensive 
treatment of this topic, we refer the reader to the book of Balinski and Young [8] and the book of Pukelsheim 
[29]. Closely related to our work is the stream of literature dealing with the design of house-monotone and 
quota-compliant methods. The existence of such a method was first shown in Balinski and Young [5] and 
Balinski and Young [6]. Subsequently (and, in fact, in parallel), Balinski and Young [7] and Still [34] provided 
simple characterizations of all methods satisfying the two properties. Regarding the stronger population monoto-
nicity axiom, Balinski and Young [8] showed that, under basic axioms (symmetry and exactness), divisor meth-
ods are the unique family satisfying this property but, unfortunately, fail to be quota-compliant. Divisor 
methods are well known and widely used at national and regional levels in many democracies around the world 
(Balinski and Young [8], Pukelsheim [29]). If one relaxes the notion of quota compliance, the Jefferson/D’Hondt 
method has been shown to be the unique divisor method satisfying lower quota compliance, whereas the Adams 
method has been shown to be the unique divisor method satisfying upper quota compliance (Balinski and Young 
[8]). Marshall et al. [25] studied the behavior of apportionments produced by certain families of divisor methods 
such as stationary divisor methods, showing that seat transfers go from smaller to larger states as a parameter of 
the method increases.

As is the case of this paper, linear programming and discrete optimization have proven to be powerful tools in 
the design of apportionment methods. For the biproportional apportionment problem (Balinski and Demange 
[3], Balinski and Demange [4]), in which proportionality is ruled by two dimensions (typically states and political 
parties), Rote and Zachariasen Rote and Zachariasen [31], Gaffke and Pukelsheim [16], and Gaffke and Pukel-
sheim [17] developed a network flow approach to compute a solution. Recently, Cembrano et al. [10] and Cem-
brano et al. [11] extended these ideas to the multidimensional case, studying a discrepancy problem in 
hypergraphs. Furthermore, network flow techniques have been employed in other questions related to the bipro-
portional apportionment problem by Pukelsheim et al. [30] and Serafini and Simeone [32]. Similarly, Mathieu 
and Verdugo [26] studied the classic apportionment problem with the extra constraint of achieving parity 
between the representatives of two parts of the population. Shechter [33] has recently proposed a multiobjective 
optimization approach, studying apportionment vectors at the Pareto frontier between fairness axioms inspired 
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by traditional divisor methods. Apportionment also has a strong connection to just-in-time sequencing, and 
apportionment theory has been employed for the design algorithms in this setting (Bautista et al. [9], Józefowska 
et al. [23], Li [24]).

For the case of randomized apportionment, Grimmett [20] first suggested such a method to overcome fairness 
issues caused by the use of deterministic methods. Despite being ex-ante proportional, quota-compliant, and 
easy to implement, the method proposed by Grimmett does not satisfy the essential notions of house and popula-
tion monotonicity. Gölz et al. [19] developed a randomized, ex-ante proportional method that satisfies popula-
tion monotonicity but is not quota-compliant. Their method is essentially a divisor method where the signposts 
are sampled from independent Poisson processes of the same rate. Moreover, they provided a house-monotone, 
quota-compliant, and ex-ante proportional method based on a dependent rounding approach inspired by the 
bipartite pipage rounding procedure of Gandhi et al. [18]. Their result is based on finding a bipartite matching 
description of the apportionment vectors. Recently, Hong et al. [22] proposed a randomized method that is 
quota-compliant and satisfies stochastic versions of house monotonicity and a weaker version of population 
monotonicity, while Correa et al. [13] studied monotonicity axioms regarding the number of seats assigned to a 
coalition of districts/parties for randomized apportionment methods. Finally, Aziz et al. [2] studied the strategy-
proof peer selection problem and pointed out that their proposed mechanism contains a randomized allocation 
subroutine, which can serve by itself as a randomized apportionment method satisfying ex-ante proportionality 
and quota compliance.

For an overview of the k-level in line arrangement problem, we refer to Matousek [27]. The upper and lower 
bounds on this problem that we apply in Section 3 were given by Dey [14] and Tóth [36], respectively.

2. Preliminaries
We denote by N the set of strictly positive integer values and by N0 ≃ N ⇐ {0} the set of nonnegative integer 
values. We also denote by R+ the set of nonnegative real numbers and by R++ the set of strictly positive real num-
bers. An instance of the apportionment problem is given by a pair (p, H) ↗ Nn ⇒ N for some positive integer n, 
where we refer to p as the population vector and H is the so-called house size. We let [n] denote the set {1, : : : , n} for 
any natural value n and use P ≃Pn

i≃1 pi as a shortcut for the total population. An apportionment method is given by 
a family of multivalued functions f mapping an instance in Nn ⇒ N to a subset of Nn

0, such that for every 
p ↗ Nn, H ↗ N, and x ↗ f (p, H) we have 

Pn
i≃1 xi ≃ H.2 In a slight abuse of notation, we use f both to refer to a 

method and to individual functions of the family. For a given method, we use outcome to refer to the set that the 
method outputs for a given instance and apportionment vector to refer to the individual vectors that belong to this 
outcome.

For an instance (p, H) and a state i, the quota of i, given by qi ≃ pi
P H, corresponds to the number of seats that the 

state would obtain in a proportional fractional allocation. In this work, we consider the following axioms for 
apportionment methods: 

a. Quota compliance. We say that a method f is quota-compliant if every state receives a number of seats equal to 
the rounding (up or down) of its quota, namely, for every population vector p ≃ (p1, : : : , pn), every house size H, 
every x ↗ f (p, H), and every i ↗ [n], it holds xi ↗ {→qi↑, ↓qi↔}.

b. Lower (upper) quota compliance. We say that f is lower (resp. upper) quota-compliant if every state receives 
a number of seats greater or equal to the floor (resp. lower or equal to the ceiling) of its quota. Namely, for every 
population vector p ≃ (p1, : : : , pn), every house size H, every x ↗ f (p, H), and every i ↗ [n], it holds xi ⇑ →qi↑ (resp. 
xi ⇓ ↓qi↔).

c. House monotonicity. We say that f is house-monotone if no state receives fewer seats when the house size is 
incremented or more seats when the house size is decremented: For every p, every house sizes H1, H2, H3 with 
H1 < H2 < H3, and every y ↗ f (p, H2), there exist x ↗ f (p, H1) and z ↗ f (P, H3) such that x ⇓ y ⇓ z.3

d. Population monotonicity. We say that f is population-monotone if, whenever the populations change in a way 
that the population ratio between two states i and j increases in favor of i, it does not occur that state i receives 
strictly fewer seats and j receives strictly more seats. Formally, for every population vectors p, p⇔, every house sizes 
H, H⇔, every apportionments x ↗ f (p, H), x⇔ ↗ f (p⇔, H⇔), and every pair of states i, j ↗ [n], whenever p⇔i=p⇔j ⇑ pi=pj it 
holds either (i) xi ⇓ x⇔i , (ii) xj ⇑ x⇔j , or (iii) p⇔i=p⇔j ≃ pi=pj and x⇔ ↗ f (p, H).

Denoting as F the set of methods, a randomized method consists of F, a random variable on F , and a tie- 
breaking distribution B on subsets of Nn

0 ; we write both compactly as FB. For each possible population vector p 
and house size H, we write FB(p, H) for the random variable corresponding to the output of the method realized 
by F evaluated in (p, H), breaking ties according to B in case the method outputs multiple apportionment vec-
tors.4 We omit the superscript corresponding to the tie-breaking distribution whenever we work with methods 
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that output a single vector for every instance. We remark that any randomness involved in the randomized 
method is realized independently of the specific instance. A randomized method FB is (lower/upper) quota- 
compliant, house-monotone, or population-monotone if F is such that the methods that do not satisfy these prop-
erties are realized with probability zero. Furthermore, we say that FB is ex-ante proportional if every state receives 
its quota in expectation: For every p ≃ (p1, : : : , pn), every house size H and every i ↗ [n], it holds E(FB

i (p, H)) ≃ qi.

3. The Combinatorial Structure of Stationary Divisor Methods
The most well-known population-monotone apportionment methods are divisor methods. Among these, promi-
nent examples are the Jefferson/D’Hondt method, the Webster/Sainte-Laguë method, and the Adams method, 
all of which fall into the subclass of stationary divisor methods. Despite being widespread, little is known about the 
diversity of outcomes that can be derived from these methods. In particular, how many different stationary divisor 
methods may return different outcomes in the worst case? Given the omnipresence of divisor methods in real-world 
politics, answering this question can help us to understand the influence of the choice between different divisor 
methods. While we cannot answer this question exactly, we show that—perhaps surprisingly—doing so would 
solve a long-standing open question from discrete geometry. On our way toward finding almost matching upper 
and lower bounds (Sections 3.5 and 3.6), we derive several structural insights into the space of outcomes of sta-
tionary divisor methods through the lens of our new geometric perspective. In Section 3.7, we discuss how we 
can extend our upper bound from Section 3.5 to the class of power-mean divisor methods by applying results for 
pseudoline arrangements.

The space of stationary divisor methods is parameterized by δ ↗ [0, 1], and we refer to the stationary divisor 
method with parameter δ�as the δ-divisor method. To introduce them, we define a rounding rule parameterized 
by δ, which simply rounds up a number if its fractional part is strictly above δ, downward if it is strictly below δ, 
and either of them if it is equal to δ. Formally,

vrbδ ≃
{0} if r < δ,
{t} if t 1 + δ < r < t + δ for some t ↗ N0,
{t, t + 1} if r ≃ t + δ for some t ↗ N0:

8
><

>:

For δ ↗ [0, 1], the δ�-divisor method is a family of functions f (·, ·;δ) (i.e., one function for each number n ↗ N) such 
that for every p ↗ Nn and H ↗ N

f (p, H;δ) ≃ x ↗ Nn
0

!!!!!there exists λ > 0 s:t: xi ↗ vλpibδ for every i ↗ [n] and
Xn

i≃1
xi ≃ H

( )

:

The Jefferson/D’Hondt method corresponds to f (·, ·; 1) in our notation, the Webster/Sainte-Laguë method corre-
sponds to f (·, ·; 1

2), and the Adams method corresponds to f (·, ·; 0). For an instance (p, H), a value δ ↗ [0, 1] and a 
vector x ↗ f (p, H;δ), we let

Λ(x;δ) ≃ {λ ↗ R++ |xi ↗ vλpibδ for all i ↗ [n]}
denote the set of multipliers producing this output via the δ-divisor method.

3.1. Breaking Points
To study the diversity of stationary divisor methods, we introduce the notion of breaking points of an instance 
(p, H), which informally correspond to the values of δ�at which the outputs of stationary divisor methods change.

Definition 1. The breaking points of an instance (p, H) are defined by τ0 ≃ 0 and inductively by
τi ≃ max{δ ↗ (τi 1, 1] | f (p, H;δ1) ≃ f (p, H;δ2) ∀ δ1,δ2 ↗ (τi 1,δ)}

for i ↗ N, until τi ≃ 1.
By the definition it follows directly that 0 ≃ τ0 < τ1 < τ2 <⋯< τr 1 < τr ≃ 1 and that, for all i ↗ {0, : : : , r 1}

and δ,δ⇔ ↗ (τi,τi+1), f (p, H;δ) ≃ f (p, H;δ⇔). The following observation states a natural convexity notion of stationary 
divisor methods.
Observation 1. Let (p, H) ↗ Nn ⇒ N and δ1,δ2 ↗ [0, 1] be arbitrary values with δ1 < δ2. Then, for every x ↗ f (p, H;δ1) ↖
f (p, H;δ2) and every δ ↗ [δ1,δ2], we have that x ↗ f (p, H;δ).

To prove this observation, we show that an appropriate convex combination of the two multipliers associated 
with x in f (p, H;δ1) and in f (p, H;δ2) is itself a multiplier associated with x in f (p, H;δ). The example in Figure 1(a)
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shows that the interval [δ (x),δ+(x)] for which a vector x is output might actually be a single breaking point, that 
is, we may have δ (x) ≃ δ+(x).
Proof of Observation 1. Let p, H,δ1,δ2 be as in the statement, and let x ↗ f (p, H;δ1) ↖ f (p, H;δ2) and δ ↗ [δ1,δ2] be 
arbitrary. Let λ1 and λ2 be multipliers corresponding to the output x for the δ1- and δ2-divisor methods, respec-
tively, that is, λ1 ↗Λ(x;δ1) and λ2 ↗Λ(x;δ2). This is equivalent to

xi 1 + δ1 ⇓ λ1pi ⇓ xi + δ1 for every i ↗ [n], (1) 

xi 1 + δ2 ⇓ λ2pi ⇓ xi + δ2 for every i ↗ [n]: (2) 

We define

λ ≃ λ1 + δ δ1
δ2  δ1

(λ2  λ1):

We then have, for every i ↗ [n], that

λpi ≃ λ1pi +
δ δ1
δ2 δ1

(λ2 λ1)pi ≃
δ2 δ
δ2 δ1

λ1pi +
δ δ1
δ2 δ1

λ2pi

⇑ δ2 δ
δ2 δ1

(xi 1 + δ1) +
δ δ1
δ2 δ1

(xi 1 + δ2) ≃ xi 1 + δ, 

where the inequality follows from (1) and (2). Similarly, for each i ↗ [n] we have that

λpi ≃ λ1pi +
δ δ1
δ2 δ1

(λ2 λ1)pi ≃
δ2 δ
δ2 δ1

λ1pi +
δ δ1
δ2 δ1

λ2pi

⇓ δ2 δ
δ2 δ1

(xi + δ1) +
δ δ1
δ2 δ1

(xi + δ2) ≃ xi + δ, 

where the inequality follows again from (1) and (2). This shows that xi ↗ [[λpi]]δ. Since 
Pn

i≃1 xi ≃ H follows imme-
diately from the fact that x ↗ f (p, H;δ1) ↖ f (p, H;δ2), we conclude that x ↗ f (p, H;δ). w

3.2. Majorization and a First Upper Bound
Marshall et al. [25] showed a particular relation between apportionments produced by different divisor methods. 
For vectors x, y ↗ Nn

0 whose components sum up to the same value, we say that x majorizes y if, for every i ↗ [n], 
the sum of the i largest components of x is at least the sum of the i largest components of y. The authors showed 

Figure 1. (Color online) Illustration of the outputs and breaking points of apportionment instances. Linear functions in L corre-
sponding to state 1 (2, 3, respectively) are illustrated by dark blue (light green, orange, respectively) lines. The function λH corre-
sponding to the (H 1)-level is illustrated by thick light gray segments. Filled circles correspond to breaking points of (p, H); 
unfilled circles correspond to vertices of λH that are not breaking points of (p, H). Outputs for each value of δ ↗ [0, 1] are shown 
below the plots. 

(a) Illustration of instance (p = (5, 3, 1), H = 4) (b) Illustration of instance (p = (8, 3, 1), H = 6)
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that, for all values 0 ⇓ δ ⇓ δ⇔ ⇓ 1 and all instances (p, H), any vector in f (p, H;δ⇔) majorizes any vector in 
f (p, H;δ). In simple terms, increasing δ�can only produce seat transfers from smaller to larger districts. An upper 
bound of O(nH) on the number of breaking points follows immediately from this property, as seat transfers go 
in a single direction. In order to beat this upper bound and get rid of the dependence on H, we will explore in 
the remainder of this section the geometric structure of divisor methods through a connection to line 
arrangements.

Connection to Line Arrangements. In the following, we uncover structural insights about breaking points and 
the space of outcomes of δ-divisor methods. To do so, we first draw a connection to line arrangements. For an 
apportionment instance (p, H), we introduce the following family of linear functions with domain in [0, 1]:

L(p, H) ≃ $i, t(δ) ≃
t
pi

+ δpi
| i ↗ [n], t ↗ 0, : : : , H 1{ }

" #
:

These functions are illustrated in Figure 1. When clear from the context, we omit the apportionment instance and 
write L instead of L(p, H). For x ↗ Nn

0 with 
Pn

i≃1 xi ≃ H, it holds that x ↗ f (p, H;δ) if and only if there exists λ ↗ R++
such that for every i ↗ [n] we have that xi  1 + δ ⇓ λpi ⇓ xi + δ. Dividing the constraint for i ↗ [n] by pi, this is 
equivalent to the condition that

$i, xi 1(δ) ⇓ λ ⇓ $i, xi(δ):
Interpreting these constraints geometrically, we get the following equivalence: For x ↗ Nn

0 with 
Pn

i≃1 xi ≃ H, it 
holds that x ↗ f (p, H;δ) if and only if there exists λ ↗ R++ such that for every i ↗ [n] we have that $i, 0(δ) <⋯<
$i, xi 1(δ) ⇓ λ�and $i, xi(δ) ⇑ λ. Hence, another interpretation of the multiplier λ�is that of a threshold such that all 
lines in L below λ�get assigned one seat and those lines at λ�potentially get a seat assigned. Here, assigning a seat 
to a line refers to assigning a seat to the corresponding state. In order to meet the house size H, λ�must be chosen 
such that the number of lines strictly below λ�is at most H and the number of lines weakly below λ�is at least H. 
Hence, the minimum choice of λ�as a function of δ�is given by

λH(δ) ≃ min{λ ↗ R | | {$ ↗ L(p, H) |$(δ) ⇓ λ} | ⇑ H}:
We also illustrate λH in Figure 1. Recall that, for a given x ↗ f (p, H;δ), Λ(x;δ) is the set of feasible multipliers for 

x in the δ-divisor method. We immediately get that Λ(x;δ) ≃ [λH(δ),λH+1(δ)] and this set does not depend on x. 
Now, let LH(δ) ≃ {$ ↗ L |$(δ) ≃ λH(δ)} and, similarly, L<H(δ) ≃ {$ ↗ L |$(δ) < λH(δ)}, L⇓H(δ) ≃ L<H(δ) ⇐ LH(δ), 
and L⇑H(δ) ≃ L \L<H(δ). We obtain the following characterization of the apportionment output by the δ-divisor 
method.
Observation 2. For (p, H) ↗ Nn ⇒ N, δ ↗ [0, 1], and x ↗ Nn

0 with 
P

i↗[n]xi ≃ H, it holds that

x ↗ f (p, H;δ)� $i, xi 1 ↗ L⇓H(δ) and $i, xi ↗ L⇑H(δ) for every i ↗ [n]:

Note that Observation 2 restricted to fixed δ�is well known. Yet, to the best of our knowledge, we are the first 
to systematically study the set of outcomes derived from stationary divisor methods for varying δ. This brings us 
to the connection to line arrangements.

3.3. The k-Level in Line Arrangements
Consider a set of n lines in the plane. The intersections of two lines are called vertices and the edges are the line 
segments between any two vertices. For k ↗ [n], the k-level of the line arrangement is the closure of all edges that 
have exactly k lines strictly below them. For an apportionment instance (p, H), the set of lines L(p, H) can be 
directly interpreted as a line arrangement of nH lines in the plane. Moreover, unless pi ≃ pj for some i, j ↗ [n], the 
(H 1)-level of L(p, H) is well defined and equals exactly λH(δ). Note that λH(δ) is well defined even when pi ≃ pj 
for some i, j ↗ [n]. In the literature online arrangements, it is often assumed that lines are in general position, that 
is, no three lines intersect at the same point.

3.4. Vertices and Breaking Points
In the next section, we will show that if τ ↗ [0, 1] is a breaking point of (p, H), then (τ,λH(τ)) is a vertex of λH(δ). 
Conversely, not every vertex of λH(δ) is located at a breaking point. Consider for example the unfilled circle in 
Figure 1(a). Since the set L⇓H(δ) is exactly of size H and does not change at this intersection point, f (p, H;δ) does 
not change at this point. In general, vertices of λH(δ) at which the slope increases (also referred to as convex verti-
ces) do not correspond to breaking points of (p, H) while points at which the slope decreases (also referred to as 
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concave vertices) correspond to breaking points. The number of vertices of a k-level is also referred to as its com-
plexity. Establishing tight worst-case bounds on the complexity of a k-level (in terms of the number of lines and k) 
is a long-standing open problem in discrete geometry. For an overview of known results, we refer to section 11 
by Matousek [27].

The connection we have sketched between the breaking points of an apportionment instance and the complex-
ity of the k-level in a line arrangement for some k is formally stated in the following theorem, which constitutes 
the main result of this section.
Theorem 1. Given two functions g, h : N↙ R such that 

• for any arrangement of m lines and any k ↗ {0, : : : , m}, the complexity of the k-level is bounded by O(g(m)), and
• for any m ↗ N, there exists an arrangement of m lines whose k-level has complexity !(h(m)) for some k ↗ {0, : : : , m},
the following holds: For any apportionment instance (p, H), the number of breaking points of (p, H) is upper bounded by 

O(g(n)), where n is the number of states. Conversely, for any n ↗ N, there exists an apportionment instance with n states 
and !(h(n)) breaking points.

We can now directly apply the best-known bounds for the complexity of the k-level in an arrangement of m 
lines. Dey [14] proved that, for any arrangement of m lines and any k ↗ {0, : : : , m}, the complexity of the k-level is 
bounded by O(m4=3), while Tóth [36] showed that, for any m ↗ N, there exists an arrangement of m lines whose k- 
level has complexity m exp(!(

         
ln m

↘
)) for some k ↗ {0, : : : , m}. We obtain the following corollary.

Corollary 1. Let n ↗ N. For any apportionment instance (p, H) with n states, the number of breaking points of (p, H) is 
upper bounded by O(n4=3). Conversely, there exists an apportionment instance with n states and ne!(

      
ln n

↘
) breaking points.

We formally prove Theorem 1 in Sections 3.5 and 3.6. First, we derive further consequences of the geometric 
approach we have developed.

Structural Insights. In this section, we provide structural insights into the space of outcomes induced by δ-divi-
sor methods using the geometric interpretation of the assignment of seats performed by these methods.

3.5. Quota Intervals
It is well known that the Jefferson/D’Hondt method satisfies lower quota and that the Adams method satisfies 
upper quota. We now show that the whole set of stationary divisor methods, given by δ ↗ [0, 1], can be parti-
tioned into three instance-specific subintervals, depending on whether the output satisfies lower quota, upper 
quota, or both.
Proposition 1. For every (p, H), there exist τ,τ ↗ [0, 1] with τ ⇓ τ�such that: 

i. For every δ ↗ [0,τ], every x ↗ f (p, H;δ), and every i ↗ [n], we have xi ⇓ ↓qi↔;
ii. For every δ ↗ [τ, 1], every x ↗ f (p, H;δ), and every i ↗ [n], we have xi ⇑ →qi↑.
The main idea to prove Proposition 1 in what follows is to consider λ1 ≃ min{λ ↗ R++ |λpi ⇑ →qi↑ for all i ↗ [n]}

and λ2 ≃ max{λ ↗ R++ |λpi ⇓ ↓qi↔ for all i ↗ [n]} and to show that the claim holds for τ ≃ λ 1
H (λ1) and τ ≃ λ 1

H (λ2). 
Note that λH(δ) is strictly increasing, which is why the inverse of the function exists.
Proof. Let (p, H) ↗ Nn ⇒ N be arbitrary and consider

τ ≃ min{δ ↗ [0, 1] : λH(δ)pi ⇑ →qi↑ for every i ↗ [n]},
τ ≃ max{δ ↗ [0, 1] : λH(δ)pi ⇓ ↓qi↔ for every i ↗ [n]}:

We first observe that these values are well defined, that is, that the sets over which the minimum and maximum 
are taken are nonempty. Indeed, suppose toward a contradiction that, for every δ ↗ [0, 1], it holds that λH(δ)pi <
→qi↑ for some i ↗ [n]. This yields that, for every δ ↗ [0, 1], λH(δ) < H=P. Applying this inequality for δ ≃ 1, we 
obtain that

Xn

i≃1
| {t ↗ N0 : t + 1 ⇓ λH(1)pi} | ≃

Xn

i≃1
→λH(1)pi↑ <

Xn

i≃1
qi ⇓ H:

On the other hand, the definition of λH(δ) states that
Xn

i≃1
| {t ↗ N0 : t + 1 ⇓ λH(1)pi} | ⇑ H, 
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a contradiction. We conclude that τ�is well defined; the proof for τ�is completely analogous. The fact that τ ⇓ τ�
follows directly from the fact that λH(δ) is a (piecewise linear) strictly increasing function. Indeed, since 
→qi↑ ⇓ H

P pi ⇓ ↓qi↔, the former implies τ ⇓ λ 1
H (H=P) ⇓ τ.

We finally proceed to show properties (i) and (ii) in the statement. Since the proofs are analogous one to the 
other, we only include the proof of property (ii). We first consider the corner case δ ≃ 1, that is, we aim to show 
that for every x ↗ f (p, H; 1) and i ↗ [n] it holds that xi ⇑ →qi↑. This particular result is well known (see, e.g., Balinski 
and Young [8]); we prove it here for completeness. Let x ↗ f (p, H; 1) be arbitrary. We already observed that 
λH(1) ⇑ H=P, so Observation 1 implies that, for every i ↗ [n],

xi ⇑ λH(1)pi  1 ⇑ qi  1: (3) 
If we had equality throughout for some state i, we would have that λH(1) ≃ H=P, thus Observation 1 would 
imply xj ⇓ λH(1)pj ≃ qj for every j ↗ [n], which together with the fact that xi ≃ qi  1 yields 

P
i↗[n]xi < H, a contra-

diction. We conclude that, for each state i ↗ [n], at least one of the inequalities in (3) is strict, that is, xi ⇑ →qi↑.
We finally consider the case with τ < 1 and we let δ ↗ [τ, 1) and x ↗ f (p, H;δ) be arbitrary. We claim that, for 

every i ↗ [n],
xi ⇑ λH(δ)pi δ > λH(δ)pi  1 ⇑ λH(τ)pi 1 ⇑ →qi↑ 1:

Indeed, the first inequality follows from Observation 1, the second one from the fact that δ < 1, the third one 
from the fact that λH is an increasing function, and the last one from the definition of τ. Since x ↗ Nn

0, we conclude 
that xi ⇑ →qi↑ for every i ↗ [n]. w

3.6. Breaking Points and Ties
We come back to the task of determining the breaking points of an instance, that is, those values of δ ↗ [0, 1] for 
which f (p, H,δ) changes. We show that any breaking point corresponds to a vertex in λH, and, under the assump-
tion that all populations differ from one another, breaking points are exactly those δ ↗ [0, 1] for which f (p, H;δ)
contains more than one apportionment vector. See Figure 1 for an illustration. The proof of Proposition 2 makes 
use of the alternative definition of δ-divisor methods given in Observation 2.
Proposition 2. Let (p, H) be an apportionment instance. If τ ↗ [0, 1] is a breaking point, then λH(δ) has a vertex at τ�and 
| f (p, H;τ) | > 1. Furthermore, if pi ≠ pj for all i, j ↗ [n] with i ≠ j and δ ↗ [0, 1] is such that | f (p, H;δ) | > 1, then δ�is a 
breaking point.

Proof. We start by proving the first statement. To this end, let τ ↗ [0, 1] be a breaking point. In the following we 
will show that (a) λH(δ) has a vertex at τ�and (b) | f (p, H;τ) | > 1. By the definition of a breaking point, we know 
that (i) there exists ε > 0 such that f (p, H;δ) is equal for any δ ↗ [τ ε,τ) but is different for δ ≃ τ, or (ii) there 
exists ε > 0 such that the f (p, H;δ) is equal for δ ↗ (τ,τ+ ε] but different for δ ≃ τ. We assume (i) without loss of 
generality, as the proof is analogous for (ii).

To show (a), we assume for contradiction that f (p, H;τ ε) \ f (p, H;τ) is nonempty and let x be a vector in this 
set. By Observation 1, this implies that $i, xi 1(τ ε⇔) ⇓ λH(τ ε⇔) for all i ↗ [n] and 0 < ε⇔ < ε. Continuity of the 
(piecewise) linear functions yields $i, xi 1(τ) ⇓ λ(τ) for all i ↗ [n], hence x ↗ f (p, H;τ), a contradiction. Therefore, 
f (p, H;τ) \ f (p, H;τ ε) is nonempty. Let x⇔ be an element of that set and x ↗ f (p, H;τ ε) be arbitrary. Since there 
exists some i ↗ [n] for which x⇔i > xi and x⇔ is not a feasible outcome for τ ε, we know by Observation 1 that 
$i, x⇔i 1(τ ε⇔) > λH(τ ε⇔) for all 0 < ε⇔ < ε�and $i, x⇔i 1(τ) ⇓ λH(τ). Thus, $i, x⇔i 1(δ) intersects with λH(δ) at τ�and 
therefore λH has a vertex at τ.

To show (b), let x ↗ f (p, H;τ ε) and x⇔ ↗ f (p, H;τ) such that x ≠ x⇔. Then, there exists i ↗ [n] such that xi > x⇔i . By 
Observation 1, it holds that $i, x⇔i (τ ε

⇔) ⇓ λH(τ ε⇔) for any ε⇔ < ε. Thus, by the continuity of λH and $i, x⇔i this 
also implies $i, x⇔i (τ) ⇓ λH(τ). Moreover, since L⇓H(τ) already contains at least H lines different from $i, x⇔i (namely, 
the lines $j, 0, : : : ,$j, x⇔j 1 for each j ↗ [n]), this implies |L⇓H(τ) | >H, which directly yields | f (p, H;τ) | > 1 by Obser-
vation 2.

We now turn to prove the second statement, that is, under the assumption that pi ≠ pj for all i, j ↗ [n], the fact 
that | f (p, H;τ) | > 1 for some τ ↗ [0, 1] implies that τ�is a breaking point. Note that | f (p, H;τ) | > 1 yields 
|L⇓H(τ) | >H by Observation 1, which in particular implies that |LH(τ) | > 1. Moreover, since no two lines from 
L corresponding to the same state intersect within the interval [0, 1] and pi ≠ pj for all i, j ↗ [n], all lines in LH(τ)
have different slopes. Fix i ↗ [n] to be the state with the smallest population that has a line in LH(τ). This corre-
sponds to the line with the steepest slope in LH(τ). Let t ↗ N0 be such that $i, t ↗ LH(τ). Then, there exists ε > 0 
such that for all ε > ε⇔ > 0 it holds that $i, t ↗ L<H(τ ε⇔) and $i, t ∉ L⇓H(τ+ ε⇔). Thus, any apportionment vector in 
f (p, H,τ ε⇔) gives i at least t + 1 seats but any apportionment vector in f (p, H,τ+ ε⇔) gives i at most t seats. Thus, 
τ�is a breaking point. w

Cembrano et al.: New Combinatorial Insights for Monotone Apportionment 
Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2025 INFORMS 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
73

:5
94

1:
ed

97
:7

13
7:

78
a6

:4
ca

8]
 o

n 
16

 O
ct

ob
er

 2
02

5,
 a

t 1
4:

01
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



3.7. Number of Outcomes vs. apportionment Vectors
In Section 3.5, we will bound the number of breaking points by a polynomial in n, which by definition, yields an 
upper bound on the number of outcomes of a method (namely, of twice the number of breaking points minus 
one). This is in contrast to the number of apportionment vectors, which may be exponential. While this is easy to 
see when the populations of states can be equal, we provide an example where all populations are different. This 
happens when a high number of lines from L intersect with λH at the same point. Our example extends the one 
in Figure 1(a).

Observation 3. For every n ↗ N, there exist p ↗ Nn and H ↗ N with | f (p, H; 0:5) | ≃ !(2n=
   
n

↘
).

Proof. Let n ↗ N be arbitrary and consider δ ≃ 0:5, p ↗ Nn defined as pi ≃ 2i 1 for each i ↗ [n], and H ≃ →n2=2↑. We 
claim that, for every S ∝ [n] with |S | ≃ →n=2↑, x ↗ Nn

0 defined as xi ≃ i 1 +χ(i ↗ S) satisfies x ↗ f (p, H;δ).5 Indeed, 
fix such S and x arbitrarily. We have that this apportionment vector respects the house size as

Xn

i≃1
xi ≃

Xn

i≃1
i n + |S | ≃ n(n 1)

2 +
$

n
2

%
≃ H:

Taking a multiplier λ ≃ 1=2, we have that λpi ≃ i 1=2 for each i ↗ [n]. Thus, for i ↗ S we have that

i 1
2 ≃ xi  1 + δ ⇓ λpi ⇓ xi + δ ≃ i + 1

2 :

Similarly, for i ↗ [n] \ S we have that

i 3
2 ≃ xi  1 + δ ⇓ λpi ⇓ xi + δ ≃ i 1

2 :

We obtain that x ↗ f (p, H;δ). Since S can be any subset of →n=2↑ elements of [n], we conclude the result. w

Upper Bound on the Number of Breaking Points. In this section, we exploit the connection outlined in previous 
sections to prove the upper bound on the number of breaking points for any apportionment instance in terms of 
the number of states established in Theorem 1. Observe that our construction of a line arrangement from an 
apportionment instance in Section 3.3 involves nH lines. Thus, in order to directly apply an upper bound on the 
complexity of the k-level in an arrangement of m lines, we would need to replace m by nH. Instead, we show that 
we can reduce L to an arrangement of 2n 1 lines such that the (H 1)-level of L exactly corresponds to some k- 
level of the reduced line arrangement. The upper bound then follows directly. An illustration is shown in 
Figure 2.
Proof of the upper bound in Theorem 1. Let g be a function as in the statement, let n ↗ N, and let (p, H) be an 
apportionment instance with n states. We claim that there exist at most 2n 1 lines in L(p, H) that intersect with 
λH. If true, this implies that we can reduce the line arrangement L(p, H) of some apportionment instance (p, H) to 
a line arrangement L⇔ with at most 2n 1 lines and such that some k-level for k ↗ [2n 1] has the same 

Figure 2. (Color online) Illustration of the set L̂(δ) from the proof of the upper bound in Theorem 1 via the same example as 
given in Figure 1(b). For each δ, L̂(δ) are those functions from L for which there exists a function with higher index that is 
included in L⇓H(δ⇔) for some δ⇔ ↗ [0,δ]. We illustrate L̂(δ) by dashed lines. The important property of this set is that once a line is 
included for some δ, it will not intersect with the (H 1)-level for any δ⇔ ⇑ δ. 
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complexity as the (H 1)-level in L(p, H). From the definition of g, we obtain that the complexity of the 
(H 1)-level in L(p, H) is bounded by O(g(m)). From Proposition 2, we conclude that this bound holds for the 
number of breaking points of (p, H) as well.

We use a potential function argument to show that the number of lines in L intersecting with λH is upper 
bounded and prove the claim. For δ ↗ [0, 1], we define L̂(δ) as those functions from L for which there exists a 
function with higher index that is included in L⇓H(δ⇔) for some δ⇔ ↗ [0,δ], that is,

L̂(δ) ≃ {$i, t⇔ |′ t > t⇔,δ⇔ ⇓ δ : $i, t ↗ L⇓H(δ⇔)}:
Note that L̂(δ) is monotone by definition, that is, L̂(δ) ∝ L̂(δ⇔) for all δ ↗ [0, 1],δ⇔ ↗ [δ, 1]. In the following, we 

show two further observations: 
i. Lines in L̂(δ) are fixed in the sense that they are included in any L<H(δ⇔) for δ⇔ ↗ [δ, 1]. Formally, L̂(δ) ∝

L<H(δ⇔) for all δ ↗ [0, 1],δ⇔ ↗ [δ, 1].
ii. The size of L̂(δ) is bounded from both sides, that is, H n ⇓ |L̂(δ) | ⇓ H 1 for all δ ↗ [0, 1].
We start by proving (i). Let δ ↗ [0, 1], i ↗ [n], and t ↗ {0, : : : , H 1} be such that $i, t(δ) ⇓ λH(δ). We claim that for 

any δ⇔ ↗ [δ, 1], $i, 0(δ⇔), : : : , $i, t 1(δ⇔) are strictly below λH(δ⇔). For δ⇔ ≃ δ, this is true because $i, t⇔(δ) < $i, t(δ) for any 
t⇔ < t. For δ⇔ ↗ (δ, 1] this is true since (a) all functions in L are increasing, thus, λH is increasing, and (b) $i, t⇔(δ⇔) ⇓
$i, t⇔(1) ⇓ $i, t(0) ⇓ $i, t(δ) for all t⇔ < t.

For (ii), note that |L⇓H(0) | ⇑ H and each state i ↗ [n] can have at most one line in L⇓H(0) \ L̂(0), thus 
|L̂(0) | ⇑ H n. Moreover, by (i) we know that L̂(1) ∝ L<H(1), where the cardinality of the latter set is upper 
bounded H 1. Statement (ii) then follows from the monotonicity of L̂(δ).

We now turn to bounding the number of different lines intersecting with λH. By (i), for any δ ↗ [0, 1], any line 
that intersects with λH in δ�is in particular included in L⇓H(δ) but not in L̂(δ). Hence, the total number of lines in 
L intersecting with λH is upper bounded by

!!!
[

δ↗[0,1]
L⇓H(δ) \ L̂(δ)

!!!:

For a line $i, t, i ↗ [n], t ↗ {0, : : : , H 1}, let δ0 ↗ [0, 1] be the smallest value such that $i, t ↗ L⇓H(δ0) \ L̂(δ0). This is 
also the first time that $i, t is included in L⇓H(δ) (because L̂(δ) is monotone). Thus, δ0 is also the smallest value at 
which $i, t 1 is included in L̂(δ) and the size of L̂(δ) increases. By (ii), this can happen at most n 1 times. More-
over, by definition it clearly holds that |L⇓H(0) \ L̂(0) | ⇓ n. This yields an upper bound of 2n 1 lines intersect-
ing with λH and finishes the proof. w

3.8. Computation of all Outcomes
Our results give rise to a polynomial-time algorithm for computing a compact description of the outcomes 
returned by stationary divisor methods. Indeed, using the argument from the previous proof, we can reduce an 
apportionment instance to a line arrangement with O(n) lines by computing the outcome of two divisor methods 
(for δ ≃ 0 and δ ≃ 1). Then, we can find all breaking points with an algorithm due to Edelsbrunner and Welzl [15] 
(later improved by Chan [12]), with a running time of O(n4=3log1+ε(n)). After identifying the breaking points 
{τ0, : : : ,τr}, for each interval I in {[τ0], (τ0,τ1), [τ1], : : : , [τr]} we can directly compute two sets of lines L (I),L+(I), 
where |L (I) | ⇓ H and |L (I) | + |L+(I) | ⇑ H, such that the set of all apportionment vectors output within this 
interval can be described as “choosing” all lines in L (I) and any subset of H |L (I) | lines from L+(I); that is, 
the outcomes are all x ↗ Nn such that 

P
i↗[n]xi ≃ H and

| {t ↗ {0, : : : , H 1} : $i, t ↗ L (I)} | ⇓ xi ⇓ | {t ↗ {0, : : : , H 1} : $i, t ↗ L (I) ⇐ L+(I)} |
for every i ↗ [n].

Lower Bound on the Number of Breaking Points. In this section, we prove the lower bound on the worst-case 
number of breaking points stated in Theorem 1. To do so, we first show that, w.l.o.g., any line arrangement has a 
specific form.

Lemma 1. Let L be a line arrangement of n lines in general position and rational slopes. There exists another line arrange-
ment L⇔ ≃ {$i(δ) ≃ miδ+ ci, i ↗ [n]} such that: 

i. For all i ↗ [n] it holds that mi ↗ (1, 2);
ii. For all i ↗ [n] it holds that ci

mi
↗ N;
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iii. For any k ↗ [n] the complexity of the k-level in L equals the complexity of the k-level in L⇔.
Proof. Let L ≃ {$1, : : : ,$n} be a line arrangement of n ↗ N nonvertical lines on the interval [0, 1]. We also write 
$i(δ) ≃ miδ+ ci for all i ↗ [n].

We start by showing that we can apply a linear function to the slope of $i, i ↗ [n] and do not change the com-
plexity of the k-level for each k ↗ [n]. That is, consider the line arrangement L⇔ ≃ {$⇔1, : : : ,$⇔n}, where, for every 
i ↗ [n], $⇔i (δ) ≃ (αmi + β)δ+ ci for some α,β ↗ R with α≠ 0. We claim that, for any distinct i, j, k ↗ [n], the intersection 
point of lines $i and $j is above the line $k if and only if the intersection point of $⇔i and $⇔j is above $⇔k. Indeed, the 
intersection point of $i and $j is given by

δ0 ≃
cj ci

mi mj
, mi

cj ci

mi mj
+ ci

& ’
:

Moreover,

$k(δ0) ≃ mk
cj  ci

mi  mj
+ ck:

Thus, the intersection point of $i and $j is above $k if and only if

(mi mk)
cj ci

mi mj
> ck ci:

The intersection point of $⇔i and $⇔j , on the other hand, is given by

δ⇔0 ≃
1
α

cj  ci

mi  mj
, mi

cj ci

mi mj
+ β
α

cj  ci

mi  mj
+ ci

& ’
:

Moreover,
$⇔k(δ⇔0) ≃ mk

cj  ci

mi  mj
+ β
α

cj  ci

mi  mj
+ ck:

Thus, the intersection point of $⇔i and $⇔j is above $⇔k if and only if

(mi mk)
cj  ci

mi  mj
> ck ci, 

which proves the claim.
We can now achieve the property (i) by first applying a transformation such that all slopes are strictly positive, 

for example, α ≃ 1 and β ≃ min{mi | i ↗ [n]} + 0:01, and then applying a transformation that compresses all slopes 
into the interval (1, 2), for example, mi ∞↙ 0:99 · mi

max{mi | i↗[n]} + 1.
To obtain property (ii), it is easy to show via an analogous argument to the one above that we can apply any 

linear transformation with a positive factor to ci, for each i ↗ [n], and do not change the k-level. More precisely, 
we replace the lines obtained via the aforementioned transformation of the slopes, $i(δ) ≃ miδ+ ci for each i ↗ [n], 
by $⇔i (δ) ≃ miδ+α(ci + β), where α > 0. We first ensure that the coefficients c⇔i ≃ ci + β�are strictly positive by choos-
ing, for example, β ≃ min{ci | i ↗ [n]} + 0:01. Then, we choose the smallest α ↗Q such that α c⇔i

mi
↗ N, for all i ↗ [n]. 

The resulting line arrangement satisfies properties (i)–(iii). w

Building upon Lemma 1, we construct an apportionment instance from any line arrangement with the number 
of breaking points being equal up to a factor of 2 to the complexity of some k-level. An illustration of this con-
struction is shown in Figure 3.
Proof of the lower bound in Theorem 1. Let h be a function as in the statement and n ↗ N. Let L ≃ {$i(δ) ≃
miδ+ ci : i ↗ [n]} be a line arrangement and k ↗ [n] such that the complexity of the k-level of L is z ≃ !(h(n)). We 
assume without loss of generality that every line in L intersects with the k-level; otherwise, we could just remove 
such a line and adjust k if necessary. By Lemma 1 we can assume without loss of generality that mi ↗ (1, 2) and 
ci=mi ↗ N for all i ↗ [n]. We construct the apportionment instance as follows:6 Set pi ≃ 1=mi for all i ↗ [n] and 
H ≃Pi↗[n]

ci
mi

+ k + 1.
We aim to show that the (H 1)-level of L(p, H) equals the k-level of L. We first show that no two lines in 

L(p, H) that correspond to the same state can both intersect with the k-level of L, which we denote by γk(δ). 
Assume for contradiction that $i, t(δ) and $i, t⇔(δ) with t, t⇔ ↗ N0, t ≠ t⇔ both intersect with γk(δ) at 
δ1,δ2 ↗ [0, 1],δ1 < δ2, respectively. In the following, we derive a contradiction by applying the facts that 
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|$i, t(δ) $i, t⇔(δ) | ⇑ mi > 1, δ2 δ1 < γk(δ2) γk(δ1) < 2(δ2 δ1), and δ2 δ1 < $i, t(δ2) $i, t(δ1) < 2(δ2 δ1), which 
hold since all $i, t,$i, t⇔ , and γk(δ) are (piecewise) linear functions with slopes in (1, 2) and the images of $i, t and $i, t⇔

intersect in at most one point. First, assume t < t⇔. Then,
2(δ2 δ1) ⇓ 1 + δ2 δ1 < 1 + $i, t(δ2) $i, t(δ1) < $i, t⇔(δ2) $i, t(δ1) ≃ γk(δ2) γk(δ1) < 2(δ2 δ1), 

yielding a contradiction. Otherwise, assume t > t⇔. Then,
δ2 δ1 < γk(δ2) γk(δ1) ≃ $i, t⇔(δ2) $i, t(δ1) < $i, t(δ2) 1 $i, t(δ1) < 2(δ2 δ1) 1 ⇓ δ2 δ1, 

again, yielding a contradiction.
Now, we show that for each i ↗ [n], exactly the line $i, ci=mi intersects with the (H 1)-level. Note that each line of 

the form miδ+ ci for each i ↗ [n] from L equals exactly the line $i, ci=mi(δ) from L(p, H). Therefore, we know for each 
$i, ci=mi that it intersects with γk(δ). By the observation above, this implies that for each i ↗ [n], the lines $i, t for t ↗
{0, : : : , ci=mi} are below γk(δ) for the entire interval [0, 1] and $i, t for t ↗ {ci=mi + 1, : : : , H 1} are above γk(δ) for the 
entire interval [0, 1]. By definition of H this implies that γk(δ) equals the (H 1)-level of L(p, H). Hence, z is the num-
ber of vertices on the (H 1)-level of L(p, H). Observe that any concave vertex at δ�is such that | f (p, H;δ) | > 1: For 
any pair of states i, j ↗ [n] such that $i, ci=mi(δ) ≃ $j, cj=mj(δ) ≃ γk(δ), there must be apportionment vectors x, y ↗ f (p, H;δ)
such that xi ≃ ci=mi ≃ yi 1 and xj 1 ≃ cj=mj ≃ yj. Therefore, if at least ↓z=2↔ of the vertices on the (H 1)-level of 
L(p, H) are concave, then we are done due to Proposition 2. Otherwise, note that every convex vertex of this level 
corresponds to a concave vertex of the (H 2)-level of L(p, H), and thus to a breaking point of the instance 
(p, H 1). Thus, in this case, the instance (p, H 1) has at least ↓z=2↔ breaking points due to Proposition 2. w

We remark that the apportionment constructed in the previous proof may require a large number of seats H. 
Bounding the number of breaking points in both H and n remains an intriguing direction for future work.

Beyond Stationary Divisor Methods. In general, one can consider rounding rules [[·]] given by values δt ↗ [0, 1] for 
each t ↗ N0 such that for r ↗ [t, t + 1] we have [[r]] ≃ {t} if r < t + δt, [[r]] ≃ {t + 1} if r > t + δt, and [[r]] ≃ {t, t + 1} if 
r ≃ t + δt. These rules give rise to nonstationary divisor methods, for which the number of breaking points may 
become exponential in the number of districts n. To see this, we can consider the same instance as in the proof of 
Observation 3, with pi ≃ 2i 1 for every i ↗ [n] and H ≃ →n2=2↑. For any S ∈ [n] with |S | ≃ →n=2↑, one can obtain the 
apportionment vector x ↗ Nn

0 given by

xi ≃
i if i ↗ S,
i 1 otherwise,

for every i ↗ [n]
(

by setting δi < 0:5 for every i ↗ S and δi > 0:5 for every i ↗ N \ S. Nevertheless, our upper bound on the number of 
breaking points still holds for other families of divisor methods that exhibit the same majorization property dis-
cussed at the beginning of this section, such as the family of power-mean divisor methods. This family uses 

Figure 3. (Color online) Illustration of the construction of a line arrangement corresponding to an apportionment instance from 
an arbitrary line arrangement satisfying the conditions in Lemma 1, such that the k-level of the original arrangement corresponds 
to the (H 1)-level of the new one. For illustration purposes, one of the slopes has been chosen out of the range specified in 
Lemma 1 (smaller than 1). 

(a) Line arrangement with its 0-level
marked via thick light gray segments

(b) Line arrangement corresponding to the
instance (p = (4/7, 1, 11/8), H = 7)
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rounding rules given by δt ≃ (tq

2 + (t+1)q

2 )1=q t for some q ↗ R, and one can define the breaking points analogously 
as before when q varies.7 Although this does not define a line arrangement anymore as varying q leads to curves 
instead, it is not hard to see that the curves defined in this way for q > 0, as well as for q < 0 and t ⇑ 1, are pseudo-
lines, that is, any pair of them intersects at most once. Thus, the O(n4=3) upper bound on the number of breaking 
points remains valid due to a result by Tamaki and Tokuyama [35] on the complexity of the k-level in a pseudo-
line arrangement. Importantly, this family contains traditional divisor methods such as the Dean method (where 
q ≃ 1) and the Huntington-Hill method (where q ≃ 0), the latter of which is currently used to apportion the 
House of Representatives of the United States. In Appendix A, we prove that the curves are indeed pseudolines 
and argue why an adaptation of the proof of the upper bound stated in Theorem 1 still holds.

4. Randomization and Divisor Methods
In the deterministic apportionment setting, population monotonicity is essentially incompatible with quota com-
pliance. Balinski and Young [8] showed that, under mild assumptions, divisor methods are the unique 
population-monotone methods. Among them, the Jefferson/D’Hondt method is the unique one satisfying the 
lower quota axiom but is known to violate upper quota compliance, whereas the Adams method is the unique 
one satisfying upper quota compliance but is known to violate lower quota compliance.

In Section 4.1, we first study how large these deviations from quota can be for any δ ↗ [0, 1]. The negative results 
in this regard, showing a worst-case deviation of almost H seats, motivate the incorporation of randomization. In 
particular, we explore the possibility of defining a random variable δ ↗ [0, 1] in a way that, for the δ-divisor 
method, a smaller deviation from quota is achieved in expectation. Even though constant worst-case deviations 
can be achieved when the ratio between the populations of two states is constant, in general, it turns out that 
these deviations are still linear in H for any randomized stationary divisor method. Hence, in Section 4.2 we take 
one step further and relax the requirement of exactly fulfilling the house size. We present a simple method, that 
can be seen as a mixture between a divisor method and the Hamilton method, that satisfies quota compliance, 
population monotonicity, and ex-ante proportionality. We further give both ex-post and probabilistic bounds on 
the deviation from the house size.

4.1. Deviation Bounds from Quota
It is well known that divisor methods satisfy several desirable axioms, including the strong population monoto-
nicity property, but fail to satisfy quota compliance (Balinski and Young [8]). In Section 3, we showed that every 
stationary divisor method is such that for any instance, all states either receive at least their lower quota or at 
most their upper quota but may deviate from the other one. In this section, we further study how large this devia-
tion can be, that is, how far the number of seats allocated to some state can be from its quota. Since this deviation 
cannot be larger than the total number of seats H, we take this number as given and ask the following: What is 
the largest difference that can occur between the number of seats allocated to a state and its quota, over all possi-
ble number of states n and all population vectors p ↗ Nn?

Our first proposition answers this question: The maximum deviation is arbitrarily close to H 1 when δ ≃ 0 
and H when δ > 0. For the case δ ≃ 0, the deviation of H 1 is achieved on an instance with one state with a large 
population and H 1 states with a small population, as the divisor method gives one seat to all states. When 
δ > 0, we take values n and M with 1 ∋ M ∋ n and consider one state with population n 1 and n 1 states 
with population M. For carefully chosen n and M, the δ-divisor method assigns all seats to the state with popula-
tion n 1, even though its quota is arbitrarily close to 0.

Proposition 3. Consider H ↗ N. Then, for every ε > 0 the following hold: 
i. There exist n ↗ N, p ↗ Nn, and i ↗ [n] such that |xi qi | ⇑ H 1 ε�for every x ↗ f (p, H; 0).
ii. For every δ ↗ (0, 1], there exist n ↗ N, p ↗ Nn, and i ↗ [n] such that |xi qi | ⇑ H ε�for every x ↗ f (p, H;δ).

Proof. Fix H ↗ N and ε > 0. To show part (i), we consider n ≃ H, p̂ ≃ ↓1
ε (H 1)(H ε)↔, and define p ↗ Nn as p1 ≃ p̂ 

and pi ≃ 1 for i ↗ {2, : : : , H}. We claim that x1 ⇓ 1 for every x ↗ f (p, H; 0). Indeed, if x1 ⇑ 2 for some x ↗ f (p, H; 0), 
then for every λ ↗Λ(x; 0) we would have λp1 ⇑ 1, that is, λ ⇑ 1=p̂. This would imply that, for every i ↗ {2, : : : , H}, 
λpi > 0 and thus xi ⇑ 1. But this yields 

Pn
i≃1 xi >H, a contradiction. We conclude that, for every x ↗ f (p, H; 0),

|x1 q1 | ⇑
p̂

p̂ + H 1 H 1 ⇑
1
ε(H 1)(H ε)

1
ε(H 1)(H ε) + H 1

H 1 ≃ H 1 ε:

Cembrano et al.: New Combinatorial Insights for Monotone Apportionment 
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To see part (b), we let δ ↗ (0, 1] be arbitrary, we fix p̂ ≃ ↓H
ε  1↔, and we let n ↗ N with n > p̂ + 1 be such that

H 1
n 1 p̂ p̂ < δ:

Observe that this implies

H  1 + δ < n 1
p̂ δ: (4) 

Consider now p ≃ (n 1, p̂, : : : , p̂). We claim that x1 ≃ H for every x ↗ f (p, H;δ). Indeed, if x1 ⇓ H 1 for some 
x ↗ f (p, H;δ), then for every λ ↗Λ(x;δ) we would have λp1 ⇓ H 1 + δ, that is, λ < δ=p̂. This would imply that, 
for every i ↗ {2, : : : , H}, λpi < δ�and thus xi ≃ 0. But this yields 

Pn
i≃1 xi < H, a contradiction. We conclude that, for 

every x ↗ f (p, H;δ),

|x1 q1 | ≃ H 1
p̂ + 1 H ⇑ H 1

H
ε  1 + 1

H ≃ H ε: w 

Since the aforementioned worst-case instances are tailored for specific values of δ, randomizing over δ ↗ [0, 1]
and returning the stationary divisor method corresponding to the realized δ�arises as a natural attempt to lower 
the expected deviation from quota while keeping all ex-post guarantees of divisor methods. When δ ~ G, we call 
such method the G-randomized divisor method FG, B, where B corresponds to a tie-breaking distribution, that is, 
a distribution over subsets of apportionment vectors that are output by the method in case they are more than 
one. The following proposition, whose proof can be found in Appendix B, shows that a better-than-linear devia-
tion in H is not possible, even with randomization. The proof combines the previous worst-case instances appro-
priately to provide a lower bound for the expected deviation from the quota of such methods, which approaches 
H=2 as H grows, regardless of the tie-breaking distribution. The idea is to leverage, for ξ ↗ [0, 1], instances with a 
large expected maximum deviation from the quota when G samples, with high probability, a value larger than ξ�
or smaller than ξ, and then obtain the bound by taking the limit ξ↙ 0.
Proposition 4. Let G be an arbitrary probability distribution over [0, 1] expressed as a cumulative distribution function, 
that is, a nondecreasing, right-continuous function with G(0) ≃ 0 and G(1) ≃ 1. Let also B be an arbitrary probability distri-
bution over subsets of Nn

0 , and H ↗ N be arbitrary. Then, for every ε > 0 there exist n ↗ N, p ↗ Nn, and i ↗ [n] such that the 
G-randomized divisor method FG, B satisfies |E(FG, B

i (p, H)) qi | ⇑ (1 1=(2H 1))H=2 ε:
This lower bound can be almost matched for large H with a very simple randomized method that runs either 

the Adams method or the Jefferson/D’Hondt method, each with probability 1=2, and breaks ties arbitrarily. We 
formally state this in the following proposition, whose simple proof is based on the fact that the Adams method 
satisfies upper quota and the Jefferson/D’Hondt method satisfies lower quota.
Proposition 5. Let G ~ Bernoulli(1=2) and let H ↗ N. Then, for every n ↗ N, every probability distribution B over subsets 
of Nn

0 , every p ↗ Nn, and every i ↗ [n], the G-randomized divisor method FG, B satisfies |E(FG, B
i (p, H)) qi | < (H + 1)=2:

Proof. Let n and FG, B be as in the statement, let (p, H) be an instance, and i ↗ [n] be a state. We know from Propo-
sition 1 that 0 ⇓ xi ⇓ ↓qi↔ for every x ↗ f (p, H; 0) and that →qi↑ ⇓ xi ⇓ H for every x ↗ f (p, H; 1). Therefore, for every 
i ↗ [n],

|E(FG, B
i (p, H)) qi | ⇓ max

x↗f (p,H;0),y↗f (p,H;1)

!!!!!
1
2 xi +

1
2 yi qi

!!!!!

⇓ max 1
2 qi +

1
2 (qi →qi↑),

1
2 (↓qi↔ qi) +

1
2 (H qi)

" #

≃ max 1
2 (2qi →qi↑),

1
2 (H + ↓qi↔ 2qi)

" #
<

1
2 (H + 1), 

where the maximum in the first step accounts for both possible worst-cases, either xi ≃ 0 and yi ≃ →qi↑ for x ↗
f (p, H; 0) and y ↗ f (p, H; 1), or xi ≃ ↓qi↔ and yi ≃ H for x ↗ f (p, H; 0) and y ↗ f (p, H; 1), and we used in the last step 
that qi ⇓ H. w

When parameterizing on the population vector, we can also obtain a bound on the deviation between the seats 
assigned to a state and the state’s quota in terms of the ratio between the state’s population and the minimum 
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population among any state. Specifically, we show that whenever the ratio between the populations of every 
pair of states is bounded by a constant r, any randomized stationary divisor method with an expected value of 
the parameter δ�equal to 1=2 provides an expected deviation from the quota of at most (r + 1)=2 for every state. 
The proof relies on bounding the feasible multipliers that lead to an apportionment vector for each δ ↗ [0, 1]. The 
deviation is minimized when E(δ) ≃ 1=2, thus, it is in particular valid for the deterministic Webster/Saint-Laguë 
method as well.
Proposition 6. Let n ↗ N, p ↗ Nn, H ↗ N, and i ↗ [n] be arbitrary. Let also G be an arbitrary probability distribution in 
[0, 1] such that for δ ~ G we have that E(δ) ≃ 1=2, and let B be an arbitrary probability distribution over subsets of Nn

0 . 
Then, the G-randomized divisor method FG, B satisfies

|E(FG, B
i (p, H)) qi | ⇓

1
2

pi
minj↗[n] pj

+ 1
 !

:

Proof. Let n, p, and H be as in the statement. We let Λ : [0, 1]↙ 2R be a function that maps every δ ↗ [0, 1] to the 
set of multipliers producing an apportionment via the δ-divisor method, that is,

Λ(δ) ≃
[

x↗f (p,H;δ)
Λ(x;δ):

We refer to such values of λ�as feasible for the instance. Consider the functions λmin(δ) and λmax(δ), pointwise 
minimal and maximal for any δ ↗ [0, 1], respectively. Specifically, for δ ↗ [0, 1] we define λmin(δ) ≃ minΛ(δ) and 
λmax(δ) ≃ maxΛ(δ).

Suppose toward a contradiction that there exists δ ↗ [0, 1] such that for every i ↗ [n], we have that piλmin(δ) > qi + δ. 
Fixing x ↗ f (p, H;δ) arbitrarily, this would imply that for every i ↗ [n] it holds that xi ⇑ piλmin δ > qi, and thus P

i↗[n]xi >H, a contradiction. We conclude that

λmin(δ) ⇓
H
P + max

j↗[n]

δ
pj
≃ H

P + δ
minj↗[n] pj

: (5) 

Similarly, suppose that there exists δ ↗ [0, 1] such that for every i ↗ [n], piλmax(δ) < qi (1 δ). Fixing x ↗ f (p, H;δ)
arbitrarily, this would imply that for every i ↗ [n] it holds that xi ⇓ piλmax + 1 δ < qi, and thus 

P
i↗[n]xi < H, a 

contradiction. We conclude that

λmax(δ) ⇑
H
P  max

j↗[n]

1 δ
pj

≃ H
P  

1 δ
minj↗[n] pj

: (6) 

We now fix G and B as in the statement, and δ ~ G. We make use of the following claim.
Claim 1. For every function λ : [0, 1]↙ R such that λ(δ) ↗Λ(δ) for each δ ↗ [0, 1], and for every state i ↗ [n], the 
G-randomized divisor method FG, B satisfies

E(FG, B
i (p, H)) ↗ [piE(λ(δ)) 1=2, piE(λ(δ)) + 1=2]:

Proof. We know that for any δ⇔ ↗ [0, 1] and every x ↗ f (p, H,δ⇔) it holds that
xi + δ⇔ 1 ⇓ λ(δ⇔)pi ⇓ xi + δ⇔:

Taking the expectation over δ ~ G and using linearity of expectation, together with the fact that E(δ) ≃ 1=2, we 
get that E(FG, B

i (p, H)) 1=2 ⇓ E(λ(δ))pi ⇓ E(FG, B
i (p, H)) + 1=2:

Taking the expectation over δ ~ G on both sides, (5) and (6) imply

E(λmin(δ)) ⇓
H
P + 1

2 minj↗[n] pj
, E(λmax(δ)) ⇑

H
P  

1
2 minj↗[n] pj

:

Therefore, for every function λ : [0, 1]↙ R such that λmin(δ⇔) ⇓ λ(δ⇔) ⇓ λmax(δ⇔) for every δ⇔ ↗ [0, 1], that is, that is 
feasible in the aforementioned way, it holds that

H
P  

1
2 minj↗[n] pj

⇓ E(λ(δ)) ⇓ H
P + 1

2 minj↗[n] pj
:
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Then, we conclude from Lemma 1 that

E(FG, B(p, H)) ↗ qi  
1
2

pi
minj↗[n] pj

+ 1
 !

, qi +
1
2

pi
minj↗[n] pj

+ 1
 !" #

: w 

4.2. Methods with Variable House Size
In this section, we relax our notion of a method with fixed house size (i.e., 

Pn
i≃1 xi ≃ H for every p, H, and 

x ↗ f (p, H)) in order to allow for variable house size. That is, we do not ask for the apportionments x ↗ f (p, H) to 
satisfy 

Pn
i≃1 xi ≃ H for every instance (p, H). The notions of quota compliance, population monotonicity, and 

ex-ante proportionality naturally extend.
We now introduce a family of methods with variable house size, which we call randomized fixed-divisor methods. 

These methods, when appropriately defined, satisfy population monotonicity, quota compliance, and ex-ante 
proportionality.8 Thus, they are able to overcome well-known impossibilities for deterministic methods with 
fixed house size. Further, specific methods provide additional deviation guarantees from the house size along 
with probabilistic bounds on this deviation.

A randomized fixed-divisor method is any method that randomizes on a specific set of methods that we call 
fixed-divisor methods. We introduce some additional notation to define them. A signpost sequence is a function s :
N0 ↙ R+ satisfying two properties: (i) s(t) ↗ [t, t + 1] for every t ↗ N0 and (ii) if s(t⇔) ≃ t⇔ for some t⇔ ↗ N0 then s(t) <
t + 1 for every t ↗ N0 and, analogously, if s(t⇔) ≃ t⇔ + 1 for some t⇔ ↗ N0 then s(t) > t for every t ↗ N0. For a signpost 
sequence s and a value t ↗ R+, we let Ns(t) ≃ | {k ⇑ 0 : s(k) < t} | denote the number of elements in the sequence 
that are strictly smaller than t. A fixed-divisor method with signpost sequences si(0), si(1), si(2), : : : for every i ↗
[n] receives a population vector p ≃ (p1, : : : , pn) and a house size H, and returns x ≃ (x1, : : : , xn) with xi ≃
Nsi(qi) for every i ↗ [n]: Note that fixed-divisor methods output a single apportionment vector for every instance: 
if f is a fixed-divisor method, then | f (p, H) | ≃ 1 for every p and H.9 We refer to the vector output by f for an 
instance (p, H) directly as f (p, H) (instead of x ↗ f (p, H)) to keep the notation simple. Note that fixed-divisor meth-
ods differ from divisor methods studied in Section 3 in two additional ways. First and most importantly, the 
value up to which the signposts of a state are counted in fixed-divisor methods is—as the name suggests—fixed 
to the quota of the state; in divisor methods, this value is set ex-post such that the total number of assigned seats 
is H. Second, in fixed-divisor methods, we allow for state-specific signpost sequences.

Observe that, by linearity of expectation, for any ex-ante proportional randomized fixed-divisor method F, any 
population vector p ↗ Nn, and any house size H ↗ N, we have E(Pn

i≃1 Fi(p, H)) ≃ H. Moreover, if a randomized 
fixed-divisor method F is quota-compliant, then for every p and H,

P

!!!!!
Xn

i≃1
Fi(p, H) H

!!!!! ⇓ max H 
Xn

i≃1
→qi↑,

Xn

i≃1
↓qi↔ H

( ) !

≃ 1, 

which in particular yields P( |Pn
i≃1 Fi(p, H) H | < n) ≃ 1. In simple words, a randomized fixed-divisor method 

that is ex-ante proportional and quota-compliant can deviate by at most n 1 seats from the original house size 
H and meets H in expectation.10

A randomized fixed-divisor method is fully given by the distribution of the signposts: it samples si(k) for i ↗
[n] and k ↗ N0 from this distribution and runs the fixed-divisor method with this signpost sequence on the corre-
sponding input (p, H). Figure 4 illustrates the application of a randomized fixed-divisor method with all sign-
posts defined as si(k) ≃ k + δi(k), where {δi(k) | i ↗ [n], k ↗ N0} are independent random variables distributing 
uniformly on [0, 1] (U[0, 1] henceforth). We now state our main result regarding these methods.
Theorem 2. Let δi(k) be random variables with marginal distribution U[0, 1] for every i ↗ [n] and k ↗ N0. Then, the 
randomized fixed-divisor method F with signpost sequences (si(k))k⇑0 defined as si(k) ≃ k + δi(k) for every i ↗ [n] is quota- 
compliant, population-monotone, and ex-ante proportional. Furthermore, it is possible to define the distribution of the sign-
post sequences in a way that the corresponding randomized fixed-divisor method satisfies, in addition, the following two 
properties for every population vector p ≃ (p1, : : : , pn), every house size H, and every ” > 0:

P

!!!!!
Xn

i≃1
Fi(p, H) H

!!!!! >
n + n mod 2

2

 !

≃ 0, P

!!!!!
Xn

i≃1
Fi(p, H) H

!!!!! ⇑ ”

 !

⇓ 2 exp  2”2

n

& ’
:

Quota compliance and ex-ante proportionality follow rather easily from the definition of the method, while 
population monotonicity needs a slightly more careful analysis. However, the main challenge is to define the 
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shifts δi such that the deviation from the house size is kept under control. For this purpose, we define these vari-
ables in pairs: δi is taken as a uniform, independently sampled random variable in [0, 1] if i is odd, and as 1 
δi 1 if i is even. In this way, the marginal distribution of all variables is the same but their sum is restricted to lie 
between (n n mod 2)=2 and (n + n mod 2)=2, which is key to guarantee a small deviation. The probabilistic 
bound follows from applying Hoeffding’s concentration bound to associated random variables Yi ↗ {0, 1} that 
take the value 1 if state i is allocated ↓qi↔ seats and 0 otherwise. The construction of the variables {δi}i↗[n] ensures 
that these variables {Yi}i↗[n] are not positively correlated, which suffices to apply the concentration bound. We 
now proceed with the proof.
Proof. We start with the first claim. Let δi(k) be random variables with marginal distribution U[0, 1] and si(k) ≃
k + δi(k) for every i ↗ [n] and k ↗ N0, and let F denote the randomized fixed-divisor method with signpost 
sequences si(0), si(1), si(2), : : : for every i ↗ [n]. Consider an arbitrary instance given by p ≃ (p1, : : : , pn) and a house 
size H.

In order to prove quota compliance and ex-ante proportionality, we also fix an arbitrary state i ↗ [n]. For every k ⇑ 1 
and r ↗ [k, k + 1] we have P(si(k) < r) ≃ r k. If qi is integer, this implies P(Nsi(qi) ≃ qi) ≃ 1. Otherwise, we obtain

P(Nsi(qi) ≃ ↓qi↔) ≃ P(si(→qi↑) < qi) ≃ qi →qi↑,
P(Nsi(qi) ≃ →qi↑) ≃ P(si(→qi↑) ⇑ qi) ≃ ↓qi↔ qi,
P(Nsi(qi) ≃ r) ≃ 0 for every r ∉ {→qi↑, ↓qi↔}:

These properties directly imply P(Fi(p, H) ↗ {→qi↑, ↓qi↔}) ≃ 1, that is, F is quota-compliant. If qi is integer, since 
P(Fi(p, H) ≃ qi) ≃ 1 we immediately obtain E(Fi(p, H)) ≃ qi. On the other hand, if qi is fractional, we have that 
E(Fi(p, H)) ≃ E(Nsi(qi)) ≃ ↓qi↔(qi →qi↑) + →qi↑(↓qi↔ qi) ≃ qi, so we conclude that F is ex-ante proportional.

We now show that F satisfies population monotonicity. Let p, p⇔ be two population vectors, H, H⇔ two house 
sizes, and let P⇔ ≃Pn

$≃1 p⇔$�be the total population in the instance (p⇔, H⇔). Let i, j ↗ [n] be two states such that 
p⇔i=p⇔j ⇑ pi=pj, or equivalently, p⇔i=pi ⇑ p⇔j=pj. Suppose that P(Fi(p, H) > Fi(p⇔, H⇔)) > 0 and P(Fj(p, H) < Fj(p⇔, H⇔)) > 0. 
This implies that P(Nsi(qi) >Nsi(q⇔i )) > 0 and P(Nsj(qj) < Nsj(q⇔j )) > 0, where q⇔$ ≃ p⇔$H⇔=P⇔ for $ ↗ [n]. Since the sign-
post sequences are the same for both instances, these expressions imply qi > q⇔i and qj < q⇔j . Putting these inequal-
ities together yields p⇔i=pi < (H=H⇔) · P⇔=P < p⇔j=pj, a contradiction. We conclude that P(Fi(p, H) > Fi(p⇔, H⇔)) ≃ 0 or 
P(Fj(p, H) < Fj(p⇔, H⇔)) ≃ 0, that is, F is population-monotone.

We now prove the second claim. To do so, we define the random variables

δi ≃
U[0, 1] if i is odd,
1 δi 1 if i is even,

for every i ↗ [n],
(

we define si(k) ≃ k + δi for every i ↗ [n] and k ↗ N0, and we denote as F the randomized fixed-divisor method with 
signpost sequences si(0), si(1), si(2), : : : for every i ↗ [n]. For each i ↗ [n], we let ri ≃ qi →qi↑ denote the fractional 
part of state i’s quota. Since these signpost sequences are a subclass of those studied in the previous paragraph, 
for every i ↗ [n] it holds that P(→qi↑ ⇓ Fi(p, H) ⇓ ↓qi↔) ≃ 1 and that Fi(p, H) ≃ ↓qi↔ if and only if si(→qi↑) < qi, which is 
equivalent to δi < ri. We further observe that

n n mod 2
2 ⇓

Xn

i≃1
δi ⇓

n + n mod 2
2 : (7) 

Figure 4. (Color online) Example of a randomized fixed-divisor method with three states, populations p ≃ (50, 30, 20), and house 
size H ≃ 13. The quotas are (6:5, 3:9, 2:6); the apportionment for this realization is (7, 4, 3), with a deviation of one seat from 
H ≃ 13. Realizations of the signposts are denoted with orange dots. 

Cembrano et al.: New Combinatorial Insights for Monotone Apportionment 
18 Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

80
0:

30
0:

6a
73

:5
94

1:
ed

97
:7

13
7:

78
a6

:4
ca

8]
 o

n 
16

 O
ct

ob
er

 2
02

5,
 a

t 1
4:

01
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



To see that the deviation from the house size is never greater than (n + n mod 2)=2, we claim that
Xn

i≃1
Fi(p, H) H

!!!!!

!!!!! ≃
!!!!!
Xn

i≃1
(Fi(p, H) qi)

!!!!!

≃ | {i ↗ [n] : ri > δi} |  
Xn

i≃1
ri

!!!!!

!!!!!

≃ max
X

i↗[n]:ri>δi

(1 ri) 
X

i↗[n]:ri⇓δi

ri,
X

i↗[n]:ri>δi

(ri 1) +
X

i↗[n]:ri⇓δi

ri

( )

⇓ max
X

i↗[n]:ri>δi

(1 δi),
X

i↗[n]:ri⇓δi

δi

( )

⇓ max
Xn

i≃1
(1 δi),

Xn

i≃1
δi

( )

⇓ n + n mod 2
2 :

Indeed, the first equality follows from the definition of qi for each i ↗ [n], the second equality from the definition 
F and ri for each i ↗ [n], and the third one from simple calculations; the first inequality follows from the fact that 
ri ↗ [0, 1] for each i ↗ [n], the second inequality from direct calculations, and the third one from (7). This concludes 
the proof of the bound.

Let now Z ≃Pn
i≃1 Fi(p, H) Pn

i≃1→qi↑ be the random variable equal to the number of seats that are allocated 
above the sum of the floor of the quotas. Then, we have that

Z ≃ | {i ↗ [n] : si(→qi↑) < qi} | ≃
Xn

i≃1
χ(si(→qi↑) < qi) ≃

Xn

i≃1
Yi, 

where χ�denotes the indicator function, meaning that χ(u) ≃ 1 if the condition u holds and zero otherwise; and 
for every i ↗ [n], the random variables Yi are distributed as Bernoulli random variables with a success probability 
equal to qi  →qi↑.

We claim that the variables {Yi}i↗[n] are negatively correlated in the sense that, for every I ∝ [n], we have

P
^

i↗I
Yi ≃ 1

" #

⇓
Y

i↗I
P[Yi ≃ 1]: (8) 

Indeed, for any i, j ↗ [n] with i < j, the variables Yi and Yj are independent unless j ≃ i + 1. Moreover, for any odd 
i ↗ [n 1], we have

P[Yi ≃ 1 ∧ Yi+1 ≃ 1] ≃ P[δi < ri ∧ 1 δi < ri+1] ≃ P[1 ri+1 < δi < ri] ≃ ri + ri+1 1

⇓ riri+1 ≃ P[δi < ri]P[1 δi < ri+1] ≃ P[Yi ≃ 1]P[Yi+1 ≃ 1], 

if ri + ri+1 ⇑ 1, and the first expression is 0 otherwise, so the inequality is always valid. Then, if we fix I ∝ [n] and 
let I⇔ ≃ {i ↗ I : i is odd and i + 1 ↗ I} denote the odd indices i in I such that i + 1 is also in this set, we obtain

P
^

i↗I
Yi ≃ 1

" #

≃
Y

i↗I⇔
P[Yi ≃ 1 ∧ Yi+1 ≃ 1]

Y

i↗I\I⇔
P[Yi ≃ 1]

⇓
Y

i↗I⇔
P[Yi ≃ 1]P[Yi+1 ≃ 1]

Y

i↗I\I⇔
P[Yi ≃ 1] ≃

Y

i↗I
P[Yi ≃ 1], 

where the first equality follows from the independence of variables Yi and Yj with i < j and j ≠ i + 1, and the 
inequality follows from the previous observation regarding consecutive variables. Therefore, we conclude that 
inequality (8) holds.

The expected value of Z ≃Pn
i≃1 Yi is H 

Pn
i≃1→qi↑. Applying the Hoeffding’s concentration bound on Z 

(Hoeffding [21]), which remains valid for negatively correlated variables in the sense of inequality (8) (Panconesi 
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and Srinivasan [28]), we obtain that for every ” > 0

P

!!!!!H 
Xn

i≃1
→qi↑ Z

!!!!! ⇑ ”

 !

⇓ 2 exp  2”2

n

& ’
:

This implies the result, as H 
Pn

i≃1 Fi(p, H) ≃ H 
Pn

i≃1→qi↑ Z. w

The ex-post deviation guarantee provided by the specific randomized fixed-divisor method constructed in the 
proof is almost the best possible among this class of methods.
Proposition 7. Let f be a fixed-divisor method satisfying quota compliance and let n ↗ N be arbitrary. Then, for every ε > 0 
there exists p ↗ Nn and H ↗ N such that |Pn

i≃1 fi(p, H) H | ⇑ n=2 1 ε:
The proof of this result relies on an adversarial construction of the population vector given the first signpost of 

each state. Intuitively, if these signposts are such that 
Pn

i≃1 si(0) ⇓ n=2, we consider a population vector and a 
house size such that the quota of each state i ↗ {1, : : : , n 1} is slightly above si(0), so that the fixed-divisor 
method assigns one seat to every state and the deviation from the house size is roughly n=2. The argument is 
analogous when 

Pn
i≃1 si(0) > n=2.

Proof. Let n ↗ N be arbitrary and let f be a fixed-divisor method with signpost sequences si(k) for each i ↗ [n] and 
k ↗ N0 satisfying quota. Let also ε > 0 be an arbitrary value. Since f satisfies quota, for every i ↗ [n] we have 
that si(0) ↗ [0, 1]; otherwise, if P[si⇔(0) > 1] > 0 for some i⇔ ↗ [n], taking p ↗ Nn defined as pi ≃ 1 for every i ↗ [n] and 
H ≃ n we would have fi⇔(p, H) ≃ 0, a contradiction since qi⇔ ≃ 1. We denote δi ≃ si(0) ↗ [0, 1] in what follows.

We distinguish two cases for the proof. We first consider the case with 
Pn

i≃1 δi ⇓ n=2. We construct an instance 
as follows. For i ↗ [n 1], we let εi > 0 be such that 

Pn 1
i≃1 εi ⇓ ε�and such that ri ≃ δi + εi is a rational number, say 

ri ≃ ai=bi for some integers ai, bi for each i ↗ [n]. We further define

rn ≃
(Xn 1

i≃1
ri

)
 
Xn 1

i≃1
ri, 

which is also a rational value, so we let an, bn be integers such that rn ≃ an=bn. We let β�be the least common multi-
ple of all values b1, : : : , bn and let p ↗ Nn and H ↗ N be defined as

pi ≃ βri for every i ↗ [n], H ≃
Xn

i≃1
ri:

It is straightforward from the previous definitions that all these values are integers and that, for every i ↗ [n], it 
holds that qi ≃ ri. Since ri > δi for every i ↗ [n 1], we have that fi(p, H) ≃ 1 for every i ↗ [n 1]. If fn(p, H) ≃ 0, we 
further have that rn ⇓ δn and thus

Xn

i≃1
ri ⇓

Xn

i≃1
δi +

Xn 1

i≃1
εi ⇓

n
2 + ε:

Therefore, we obtain
Xn

i≃1
fi(p, H) H ≃ n 1 

Xn

i≃1
ri ⇑ n 1 n

2 + ε
* +

≃ n
2  1 ε:

Otherwise, if fn(p, H) ≃ 1, since rn < 1 we know that
Xn

i≃1
ri ≃

Xn 1

i≃1
(δi + εi) + rn <

n
2 + ε+ 1, 

and thus
Xn

i≃1
fi(p, H) H ≃ n 

Xn

i≃1
ri > n n

2 + ε+ 1
* +

≃ n
2 1 ε:

We now consider the case with 
Pn

i≃1 δi > n
2, whose proof is analogous. We construct an instance as follows. For 

i ↗ [n 1], we let εi ⇑ 0 be such that 
Pn 1

i≃1 εi ⇓ ε�and such that ri ≃ δi εi is a nonnegative rational number, say 
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ri ≃ ai=bi for some integers ai, bi for each i ↗ [n]. We further define

rn ≃
(Xn 1

i≃1
ri

)
 
Xn 1

i≃1
ri, 

which is also a rational value, so we let an, bn be integers such that rn ≃ an=bn. We let β�be the least common multi-
ple of all values b1, : : : , bn and let p ↗ Nn and H ↗ N be defined as

pi ≃ βri for every i ↗ [n], H ≃
Xn

i≃1
ri:

It is straightforward from the previous definitions that all these values are integers and that, for every i ↗ [n], it 
holds that qi ≃ ri. Since ri ⇓ δi for every i ↗ [n 1], we have that fi(p, H) ≃ 0 for every i ↗ [n 1]. If fn(p, H) ≃ 1, we 
further have that rn > δn and thus

Xn

i≃1
ri >

Xn

i≃1
δi 

Xn 1

i≃1
εi >

n
2 ε:

Therefore, we obtain

H  
Xn

i≃1
fi(p, H) ≃

Xn

i≃1
ri  1 > n

2  1 ε:

Otherwise, if fn(p, H) ≃ 0, since rn ⇑ 0 and δn ⇓ 1 we know that
Xn

i≃1
ri ≃

Xn 1

i≃1
(δi εi) + rn >

n
2 1 ε, 

and thus

H 
Xn

i≃1
fi(p, H) ≃

Xn

i≃1
ri >

n
2 1 ε: w 

We finish this section by discussing further aspects of randomized fixed-divisor methods.

Connection to Well-Known Deterministic Methods with Fixed House Size. Randomized fixed-divisor methods 
are a natural randomized version of widely-used deterministic methods that guarantee a (strict) subset of the 
properties that this method ensures. They can be seen as a randomization over divisor methods with a fixed mul-
tiplier λ ≃ H=P and state-specific rounding rules. In particular, when we ensure that every shift δi distributes uni-
formly in the interval [0, 1] as in the proof of Theorem 2, these methods resemble uniform randomization over 
the family of stationary divisor methods studied in Section 3. Randomized fixed-divisor methods with such shifts 
may also be understood as a randomized variant of the Hamilton method, where each state first receives its 
lower quota and then, instead of assigning the remaining seats to the states with the largest remainders, each 
state receives one extra seat with a probability equal to its remainder.

Deviation from the House Size. Theorem 2 gives a probabilistic bound on the deviation between the total number 
of seats allocated via a randomized fixed-divisor method with suitable shifts and the house size H. This bound 
can be stated as follows: for every ε > 0, P( |H Pn

i≃1 Fi(p, H) | ⇑
                          
(n=2)ln(2=ε)

p
) ⇓ ε: For instance, considering the 

number of seats and states taken into account for the U.S. House of Representatives, with probability 0.8 the 
deviation from the house size H ≃ 435 is at most 7, and with probability 0.95 is at most 9.

5. A Network Flow Approach to Monotonicity and Quota
In this section, we revisit the characterization of house-monotone and quota-compliant methods. Recently, Gölz 
et al. [19] provided a characterization based on a matching polytope, while Still [34] and Balinski and Young [7] 
had shown a characterization based on a nonpolyhedral recursive construction. We provide a different character-
ization based on a simple network flow LP and show tight bounds of the size of the linear program needed.

We recall that we follow the definition by Balinski and Young [8] and call a method f house-monotone if, 
for every p, every house sizes H1, H2, H3 with H1 < H2 < H3, and every y ↗ f (p, H2), there exist x ↗ f (p, H1) and 
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z ↗ f (P, H3) such that x ⇓ y ⇓ z. We remark that a stronger notion, requiring that whenever H1 < H2 we have x ⇓
y for every x ↗ f (p, H1) and y ↗ f (p, H2), fails even for by divisor methods. To see this, consider p ≃ (1, 1, 1), H1 ≃ 1, 
and H2 ≃ 2. For any divisor method f we have f (p, H1) ≃ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and f (p, H2) ≃ {(1, 1, 0), (1, 0, 1), 
(0, 1, 1)}, contradicting the above property for some pairs of outcomes (e.g., (1, 0, 0) and (0, 1, 1)).

To study house-monotone methods in a simpler way, we first show that we can actually restrict to methods 
outputting a single vector for every instance, as any house-monotone method can be easily expressed in terms of 
them. Formally, we define a solution as a method f such that | f (p, H) | ≃ 1 for every p and H; we write f (p, H) ≃ x 
and f (p, H) ≃ {x} indistinctly when f is a solution. For a solution f, it is easy to see that house monotonicity 
reduces to the following simple property.
Proposition 8. A solution f is house-monotone if and only if for every p ↗ Nn and H ↗ N it holds that f (p, H) ⇓ f (p, H + 1).
Proof. Let f be a house-monotone solution, and fix p and H arbitrarily. Since f outputs a single vector for every 
instance, we denote f (p, H) ≃ {xH}. As f is house-monotone, there exists y ↗ f (p, H + 1) such that xH ⇓ y. But 
f (p, H + 1) contains a single vector as well, so we conclude.

For the converse, we let f be a solution such that f (p, H) ⇓ f (p, H + 1) for every p ↗ Nn and H ↗ N. We fix p ↗ Nn 

arbitrarily and we consider values H1, H2, H3 ↗ N such that H1 < H2 < H3. The hypothesis about f directly implies 
that f (p, H1) ⇓ f (p, H2) ⇓ f (p, H3), so we conclude that f is house-monotone. w

Let FHM be the set of house-monotone methods and FQ be the set of quota-compliant methods. We obtain the 
following lemma, whose proof is deferred to Appendix C.

Lemma 2. For every p ↗ Nn and H ↗ N,

{f (p, H) : f is a house-monotone and quota-compliant solution} ≃
[

f↗FHM↖FQ

f (p, H):

In simple words, the lemma states that for any input (p, H), a vector that is output by a house-monotone 
method for this input is also output by a house-monotone solution for this input (the converse is trivial, as any 
solution is also a method). Therefore, in order to characterize house-monotone and quota-compliant methods, it 
suffices to characterize house-monotone and quota-compliant solutions. We will focus on solutions throughout 
this section and state the implications of our characterization for methods at the end.

Given a population vector p and an integer value H, consider the following linear program, with variables 
x(i, t) representing the fraction of seat t ↗ [H] that is assigned to state i ↗ [n]:

Xn

i≃1
x(i, t) ≃ 1 for every t ↗ [H], (9) 

Xt

$≃1
x(i, $) ⇑ →tpi=P↑ for every i ↗ [n] and every t ↗ [H], (10) 

Xt

$≃1
x(i, $)⇓ ↓tpi=P↔ for every i ↗ [n] and every t ↗ [H] (11) 

x(i, t) ⇑ 0 for every i ↗ [n] and every t ↗ [H]: (12) 

The key idea behind constructing this linear program is to model the procedure of assigning seats to states in a 
house-monotone and quota-compliant way. Consider a feasible integer vector x satisfying (9)–(12). In particular, 
we have that x(i, t) ↗ {0, 1} for every i ↗ [n] and every t ↗ [H], and constraint (9) guarantees that for every t ↗ [H]
there exists a unique it ↗ [n] such that x(it, t) ≃ 1. Consider the following apportionment solution: The first seat is 
assigned to state i1, the second seat to state i2, and so on, until the last seat H is assigned to state iH. One by one, 
this assignment of the seats guarantees the number of each state’s seats to be nondecreasing during the proce-
dure, and, furthermore, constraints (10)–(11) guarantee that quota compliance is also satisfied.

This linear program can be seen as the projection of a network flow linear program, illustrated in Figure 5 for 
an example with n ≃ 3 states and H ≃ 6 seats, restricted to the variables corresponding to a subset of arcs fully 
encoding the seat assignment. We formalize this fact to prove its integrality in the following lemma.
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Lemma 3. For every instance (p, H), the linear program (9)–(12) is integral.

Proof. We fix n ↗ N, a population vector p ↗ Nn, and a house size H ↗ N. We define a capacitated network 
H ≃ (V, A, c , c+), where the set of vertices is given by

V ≃ {s, w} ⇐ {ut |t ↗ [H]} ⇐ {vi, t | i ↗ [n], t ↗ [H]};

the set of arcs is given by
A ≃ {(s, ut) |t ↗ [H]} ⇐ {(ut, vi, t) | i ↗ [n], t ↗ [H]} ⇐ {(vi, t, vi, t+1) | i ↗ [n], t ↗ [H 1]}

⇐ {(vi, H, w) | i ↗ [n]};

and the (lower and upper) capacities are as follows: For t ↗ [H], c (s, ut) ≃ c+(s, ut) ≃ 1; for i ↗ [n] and t ↗ [H 1], 
c (vi, t, vi, t+1) ≃ →tpi=P↑ and c+(vi, t, vi, t+1) ≃ ↓tpi=P↔; for i ↗ [n], c (vi, H, w) ≃ →Hpi=P↑ and c+(vi, H, w) ≃ ↓Hpi=P↔. The 
remaining arcs have no capacity restrictions. An example of this network is shown in Figure 5. We consider the 
(s, w)-flow polytope associated with this network; that is, the polytope given by the following linear system with 
variables x(i, t) and y(i, t) for i ↗ [n] and t ↗ [H]:

Xn

i≃1
x(i, t) ≃ 1 for every t ↗ [H], (13) 

y(i, 1) ≃ x(i, 1) for every i ↗ [n], (14) 
y(i, t) y(i, t 1) ≃ x(i, t) for every i ↗ [n] and every t ↗ {2, : : : , H}, (15) 

y(i, t) ⇑ →tpi=P↑ for every i ↗ [n] and every t ↗ [H], (16) 
y(i, t) ⇓ ↓tpi=P↔ for every i ↗ [n] and every t ↗ [H] (17) 

x(i, t), y(i, t) ⇑ 0 for every i ↗ [n] and every t ↗ [H]: (18) 

Indeed, each variable x(i, t) corresponds to the flow on the arc (ut, vi, t), each variable y(i, t) for t ↗ [H 1] corre-
sponds to the flow on the arc (vi, t, vi, t+1), and each variable y(i, H) corresponds to the flow on the arc (vi, H, w). 
Note that the flow on each arc (s, ui) is fixed to 1, hence the corresponding variable is omitted. Constraints (13), 
(14), and (15) impose flow conservation on the vertices ut, vi, 1, and vi, t, respectively, while the capacity con-
straints are incorporated in (16) and (17). From a classic result on network flows, this polytope is thus integral; 
see, for example, Ahuja et al. [1].

Figure 5. An example of the network flow formulation with n ≃ 3 states and H ≃ 6 seats. The two rhombuses represent the 
source and the sink. The source sends exactly one unit to each of the square nodes representing each of the H ≃ 6 seats, for which 
purpose we fix a lower and an upper capacity of exactly 1 for the dashed edges. Then, for each of the three states, the circular 
nodes on the vertical layer corresponding to seat t keep track of how many seats the state has been allocated up to that point. The 
edges connecting the squared nodes to the circular nodes of the same vertical layer have a lower capacity of zero and an upper 
capacity of one, and every square node sends precisely one unit of flow to those circular nodes (representing the assignment of 
the seat to a state). The edges connecting two consecutive circular nodes in the same horizontal layer (representing the states) 
have lower and upper capacities of →pit=P↑ and ↓pit=P↔ for each state i and seat t, respectively, to make sure that the allocation is 
quota-compliant. 
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We suppose toward a contradiction that the linear program (9)-(12) has a fractional extreme point; that is, 
that there exists a feasible solution x for this linear program, with at least one fractional component, where at 
least nH linearly independent constraints are active. Denoting the number of nonzero entries of x by k, this 
implies that at least k H constraints among (10)–(11), linearly independent with each other and with (9), are 
tight at this point. We claim that, defining y(i, t) ≃Pt

$≃1 x(i,$) for every i ↗ [n] and t ↗ [H], the pair (x, y) is an 
extreme point of (13)–(18). If true, this yields a contradiction, because x is fractional and the program (13)–(18) 
is integral.

We now prove the claim. The feasibility of (x, y) for (13)–(18) is straightforward from the feasibility of x for 
(10)–(11) and the definition of y, since constraints (14) and (15) can be equivalently written as y(i, t) ≃Pt

$≃1 x(i, $)
for every i ↗ [n] and t ↗ [H]. Since these are nH active constraints at (x, y) and each active constraint that x satisfies 
for (10)–(11) translates into an active constraint that (x, y) satisfy for (13)–(18), we conclude that at least nH line-
arly independent constraints are active at (x, y), which is precisely the number of variables. Thus, (x, y) is an 
extreme point of (13)–(18). w

Since every feasible solution of (9)–(12) is contained in the unit hypercube, Lemma 3 implies that the set of 
extreme points in the linear program is exactly the set of integer feasible solutions. We denote this set as E(p, H).

Given a feasible solution x of the linear program (9)–(12), let Ai(x, 0) ≃ 0 for each state i ↗ [n], and when H ⇑ 1 
let A(x, H) be the vector such that Ai(x, H) ≃PH

$≃1 x(i, $) for every i ↗ [n]. In simple words, Ai(x, H) is the number 
of seats that state i has been allocated in the solution x up to seat H. Given a population vector p and a house size 
H, we denote by A(p, H) the set of apportionments for this instance that are generated by a house-monotone and 
quota-compliant solution, that is,

A(p, H) ≃ {f (p, H) : f is a house-monotone and quota-compliant solution}:
We now introduce a definition closely related to the one proposed by Balinski and Young [7], Balinski and Young 
[8] to characterize the necessary lookahead that a house-monotone and quota-compliant solution should consider 
when allocating each seat in order to ensure that it fulfills these properties when adding more seats. Given an 
instance (p, H), a nonnegative integer vector y ≃ (y1, : : : , yn) and an integer k ⇑ 1, we denote Sk(p, H, y) ≃ {i ↗ [n] :
→pi(H + k)=P↑ > yi}, and let τ(p, H, y) be defined as follows. Let k?(p, H, y) be the minimum integer k ⇑ 1 such that

X

i↗Sk(p,H,y)

jpi(H + k)
P

k
 yi

& ’
⇑ k:

If Sk?(p, H, y) ≠ [n], let τ(p, H, y) ≃ k?(p, H, y); otherwise, let τ(p, H, y) ≃ 1. Consider the function Φ�defined recur-
sively as follows:

Φ(p, 0) ≃ 0, Φ(p, 1) ≃ min k ↗ N :
Xn

i≃1

jpik
P

k
⇑ k

( )

,

Φ(p, H + 1) ≃ max
T↗[H]

{T + max{τ(p, T, A(x, T)) : x ↗ E(p,Φ(p, H))}} for every H:

The idea behind this definition is the following. When y ≃ A(x, H) for some x ↗ E(p, H) and the method has to allo-
cate the next seat, it must consider the states Sk(p, H, y) that will demand additional seats when adding k extra 
seats, in order to be lower quota-compliant. If the total number of demanded additional seats is strictly greater 
than k, the house-monotone method will not be quota-compliant with a house size H + k; the equality already 
forces the method to assign the next seat to a state in Sk(p, H, y). If this set of states is not [n], we take τ(p, H, y) as 
the minimum k for which the equality holds, which we denote as k△, since for any k > k△ the set Sk(p, H, y) can 
only have additional states and thus considering quota compliance up to H + k△ seats is restrictive enough. If 
Sk(p, H, y) ≃ [n] for the smallest k for which the equality holds, due to the monotonicity of this set in k there is no 
restriction on which states can receive the next seat in order to have quota compliance, and thus including quota 
compliance constraints up to H + 1 seats is enough.

The value Φ(p, H + 1) captures the worst-case horizon—number of allocated seats T for T ⇓ H, plus necessary 
additional seats at this point τ(p, T, A(x, T))—that the method must consider in order to allocate the seat H + 1 in 
a way that house monotonicity and quota compliance are not violated for any higher number of seats. We now 
formally state our main result of this section.
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Theorem 3. For every instance (p, H), we have A(p, H) ≃ {A(x, H) : x ↗ E(p,Φ(p, H))}:
For a population vector p and a house size H, this result states that all apportionments a house-monotone and 

quota-compliant solution can obtain are captured by the extreme points of (9)–(12) with a house size equal to 
Φ(p, H). An apportionment solution obtained from any such extreme point x can be implemented by assigning 
the $-th seat to the unique state i$�such that x(i$, $) ≃ 1.

Balinski and Young [7], Balinski and Young [8] provided a characterization of all house-monotone and quota- 
compliant solutions based on a recursive construction. In their approach, a solution is constructed by describing 
the procedure in which the seats, one by one, are assigned to the states. We summarize their approach and intro-
duce some notation that will be useful for our proof. Given a population vector p ≃ (p1, : : : , pn), a house size H, 
and a vector y ≃ (y1, : : : , yn) such that 

P
i≃1yi ≃ H, let

L(p, H, y) ≃ i ↗ [n] :
jpi

P (H + k△(p, H, y))
k
> yi

n o
,

U(p, H, y) ≃ i ↗ [n] :
pi
P (H + 1) > yi

n o
:

In words, U(p, H, y) is the subset of states that can receive the seat H + 1 without violating their upper quota 
↓pi(H + 1)=P↔, whereas L(p, H, y) is the subset of states that must receive the seat H + 1 such that the lower quota 
of any state j with k△(p, H, y) extra seats, →pj(H + 1)=P↔, is fulfilled. Balinski and Young proved that f is a house- 
monotone and quota-compliant solution if and only if the values f (p, ·) are constructed as follows: f (p, 0) ≃ 0, and 
for every house size H, fi(p, H + 1) ≃ fi(p, H) + 1 for one state i ↗ L(p, H, f (p, H)) ↖ U(p, H, f (p, H)), and fj(p, H + 1) ≃
fj(p, H) for every j ≠ i.

We denote by K(p, H) the set of feasible solutions of (9)–(12). To prove Theorem 3, we use the result by Balinski 
and Young together with the following lemma, which provides a structural property of the set of extreme points 
of the linear program (9)–(12).

Lemma 4. Let x ↗ E(p,Φ(p, H)). Then, for every T ⇓ H 1, we have x(i, T + 1) ≃ 0 for every i ∉ L(p, T, A(x, T)) ↖
U(p, T, A(x, T)).
Proof. Suppose that x(k, T + 1) ≃ 1 for some state k ∉ L(p, T, A(x, T)) ↖ U(p, T, A(x, T)). If k ∉ U(p, T, A(x, T)), we 
have that

Ak(x, T + 1) ≃ Ak(x, T) + x(k, T + 1) ⇑ pi
P (T + 1) + 1 >

lpi
P (T + 1)

m
, 

where the first inequality comes from the definition of the set U(p, T, A(x, T)). This implies that the constraint (11) 
for i ≃ k and t ≃ T + 1 is violated, contradicting the fact that x ↗ K(p,Φ(p, H)). In the following, we suppose that 
k ∉ L(p, T, A(x, T)). In particular, since x(k, T + 1) ≃ 1, constraint (9) implies that

X

i↗L(p,T,A(x,T))
x(i, T + 1) ≃ 0: (19) 

Since T ⇓ H 1, from the definition of Φ(p, H) we have that T + τ(p, T, A(x, T)) ⇓ Φ(p, H), thus denoting T ≃
T + τ(p, T, A(x, T)) we have that the linear program (9)–(12) includes constraints for every value of t ↗ {T 1, 
: : : , T}. We obtain

XT

$≃T+1

X

i↗L(p,T,A(x,T))
x(i, $) ≃

XT

$≃T+2

X

i↗L(p,T,A(x,T))
x(i, $) ⇓ T  T 1, (20) 

where the first equality follows from (19) and the inequality from constraints (9). On the other hand, we have
X

i↗L(p,T,A(x,T))

jpi
P T
k
 Ai(x, T)

* +
⇓

X

i↗L(p,T,A(x,T))
(Ai(x, T) Ai(x, T))

≃
X

i↗L(p,T,A(x,T))

XT

$≃T+1
x(i,$), 

where the inequality holds since x satisfies the constraints (10) for every t ⇓ T. Together with inequality (20), this 
implies that

X

i↗L(p,T,A(x,T))

jpi
P (T + τ(p, T, A(x, T)))

k
 Ai(x, T)

* +
⇓ τ(p, T, A(x, T)) 1:
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If L(p, T, A(x, T)) ≃ [n], (19) is an immediate contradiction to constraint (9) with t ≃ T + 1. Otherwise, we have 
τ(p, T, A(x, T)) ≃ k△(p, T, A(x, T)) and thus

X

i↗L(p,T,A(x,T))

jpi
P (T + k△(p, T, A(x, T)))

k
 Ai(x, T)

* +
⇓ k△(p, T, A(x, T)) 1, 

a contradiction to the definition of k△(p, T, A(x, T)). This finishes the proof of the lemma. w

We are now ready to prove Theorem 3.
Proof of Theorem 3. Consider a house-monotone and quota-compliant solution f. For every house size T ⇓
Φ(p, H) and every i ↗ [n], let z(i, T) ≃ fi(p, T) fi(p, T 1). For every T ↗ [Φ(p, H)], the house monotonicity of f 
implies that 

Pn
i≃1 z(i, T) ≃Pn

i≃1(fi(p, T) fi(p, T 1)) ≃ 1, and therefore constraints (9) are satisfied. For every 
i ↗ [n], we have 

PT
$≃1 z(i, $) ≃ fi(p, T) and therefore constraints (10)–(11) are all satisfied since f is quota-compliant. 

Since z is nonnegative, we conclude that z ↗ K(p,Φ(p, T)), and the integrality of z implies that z ↗ E(p,Φ(p, T)). 
Since A(z, H) ≃ f (p, H), we conclude that f (p, H) ↗ {A(x, H) : x ↗ E(p,Φ(p, H))}.

For the other direction, let x ↗ E(p,Φ(p, H)). By Lemma 4, we have Ai(x, T + 1) ≃ Ai(x, T) + x(i, T + 1) ≃ Ai(x, T)
for every value i ∉ L(p, t, A(x, T)) ↖ U(p, t, A(x, T)). Then, the sequence A(x, 0), A(x, 1), : : : , A(x, H) can be obtained 
by the recursive construction of Balinski and Young, from where we conclude that A(x, H) ↗A(p, H). This finishes 
the proof of the theorem. w

We now address the natural questions that arise regarding the value Φ(p, H). The following proposition pro-
vides three important properties of this function.

Proposition 9. For every instance (p, H) and positive integer c, the following holds: 
a. If H ⇓ cP, then Φ(p, H) ⇓ cP.
b. Φ(p, cP) ≃ cP.
c. If H ⇑ 2, then Φ(p, H) H ⇓ maxi↗[n]↓P=pi↔.

Proof. Let p, H, and c be as in the statement of the proposition. To see 1, let T ↗ [H 1] and note that taking 
k ≃ cP T, we have that for every x ↗ E(p,Φ(p, H 1)) and i ↗ [n]

$
pi(T + k)

P

%
 Ai(x, T) ≃ cpi Ai(x, T) ≃

(
pi(T + k)

P

)
 Ai(x, T) ⇑

(
piT
P

)
 Ai(x, T) ⇑ 0, 

where the last inequality follows from the fact that x ↗ E(p,Φ(p, H 1)) and T ⇓ H 1. This yields
X

i↗Sk(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
≃
Xn

i≃1
(cpi  Ai(x, T)) ≃ cP T ≃ k:

We conclude that τ(p, T, A(x, T)) ⇓ k ≃ cP T for every x ↗ E(p,Φ(p, H 1)) and, therefore,

T + max{τ(p, T, A(x, T)) : x ↗ E(p,Φ(p, H 1))} ⇓ cP:
This implies

Φ(p, H) ≃ max
T↗[H 1]

{T + max{τ(p, T, A(x, T)) : x ↗ E(p,Φ(p, H  1))}} ⇓ cP, 

which concludes the proof of part (a).
We now prove part (b). Taking x ↗ E(p,Φ(p, cP 1)) and k ≃ 1, we have that for every i ↗ [n]

$
pi(cP 1 + k)

P

%
 Ai(x, cP 1) ≃ cpi Ai(x, cP 1) ≃

(
pi(cP 1 + k)

P

)
 Ai(x, cP 1) ⇑ 0, 

where the last inequality follows from the fact that x ↗ E(p,Φ(p, cP 1)). This yields
X

i↗Sk(p, cP 1,A(x, cP 1))

$
pi(cP 1 + k)

P

%
 Ai(x, cP 1)

& ’
≃
Xn

i≃1
(cpi Ai(x, cP 1)) ≃ 1 ≃ k:

Since τ(p, cP 1, A(x, cP 1)) is the minimum value of k that satisfies
X

i↗Sk(p, cP 1,A(x, cP 1))

$
pi(cP 1 + k)

P

%
 Ai(x, cP 1)

& ’
⇑ k 
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in case Sk(p, cP 1, A(x, cP 1)) ≠ [n] and 1 otherwise, we conclude that τ(p, cP 1, A(x, cP 1)) ≃ 1 for every 
x ↗ E(p,Φ(p, H)). Therefore,

cP 1 + max{τ(p, cP 1, A(x, cP 1)) : x ↗ E(p,Φ(p, cP 1))} ≃ cP:

Putting this together with the result from part (a), we conclude that
Φ(p, cP) ≃ max

T↗[cP 1]
{T + max{τ(p, T, A(x, T)) : x ↗ E(p,Φ(p, cP 1))}} ≃ cP:

We finally prove part (c). Consider a house size H ⇑ 2. Following Balinski and Young [8], for every extreme 
point x ↗ E(p,Φ(p, H 1)) and every i ↗ [n], we have →pi(H 1)=P↑ ⇓ Ai(x, H 1) ⇓ ↓pi(H 1)=P↔, and then, for 
every integer value k >maxi↗[n]↓Ai(x, H 1)P=pi  H + 1↔ we have H 1 + k >maxi↗[n]Ai(x, H 1)P=pi. This 
implies that pi(H 1 + k)=P > Ai(x, H 1) for every i ↗ [n]. Therefore, we have

Xn

i≃1
max

$
pi(H 1 + k)

P

%
 Ai(x, H 1), 0

" #
≃
Xn

i≃1

$
pi(H 1 + k)

P

%
 Ai(x, H 1)

& ’

<
Xn

i≃1

pi(H 1 + k)
P  Ai(x, H 1)

& ’

≃ H 1 + k 
Xn

i≃1
Ai(x, H 1) ≃ k:

We conclude that τ(p, H 1, A(x, H 1)) ⇓ maxi↗[n]↓Ai(x, H 1)P=pi H + 1↔. For every i ↗ [n], it holds that
(

Ai(x, H 1)
pi

P H + 1
)
⇓

((
pi(H 1)

P

)
1
pi

P H + 1
)

⇓
(

pi(H 1)
P + 1

& ’
1
pi

P H + 1
)
≃

(
P
pi

)
, 

and therefore,
Φ(p, H) ≃ max

T↗[H 1]
{T + max{τ(p, T, A(x, T)) : x ↗ E(p,Φ(p, H 1))}}

⇓ max
T↗[H 1]

T + max
i↗[n]

↓P=pi↔
" #

⇓ H 1 + max
i↗[n]

↓P=pi↔, 

from where we conclude that Φ(p, H) H ⇓ maxi↗[n]↓P=pi↔. w

Combining part (b) of Proposition 9 with Theorem 3, we conclude that E(p, P) provides a full polyhedral 
description of all apportionments that are obtained from house-monotone and quota-compliant solutions up to a 
house size equal to P ≃Pn

j≃1 pj. Part (c) provides an upper bound on the lookahead value Φ(p, H) H, that 
describes the number of extra seats needed in the construction of the linear program (9)–(12) so that we can have 
a polyhedral description of all possible apportionments with house size H that can be obtained by house- 
monotone and quota-compliant solutions. In the worst case, this upper bound can be as large as O(P); in the fol-
lowing proposition, we show that this is actually tight. The proof uses an instance with n ≃ 6 states but it can be 
extended to an arbitrarily large number of states.
Proposition 10. There is an instance (p, H) with Φ(p, H) H ≃ !(P).
Proof. We consider the instance with m ≃ 6 states, where p ≃ (P 6, 2, 1, 1, 1, 1) and H ≃ P=3 + 2, with P ▽ 1 divisi-
ble by 6. We consider x defined as x(1, t) ≃ 1 for every t ↗ [P=3], x(i, t) ≃ 0 for every i ≠ 1 and t ↗ [P=3], x(3, P=3 +
1) ≃ x(4, P=3 + 2) ≃ 1, x(i, P=3 + 1) ≃ 0 for every i ≠ 3, and x(i, P=3 + 2) ≃ 0 for every i ≠ 4. We first observe that 
x ↗ E(p,Φ(p, H 1)). To do so, it is enough to show that for every T ↗ [H 1] it holds τ(p, T, A(x, T)) ≃ 1, and we 
do so by proving that, for every T ↗ [H 1] and k ↗ N we have

min k ↗ N :
X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
⇑ k

8
<

:

9
=

; ≃ P T: (21) 

This immediately implies k△ ≃ P T and thus Sk(p, T, A(x, T)) ≃ [n] and τ(p, T, A(x, T)) ≃ 1.
Observe that when we take k ≃ P T, (pi(T + k))=P ≃ pi ↗ N, so the i-th terms in the sum of the left-hand side of 

(21) is pi Ai(x, T), which summed over i gives P T ≃ k. Therefore, in order to show (21) we only have to prove 
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that, whenever k < P T, we have
X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
< k: (22) 

We first compute, for each state, the lower quota or an upper bound on it for different numbers of seats 
h ↗ [H 1]:

$
p1h
P

%
≃

$ (P 6)h
P

%
⇓ h 1 if h ↗ [P=3], (23) 

$
p1h
P

%
≃

$ (P 6)h
P

%
≃ h 3 if h ↗ P=3 + 1, : : : , P 1{ }, (24) 

$
p1h
P

%
≃

$ (P 6)h
P

%
⇓ h 4 if h ↗ P=2 + 1, : : : , P 1{ }, (25) 

$
p2h
P

%
≃

$
2h
P

%
≃ 0 if h ↗ [P=2 1], (26) 

$
p2h
P

%
≃

$
2h
P

%
≃ 1 if h ↗ P=2, : : : , P 1{ }, (27) 

$
pih
P

%
≃

$
h
P

%
≃ 0 if h ↗ [P 1], for every i ↗ 3, 4, 5, 6{ }: (28) 

We now prove (22). We start with the case T ↗ [P=3], so A1(x, T) ≃ T and Ai(x, T) ≃ 0 for every i ↗ [n] \ {1}. If 
k ↗ [P=2 T 1], then from (23), (26), and (28) we have

X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
≃

$
p1(T + k)

P

%
 A1(x, T) ⇓ T + k 1 T ≃ k 1 < k:

If k ↗ {P=2 T, : : : , P T 1}, then from (24), (25), (27), and (28) we have
X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
≃

$
p1(T + k)

P

%
 A1(x, T) +

$
p2(T + k)

P

%
 A2(x, T)

⇓ T + k 3 T + 1 0 ≃ k 2 < k:

We now address the case T ≃ P=3 + 1, so A1(x, T) ≃ P=3, A3(x, T) ≃ 1, and Ai(x, T) ≃ 0 for every i ↗ [n] \ {1, 3}. If 
k ↗ [P=6 2], then from (24), (26), and (28) we have

X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
≃

$
p1(T + k)

P

%
 A1(x, T) ⇓ P

3 + k 2 P
3 ≃ k 1 < k:

If k ↗ {P=6 1, : : : , 2P=3 2}, then from (24), (25), (27), and (28) we have

X

i↗S(p,T,A(x,T))

$
pi(T + k)

P

%
 Ai(x, T)

& ’
≃

$
p1(T + k)

P

%
 A1(x, T) +

$
p2(T + k)

P

%
 A2(x, T)

⇓ P
3 + k 2 P

3 + 1 0 ≃ k 1 < k:

This concludes the proof of (22) and thus x ↗ E(p,Φ(p, H 1)).
We now show that τ(p, H, A(x, H)) ≃ P=2 H ≃ P=6 2, which yields Φ(p, H + 1) ⇑ H + P=6 2 and thus Φ(p, 

H + 1) (H + 1) ≃ !(P). Note that A1(x, H) ≃ P=3, A3(x, H) ≃ A4(x, H) ≃ 1, and Ai(x, H) ≃ 0 for every i ↗ [n] \ {1, 3, 4}. 
Indeed, for k ↗ [P=6 3] we have, due to (24), (26), and (28), that

X

i↗S(p,H,A(x,H))

$
pi(H + k)

P

%
 Ai(x, H)

& ’
≃

$
p1(H + k)

P

%
 A1(x, H) ≃ P

3 + k 1 P
3 ≃ k 1 < k:
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However, taking k ≃ P=6 2, we have
X

i↗S(p,H,A(x,H))

$
pi(H + k)

P

%
 Ai(x, H)

& ’
≃

$
p1(H + k)

P

%
 A1(x, H) +

$
p2(H + k)

P

%
 A2(x, T)

≃ P
2  3 P

3 + 1 0 ≃ P
6  2 ≃ k, 

so we conclude τ(p, H, A(x, H)) ≃ P=6 2. This concludes the proof of the proposition. w

We remark that the worst-case lower bound !(P) for the value Φ(p, H) H is achieved when we have one state 
with almost all the population, and the rest of the states are all tiny in comparison. Typically, when the states rep-
resent districts or regions of a districting map, they are designed in a way that maxi↗[n]pi=mini↗[n]pi is a small 
value. In the case where this ratio is O(1), the upper bound in Proposition 9 shows that Φ(p, H) H ≃O(n), which 
in turns implies that Φ(p, H) ≃O(n) when H ≃Θ(n). In particular, to find a polyhedral description of all the 
apportionments for a house size H that can be obtained by house-monotone and quota-compliant solutions using 
Theorem 3, we need to write a linear program of size O(nH), which is reasonable in practice.

We highlight the flexibility of our approach, in the sense that it allows incorporating further constraints on top 
of house monotonicity and quota compliance as long as they maintain the flow structure. One natural example is 
the incorporation of hard bounds on the number of seats that states should receive, independently of their popu-
lation. For instance, Article I of the U.S. Constitution establishes that each state shall have at least one representa-
tive, while in the Chilean parliamentary elections each district should receive at least three, and no more than 
eight seats.

Due to the correspondence between house-monotone methods and solutions, our theorem also fully characterizes 
the set of house-monotone and quota-compliant methods. Recall that FHM denotes the set of house-monotone 
methods and FQ denotes the set of quota-compliant methods. The following corollary is a direct consequence of 
Theorem 3 and Lemma 2.
Corollary 2. For every instance (p, H), we have

[

f↗FHM↖FQ

f (p, H) ≃ {A(x, H) : x ↗ E(p,Φ(p, H))}:

Another consequence of Theorem 3 is that we characterize the whole family of randomized methods that are 
house-monotone, quota-compliant, and ex-ante proportional up to a house size H equal to the total population P. 
We remark that this is also possible using the characterization by Gölz et al. [19], but the simplicity of our net-
work flow LP allows for a rather intuitive manner of recovering the apportionment solution. Indeed, the quota q 
can be easily mapped to a feasible solution of the linear program (9)–(12). Therefore, it can be written as a convex 
combination of the extreme points of the network flow LP. The randomized method that samples each of these 
extreme points with a probability equal to its coefficient in the convex combination is, by Theorem 3, a house- 
monotone, quota-compliant, and ex-ante proportional method.

Formally, consider the family of randomized methods M on the restricted domain in which the population 
vector p and the house size H satisfy H ⇓ P. We say that a method in M is house-monotone, quota-compliant, 
and ex-ante proportional if the three properties hold for every p and H in their domain and denote by M? this 
family of methods. Given a method F ↗M and a population vector p, let XF : [n] ⇒ [P]↙ {0, 1} be the random 
function such that XF(i, H) ≃ Fi(p, H) Fi(p, H 1) for every H ↗ [P] and i ↗ [n]. For every i ↗ [n] and every t ↗ [P], 
let Q(i, t) ≃ pi=P. Observe that 

Pn
i≃1 Q(i, t) ≃Pn

i≃1 pi=P ≃ 1 and 
Pt
$≃1 Q(i, $) ≃ pit=P. Therefore, Q is a feasible solu-

tion in the convex hull of E(p, P). For a set S ∝ E(p, P), we define

Θ(S) ≃ θ ↗ (0, 1]S :
X

x↗S
θx ≃ 1,

X

x↗S
θxx ≃ Q

( )

as the set of strictly positive coefficients such that the convex combination of the points in S according to these 
coefficients is equal to Q. We now let S(p) ≃ {S ∝ E(p, P) :Θ(S) ≠ 􏿼} be the set containing the subsets of E(p, P)
such that Q can be obtained as a strictly positive convex combination of the elements in the subset. Theorem 3
implies the following result.
Theorem 4. Let F be a method in M. Then, F ↗M? if and only if for every p there exists Sp ↗ S(p) and θ ↗Θ(Sp) such 
that for every x ↗ Sp it holds P(XF ≃ x) ≃ θx.
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To prove Theorem 4, we make use of the following lemma.
Lemma 5. Consider a population vector p, and let Y be a random variable taking values over E(p, P), and distributed 
according to θ ↗Θ(S) for some S ↗ S(p). Then, for every H ⇓ P, the following holds: 

a. For every i ↗ [n], we have E(PH
$≃1 Y(i, $)) ≃ qi.

b. For every i ↗ [n], we have →qi↑ ⇓
PH
$≃1 Y(i, $) ⇓ ↓qi↔.

c. For every i ↗ [n] and every H ⇓ P 1, we have 
PH
$≃1 Y(i, $) ⇓ PH+1

$≃1 Y(i, $).
Proof. Parts (b) and (c) are direct consequences of Y taking values over the set of extreme points E(p, P) of the lin-
ear program (9)–(12) with H ≃ P. For every i ↗ [n], we have

E
XH

$≃1
Y(i, $)

 !

≃
X

x↗S
θx
XH

$≃1
Y(i, $) ≃

XH

$≃1

X

x↗S
θxY(i, $) ≃

XH

$≃1
Q(i, $) ≃ qi, 

where the third equality follows since θ ↗Θ(S). This proves part (a). w

We now show how to construct a randomized method using our linear programming approach. For every 
population vector p, consider an infinite sequence S(p) ≃ (S1, S2, : : : ) such that Sj ↗ S(p) for every positive integer 
j. Then, consider the infinite sequence of independent random variables Y1, Y2, : : : where Yj is distributed accord-
ing to some θ ↗Θ(Sj) for every positive integer j, and consider the infinite sequence h(S(p)) ≃ (h1, h2, h3, : : : ) where 
h$ ≃ i$�if Y→$=P↑(i$,$) ≃ 1. We consider the probability space ! such that, for each p, we have the random sequence 
h(S(p)) distributed according to the previously defined distribution, and they are all independent across p.

For a given realization in ω ↗ !, in our randomized solution, we provide the following apportionment for a 
population vector p and a house size H: For every i ↗ [n], fi(p, H) ≃ {$ ⇓ H : h$ ≃ i}, where (h1, h2: : : ) ≃ h(S(p)) is 
the sequence obtained for p according to our previous construction. By Lemma 5 we have that this method is 
house-monotone, quota-compliant, and ex-ante proportional. We remark that the choice of S(p) for every popula-
tion vector p generates different randomized methods. Gölz et al. [19] provide a randomized method based on a 
different type of dependent rounding, based on adapting the bipartite rounding method by Gandhi et al. [18].
Proof of Theorem 4. Suppose that F is a randomized method in M?, that is, house-monotone, quota-compliant, 
and ex-ante proportional in the restricted domain. Then, Theorem 3 implies that XF ↗ E(p, P), and let S be the sup-
port of XF. For every y ↗ S, let θy ≃ P(XF ≃ y). Clearly, we have that 

P
y↗Sθy ≃ 1, θ > 0, and since F is ex-ante pro-

portional we have Q ≃ E(XF) ≃
P

y↗Sθyy. We conclude that θ ↗Θ(S) and thus S ↗ S(p). Now suppose that F ↗M 
is such that for every p there exists Sp ↗ S(p) and θ ↗Θ(Sp) such that for every x ↗ Sp we have P(XF ≃ x) ≃ θx. By 
directly applying Lemma 5, we obtain that F is ex-ante proportional, quota-compliant, and house-monotone in 
the restricted domain, that is, F ↗M△. This finishes the proof of the theorem. w

6. Discussion
Our work underlines a hierarchy among the three studied classes of apportionment methods. First, we have 
studied in Section 3 the well-established class of stationary divisor methods, showing that they have a small out-
come space and every outcome satisfies lower or upper quota. However, this class is too restrictive to ensure 
strong ex-ante proportional outcomes (Section 4.1). Second, for the class of population-monotone rules, we 
obtained strong ex-ante and ex-post proportionality guarantees if we allow to violate the house size (Section 4.2). 
Whether a similar result holds without violating the house size is open. Lastly, the class of house-monotone rules 
is extremely rich. Even if we require ex-post quota, the space of ex-ante proportional rules can be large, as exem-
plified by our characterization (Section 5). Identifying additional constraints capturing fairness or monotonicity 
that we can add to our network flow construction is an interesting direction for future work.

Beyond these points, we believe that our structural insights can contribute to an ever-growing body of litera-
ture on generalizations of apportionment—such as committee elections, weighted fair allocation, or multidimen-
sional apportionment—and best-of-both-worlds type guarantees for these settings, whose study has only begun 
recently.
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Appendix A. Power-Mean Divisor Methods
In this section, we provide more details about the extension of the upper bound on the number of breaking points of an 
instance to the case of power-mean divisor methods. For q ↗ R, we define sq : N↙ R+ by

sq(t) ≃

limq↙0(tq

2 + (t+1)q

2 )1=q ≃
              
t(t + 1)

p
if q ≃ 0,

0 if t ≃ 0, q < 0,
tq

2 + (t+1)q

2

* +1=q
otherwise:

8
>>><

>>>:

Note that for every q ↗ R we have sq(t) ↗ [t, t + 1] for each t ↗ N, and that the sequence sq(0), sq(1), sq(2), : : : is strictly 
increasing. The rounding rule parameterized by q ↗ R is then defined as

[[r]]q ≃
{0} if r < sq(0),
{t} if sq(t 1) < r < sq(t) for some t ↗ N,
{t, t + 1} if r ≃ sq(t) for some t ↗ N0:

8
><

>:

For q ↗ R, the q -power-mean divisor method is a family of functions f (·, ·; q) (one function for each number n ↗ N) such that 
for every p ↗ Nn and H ↗ N

f (p, H; q) ≃ {x ↗ Nn
0 | there exists λ > 0 s:t: xi ↗ [[λpi]]q for every i ↗ [n] and

Xn

i≃1
xi ≃ H}:

It is not hard to see that q ≃ ↦ yields the Adams method, q ≃ 1 the Dean method, q ≃ 0 the Huntington-Hill method, 
q ≃ 1 the Webster/Sainte-Laguë method, and q ≃↦ the Jefferson/D’Hondt method Marshall et al. [25]. Similarly to the 
stationary case,11 the breaking points of an instance (p, H) are all values τ ↗ R for which there exists ε > 0 such that, for all 
ε⇔ ↗ (0,ε], we have that

f (p, H;τ ε) ≃ f (p, H;τ ε⇔) ≠ f (p, H;τ+ ε⇔) ≃ f (p, H;τ+ ε):

For i ↗ [n], t ↗ {0, : : : , H 1}, we consider the functions $+i, t : R++ ↙ R+ and $ i, t : R \R+ ↙ R+, both equal to sq(t)
pi 

when eval-
uated at q but with different domains. We also consider the families

L+(p, H) ≃ {$+i, t(q) | i ↗ [n], t ↗ {0, : : : , H 1}}, L (p, H) ≃ {$ i, t(q) | i ↗ [n], t ↗ {1, : : : , H 1}}:

The following lemma states the key observation for our extension to power-mean divisor methods.

Lemma A.1. Let (p, H) be an instance with pi ≠ pj for all i, j ↗ [n] with i ≠ j. Then, L+(p, H) and L (p, H) are pseudoline 
arrangements.

Proof. We need to prove that, for any pair of curves $�and $⇔ in either L+(p, H) or L (p, H), the curves intersect at most 
once. We will make use of the following claim.

Claim A.1. For every a, b, c, d ↗ R++ with a < b, c < d, and (a, b) ≠ (c, d), the equation in q ↗ R++

aq + bq ≃ cq + dq 

has at most one solution.

Proof. Let a, b, c, d be as in the statement. Suppose toward a contradiction that there are two solutions q, r with 0 < q < r, 
that is,

aq + bq ≃ z ≃ cq + dq, (A.1) 

ar + br ≃ cr + dr (A.2) 

for some z ↗ R. If a ≃ c, any of these equations yields b ≃ d, hence (a, b) ≃ (c, d), a contradiction. In the following, we thus 
assume a ≠ c. From Equation (A.1), we know that

ar + br ≃ (aq)r=q + (z aq)r=q, cr + dr ≃ (cq)r=q + (z cq)r=q: (A.3) 

We further know that

aq <
z
2 , cq <

z
2 (A.4) 

due to a < b and c < d.
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We now observe that the function g : (0, z=2)↙ R defined as g(w) ≃ wr=q + (z w)r=q is strictly decreasing. Indeed, for 
w ↗ (0, z=2) we have

g⇔(w) ≃ r
q (wr=q 1 + (z w)r=q 1) < 0, 

where the last inequality uses that w < z=2 and q < r. Therefore, inequalities (A.4) and a ≠ c yield

(aq)r=q + (z aq)r=q ≠ (cq)r=q + (z cq)r=q:

Equalities (A.3) then imply ar + br ≠ cr + dr, a contradiction to Equation (A.2). w

To show that L+(p, H) is a pseudoline arrangement, we need to prove that, for every i, j ↗ [n] and t, u ↗ {0, : : : , H 1}
with (i, t) ≠ (j, u), the equation in q > 0

1
pi

tq

2 + (t + 1)q

2

& ’1
q

≃ 1
pj

uq

2 + (u + 1)q

2

& ’1
q

, 

has at most one solution. For this domain of q, the equation is equivalent to

t
pi

& ’q
+ t + 1

pi

& ’q
≃ u

pj

& ’q
+ u + 1

pj

& ’q
:

Furthermore, ( t
pi

, t+1
pi

) ≠ (u
pj

, u+1
pj

): If we had pjt ≃ piu and pj(t + 1) ≃ pi(u + 1) we would have (pi, t) ≃ (pj, u) and thus 
(i, t) ≃ (j, u), a contradiction. Thus, Claim A.1 directly implies that the equation has at most one solution.

Similarly, to show that L (p, H) is a pseudoline arrangement, we need to prove that, for every i, j ↗ [n] and t, u ↗
{1, : : : , H 1} with (i, t) ≠ (j, u), the equation in q < 0

1
pi

tq

2 + (t + 1)q

2

& ’1
q

≃ 1
pj

uq

2 + (u + 1)q

2

& ’1
q

, 

has at most one solution. For this domain of q, the equation is equivalent to
pi

t + 1
* + q

+ pi
t

* + q
≃ pj

u + 1
* + q

+ pj

u
* + q

:

The fact that ( pi
t+1 , pi

t ) ≠ ( pj
u+1 , pj

u) follows from the previous case. Thus, Claim A.1 again implies that the equation has at 
most one solution. w

We define, similarly to the stationary case,

λ+
H(q) ≃ min{λ ↗ R | | {$ ↗ L+(p, H) |$(q) ⇓ λ} | ⇑ H} for q ↗ R++,
λ H(q) ≃ min{λ ↗ R | | {$ ↗ L (p, H) |$(q) ⇓ λ} | ⇑ H} for q ↗ R \ R+:

As before, for all q ↗ R++, λ+
H(q) is equal to $(q) for some $ ↗ L+(p, H), and for all q ↗ R \R+, λ H(q) is equal to $(q) for some 

$ ↗ L (p, H). Thus, the number of breaking points of an instance is at most the number of vertices of the piecewise linear 
function λ+

H plus the number of vertices of the piecewise linear function λ H plus one (due to a potential breaking point 
at q ≃ 0). We make use of the following property analogous to that used in the proof of the upper bound of Theorem 1: 
For every instance (p, H), there exist at most 2n 1 lines in L+(p, H) that intersect with λ+

H and at most 2n 1 lines in 
L (p, H) that intersect with λ H. This property can be shown in a completely analogous way to the case of line arrange-
ments detailed in Section 3.5, as its proof only uses that, for every state i and integer t, the function $i, t is increasing and 
its largest value is at most the smallest value of $i, t+1, and both of these properties hold for the functions in L+(p, H) and 
for the functions in L (p, H).

The last ingredient we need is a bound on the complexity of the k-level of a pseudoline arrangement. Tamaki and 
Tokuyama [35] extended the result by Dey [14] and showed that, for an arrangement of m pseudolines, the complexity of 
the k-level is bounded by O(m4=3) for any k ↗ {0, : : : , m}. Combining the previous two observations, we can conclude that 
the number of breaking points for both q < 0 and q > 0 is upper bounded by O(n4=3), thus the total number of breaking 
points is upper bounded by O(n4=3) as well. Note that this holds even when the populations of different states coincide, 
as having coincident curves cannot increase the complexity of the arrangement.12

Appendix B. Proof of Proposition 4
Proposition 4. Let G be an arbitrary probability distribution over [0, 1] expressed as a cumulative distribution function, that is, a 
nondecreasing, right-continuous function with G(0) ≃ 0 and G(1) ≃ 1. Let also B be an arbitrary probability distribution over subsets 
of Nn

0 , and H ↗ N be arbitrary. Then, for every ε > 0 there exist n ↗ N, p ↗ Nn, and i ↗ [n] such that the G-randomized divisor 
method FG, B satisfies |E(FG, B

i (p, H)) qi | ⇑ (1 1=(2H 1))H=2 ε:

Let G, B, H, and ε�be as in the statement, and let FG, B be the G-randomized divisor method with tie-breaking distribu-
tion B. If G is a distribution with all probability mass in one point, then the result follows directly from Proposition 3, so 
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we assume that this is not the case in the following. We prove the proposition by making use of the following two 
claims, which provide large expected deviations for cases when there is a considerable probability mass below or above 
a value ξ ↗ [0, 1], respectively. We use similar instances as in the proof of Proposition 3, but additional conditions are 
required in order to ensure these large expected deviations.

Claim B.1. For every ξ ↗ (0, 1) such that G(ξ) > H
↓1=ξ 1↔+H 1, there exist n ↗ N and p ↗ Nn such that

|E(FG, B
1 (p, H)) q1 | ⇑ G(ξ)(H 1) H 1

↓1=ξ 1↔+ H 1 H:

Proof. We consider n ≃ H and define p ↗ Nn with p1 ≃ ↓1=ξ 1↔ and pi ≃ 1 for i ↗ {2, : : : , H}. We claim that for every δ⇔ ↗
[0,ξ] it holds that x1 ⇓ 1 for every x ↗ f (p, H;δ⇔). Indeed, fix δ⇔ ↗ [0,ξ] arbitrarily and suppose toward a contradiction that 
x1 ⇑ 2 for some x ↗ f (p, H;δ⇔). Then, for every λ ↗ Λ(x;δ⇔) we have that λp1 ⇑ 1 + δ⇔ ⇑ 1, that is, λ ⇑ 1=p1. This would imply 
that, for every i ↗ {2, : : : , H}, λpi ⇑ 1=p1 > ξ ⇑ δ⇔ and thus xi ⇑ 1. But this yields 

Pn
i≃1 xi >H, a contradiction. Since 

G(ξ) > H
↓1=ξ 1↔+H 1, it holds that

G(ξ) + (1 G(ξ))H <
↓1=ξ 1↔

↓1=ξ 1↔+ H 1 H ≃ q1, 

and thus

|E(FG, B
1 (p, H)) q1 | ⇑

↓1=ξ 1↔
↓1=ξ 1↔+ H 1 H G(ξ) (1 G(ξ))H

⇑ G(ξ)(H 1) H 1
↓1=ξ 1↔+ H 1 H: w 

Claim B.2. For every ξ ↗ (0, 1) such that G(ξ) ↗ (0, 1) and every β > G(ξ)
1 G(ξ), there exist n ↗ N and p ↗ Nn such that

|E(FG, B
1 (p, H)) q1 | ⇑ 1 G(ξ) 1

β+ 1

& ’
H:

Proof. Let ξ�and β�be as in the statement and let n ↗ N be such that n > β�and βH < (n 1)ξ. We define p ↗ Nn as p1 ≃
n 1 and pi ≃ β�for i ↗ {2, : : : , n}. We claim that for every δ⇔ ↗ [ξ, 1] it holds that x1 ≃H for every x ↗ f (p, H;δ⇔). Indeed, fix 
δ⇔ ↗ [ξ, 1] arbitrarily and suppose toward a contradiction that x1 ⇓ H 1 for some x ↗ f (p, H;δ⇔). Then, for every λ ↗Λ(x;δ⇔)
we have that λp1 ⇓ H 1 + δ⇔ ⇓H, that is, λ ⇓ H=p1 ≃ H=(n 1). This would imply that, for every i ↗ {2, : : : , H}, λpi ⇓
βH=(n 1) < ξ ⇓ δ⇔ and thus xi ≃ 0. But this yields 

Pn
i≃1 xi <H, a contradiction. Since β > G(ξ)

1 G(ξ), it holds that

(1 G(ξ))H + G(ξ) · 0 > 1
β+ 1 H ≃ q1, 

and thus

|E(FG, B
1 (p, H)) q1 | ⇑ (1 G(ξ))H + G(ξ) · 0 1

β+ 1 H ≃ 1 G(ξ) 1
β+ 1

& ’
H: w 

We now finish the proof by combining these two results. Let ξ ↗ (0, 1) be arbitrary; we will take it arbitrarily close to 0 
to conclude later. If G(ξ) ⇓ H

↓1=ξ 1↔+H 1, then we obtain from Claim B.2 that

max
n↗N,p↗Nn

|E(FG, B
1 (p, H)) q1 | ⇑ 1 H

↓1=ξ 1↔+ H 1 
1
β+ 1

& ’
H: (B.1) 

for every β > G(ξ)
1 G(ξ). Otherwise, we obtain from Claim B.1 and Claim B.2 that

max
p↗Nnn↗N, |E(FG, B

1 (p, H)) q1 | ⇑ max G(ξ)(H 1) H 1
↓1=ξ 1↔+ H 1 H, 1 G(ξ) 1

β+ 1

& ’
H

" #

for every β > G(ξ)
1 G(ξ). Since the first expression in the maximum is increasing in G(ξ) and the second is decreasing in this 

value, a lower bound for the maximum is obtained by taking G(ξ) such that both are equal. Denoting this value of G(ξ)
as ρ, such that

ρ(H 1) H 1
↓1=ξ 1↔+ H 1 H ≃ 1 ρ 1

β+ 1

& ’
H

� ρ ≃ 1 1
β+ 1 + H 1

↓1=ξ 1↔+ H 1

& ’
H

2H 1 , 
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we obtain that

max
n↗N,p↗Nn

|E(FG, B
1 (p, H)) q1 | ⇑ 1 ρ 1

β+ 1

& ’
H (B.2) 

for every β > G(ξ)
1 G(ξ). Combining expressions (B.1) and (B.2), we obtain that

max
p↗Nnn↗N, |E(FG, B

1 (p, H)) q1 | ⇑min 1 H
↓1=ξ 1↔+ H 1 

1
β+ 1

& ’
H, 1 1 1

β+ 1 + H 1
↓1=ξ 1↔+ H 1

& ’
H

2H 1 
1
β+ 1

& ’
H

" #

for every ξ ↗ (0, 1) and β > G(ξ)
1 G(ξ). Taking ξ�arbitrarily close to 0 and β�arbitrarily large, the first term in the maximum tends 

to H, whereas the second term in the maximum tends to

1 H
2H 1

& ’
H ≃ H 1

2H 1 H ≃ 1 1
2H 1

& ’
H
2 :

That is, for any ε > 0 we can reach a deviation of (1 1=(2H 1))H=2 ε, as claimed. w

Appendix C. Proof of Lemma 2
Lemma 2. For every p ↗ Nn and H ↗ N,

{f (p, H) : f is a house monotone and quota compliant solution} ≃
[

f↗FHM↖FQ

f (p, H):

In what follows, we let p ↗ Nn and H ↗ N be arbitrary. We first show the simplest inclusion. Let x ↗ {f (p, H) :
f is a house monotone and quota compliant solution} and let f be any house-monotone solution such that x ≃ f (p, H). 
As a house-monotone and quota-compliant solution is trivially a house-monotone and quota-compliant method, 
f ↗ FHM ↖ FQ, hence x ↗ ⇐f↗FHM↖FQ f (p, H).

In order to prove the other inclusion, we consider an arbitrary vector x ↗ ⇐f↗FHM↖FQ f (p, H), and we fix f ↗ FHM ↖ FQ to 
be any house-monotone and quota-compliant method such that x ↗ f (p, H). In the following, we let qi(h) ≃ pih=P denote 
the quota of state i for every i ↗ [n] and h ↗ N, and we denote xH ≃ x. We show the existence of a house-monotone and 
quota-compliant solution g such that x ≃ g(p, H) by using the next simple claims.

Claim C.1. For every h ↗ {1, : : : , H 1}, there exists a sequence xH 1, : : : , xh such that, for every k ↗ {H 1, : : : , h} it holds that 
xk ↗ f (p, k), xk ⇓ xk+1, and xk

i ↗ {→qi(k)↑, ↓qi(k)↔} for each i ↗ [n].

Proof. We proceed by induction, so let h be as in the statement. For the base case k ≃ H 1, we observe that house mono-
tonicity of f implies the existence of a vector xH 1 ↗ f (p, H 1) such that xH 1 ⇓ xH, while quota compliance of f implies 
that xH 1

i ↗ {→qi(H 1)↑, ↓qi(H 1)↔} for each i ↗ [n]. If we assume that the result holds for every k ↗ {h + 1, : : : , H 1}, that 
is, there exists xk ↗ f (p, k) with xk ⇓ xk+1, then house monotonicity of f implies the existence of xh ↗ f (p, h) with xh ⇓ xh+1. 
Quota compliance of f directly yields xh

i ↗ {→qi(h)↑, ↓qi(h)↔} for each i ↗ [n], so we conclude. w

Claim C.2. For every h ↗ {H + 1, H + 2, : : : }, there exists a sequence xH+1, : : : , xh such that, for every k ↗ {H + 1, : : : , h} it holds that 
xk ↗ f (p, k), xk 1 ⇓ xk, and xk

i ↗ {→qi(k)↑, ↓qi(k)↔} for each i ↗ [n].
Proof. We proceed by induction, so let h be as in the statement. For the base case k ≃ H + 1, we observe that house mono-
tonicity of f implies the existence of a vector xH+1 ↗ f (p, H + 1) such that xH ⇓ xH+1, while quota compliance of f implies 
that xH+1

i ↗ {→qi(H + 1)↑, ↓qi(H + 1)↔} for each i ↗ [n]. If we assume that the result holds for every k ↗ {H + 1, : : : , h 1}, that 
is, there exists xk ↗ f (p, k) with xk 1 ⇓ xk, then house monotonicity of f implies the existence of xh ↗ f (p, h) with xh 1 ⇓ xh. 
Quota compliance of f directly yields xh

i ↗ {→qi(h)↑, ↓qi(h)↔} for each i ↗ [n], so we conclude. w

Claim C.1 and Claim C.2 yield the existence of an infinite sequence x1, x2, : : : such that xH ≃ x and that, for every h ↗ N, xh ↗ f (p, h), 
xh ⇓ xh+1, and xh

i ↗ {→qi(h)↑, ↓qi(h)↔} for each i ↗ [n]. Hence, taking g(p, h) ≃ xh for every h ↗ N and g(q, h) as an arbitrary house- 
monotone solution for every q ↗ Nn \ {p} and h ↗ N, we have that g is a house-monotone solution with x ≃ g(p, H), as claimed. w

Endnotes
1 The notion also applies, for instance, to allocate seats proportionally to the votes obtained by political parties.
2 Apportionment methods are usually defined via set-valued functions to allow ties in certain situations, for example, when a single seat is to 
be allocated to one of two states with the same population. In the definition of divisor methods, on which a considerable part of this paper 
focuses, ties also arise naturally.
3 Here and throughout the paper, inequalities between vectors denote component-wise inequalities.
4 This definition is made to ensure that a randomized method outputs a single apportionment vector for every instance, which will be useful, 
for example, when computing the expected outcome of a randomized divisor method.
5 The function χ�denotes the indicator function, meaning that χ(u) ≃ 1 if the condition u holds and zero otherwise.
6 Note that, even though these populations might not be integers, they can be scaled for this purpose without affecting the breaking points.
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7 The value δt is not well defined when q ≃ 0, as well as when t ≃ 0 and q < 0. When q ≃ 0, the standard definition (Marshall et al. [25]) is 
δt ≃ limq↙0

tq

2 + (t+1)q

2

* +1=q
 t ≃

              
t(t + 1)

p
 t. When q < 0, we consider δ0 ≃ 0 to maintain monotonicity, since limq↙0+ 0q

2 + 1q

2
, -1=q ≃ 0.

8 Recall that, as stated in Section 2, a randomized method satisfies population monotonicity or ex-ante proportionality if it is a lottery over 
deterministic methods that satisfy these properties.
9 This is because the need to break ties to exactly match the house size is no longer an issue.
10 This is, in turn, valid for any randomized method with variable house size that outputs a single vector for every instance.
11 We have replaced the inductive definition given for stationary divisor methods with an alternative one since the domain of q is not com-
pact. This new definition could be equivalently employed for stationary divisor methods; we used the inductive one for simplicity.
12 This is the same reason why having coincident lines given by the constant functions $i, 0(q) ≃ 0 for all i ↗ [n] when q < 0 is not an issue for 
the complexity either.
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