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Abstract

In many school choice programs, students are centrally assigned to schools using the deferred

acceptance algorithm. The priority rule employed by schools–such as proximity, sibling attendance,

or random scores–significantly impacts the efficiency of the assignment process. We derive upper

and lower bounds for the fraction of students assigned to their top schools and the fraction of

students that can be Pareto improved in a large market school choice model. Additionally, we

characterize the inefficiencies resulting from various priority rules. Our bounds also facilitate the

comparison of different priority rules. We apply our bounds to examine random tie breaking rules.

We also show that while distance-based priorities may result in several students being assigned to

their top schools, they can also lead to significant efficiency losses. Simulations using Chilean data

confirm our theoretical findings.
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1 Introduction

In many school choice programs worldwide, students are centrally assigned to schools using the deferred

acceptance (DA) algorithm proposed by Gale and Shapley (1962). This algorithm results in a stable

matching that need not be Pareto efficient for students (Roth and Sotomayor, 1990). Moreover, as

Kesten (2010) shows, for any fixed supply of seats, it is possible to construct the demand so that the

stable matching assigns each student to her worst or second-worst school. This naturally leads to the

question of which policy decisions can mitigate the inefficiencies of the DA algorithm.

The priority rule used by schools to rank students is an important implementation decision that

impacts the satisfaction that students and families have with the assignment process. In real-world

applications, policymakers use a variety of priority criteria (Cantillon et al., 2022). In cities such as

Boston and Copenhagen, a student gets priority based on proximity to a school. In New Haven, students

get higher priority in schools in which they have siblings. In many cities, schools use random priorities.

While in Amsterdam a student gets a random score that applies to all schools, in Chile each student

gets a different random score for each school. As Abdulkadiroğlu et al. (2009) and Leshno and Lo

(2021) emphasize, the priority structure is critical in school choice implementations and can be even

more important than the specific algorithm used to assign students to schools.

This paper provides results to theoretically evaluate the impact of different priority rules on some

efficiency measures in school choice programs that employ the DA algorithm. We derive tight upper and

lower bounds for the fraction of students assigned to their top schools in a large market school choice

model. Our bounds are determined by students’ preferences, the supply of seats and the priority rule

used by schools to rank students. We thus provide and apply a methodology to evaluate the performance

of different priority criteria usually employed in school choice implementations.

We study a large market model in which a continuum of students applies to a finite number of schools

(Azevedo and Leshno, 2016; Abdulkadiroğlu et al., 2015). Students have preferences over schools, while

schools have priorities over students. To capture the interplay between students’ preferences and schools’

priorities, each student has a type. These types govern students’ preferences and also determine their

scores within each school, subsequently influencing the schools’ priorities over students. Introducing

types into our matching model is a flexible way to allow for correlation between students’ preferences

and scores. Our setup encompasses a variety of priority criteria used in applied school choice, including

multiple tie breaking–in which each student receives a different random number for each school–and
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single tie breaking–in which a student obtains a unique random score that determines her priorities in

all schools. It also accommodates models in which students and schools are geographically differentiated

and a student’s preference is partly determined by her location.

Our first main result, Theorem 1, provides tight upper and lower bounds for the fraction of students

assigned to their top schools in a stable matching. Behind these bounds is the idea that the performance

of a stable matching depends on how students can congest and get admission to schools they do not

consider top choices. The bounds are easy to apply to examples and models that would otherwise pose

significant challenges in analysis.

To establish Theorem 1, we exploit a set of market-clearing conditions that characterize stable

matchings using cutoffs (Azevedo and Leshno, 2016; Abdulkadiroğlu et al., 2015). The solutions to

these equations are hard to solve in closed form. We thus explore relaxed market-clearing conditions.

These relaxed conditions are used to obtain lower and upper bounds for the cutoffs that the original

market-clearing conditions. These bounds are then used to estimate the fraction of students assigned

to their top schools.

Equipped with Theorem 1, we can characterize the impact of various priority protocols used in

school choice. An important literature has studied the role of different random tie breaking rules on

the effectiveness of the DA algorithm (Abdulkadiroğlu et al., 2009; Ashlagi and Nikzad, 2020; Arnosti,

2022; Allman et al., 2022). Proposition 1 shows conditions such that single tie breaking results in

more students assigned to their top schools than multiple tie breaking. In contrast to previous results,

Proposition 1 applies even when no parametric restriction is imposed on the demand for schools.

We also evaluate distance-based priorities in a general spatial model of school choice. Stable match-

ings under distance-based priorities are determined by how students value proximity, and also by the

capacity and geographical distribution of schools. Under distance-based scores, when students signifi-

cantly value proximity, students’ preferences and schools’ priorities are compatible: a student who likes

a school also has a high score in the school. As Proposition 2 shows, in this case, the resulting stable

matching will be Pareto efficient and place many students into their top schools.

In contrast, distance-based priorities may result in important efficiency losses when students’ pref-

erences for proximity are not strong. Indeed, Proposition 3 shows that multiple tie breaking may result

in more students assigned to their top schools and fewer students that can be Pareto improved than

distance-based priorities. This happens even when students value proximity and, as a result, there is
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positive correlation between preferences and priorities. We observe that in markets where students care

not only about proximity to schools but also about other aspects –such as scores in standardized tests,

extracurricular activities, etc– the consistency between preferences and priorities is positive but weak.

In these markets, under distance-based priorities, a student may be assigned to a school that is not her

top but just happens to live nearby. This force leaves relatively few students assigned to top schools

under distance-based priorities.

As intuitive as Proposition 3 may seem, this intuition does not easily translate into a proof, nor is

it prominent in the literature. Proposition 3 applies to a market where students are spatially located

and have arbitrary preferences over schools. Theorem 1 can be used to provide an otherwise difficult

characterization of a stable matching in a general model of spatial differentiation.

Proposition 3 also offers a counterpoint to the conjecture made by Pathak (2017) that proximity

reduces the inefficiencies of DA by inducing a positive correlation between preferences and priorities.

Proposition 2 confirms this observation when preferences for proximity are strong.1 In contrast, when

preferences are positive but weakly correlated with proximity, Proposition 3 shows that distance-based

priorities may lead to significant efficiency losses.

Our theoretical results show that introducing proximity as a priority criterion has ambiguous effects

on the fraction of students assigned to their top schools. We confirm our findings by performing

simulations using data from the centralized school choice system in Chile.

Related literature. The school choice literature has shown that even the student optimal stable

matching need not be Pareto efficient (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003).

Several papers derive conditions under which a stable matching is Pareto efficient.2 Notably, Ergin

(2002) introduces a class of school priorities such that, regardless of students’ preferences, the stable

matching is efficient.3 See also Ehlers and Erdil (2010), Salonen and Salonen (2018), Reny (2021),

Pakzad-Hurson (2023). In many practical applications of the deferred accepted algorithm, efficiency

will not be achieved and therefore understanding the magnitude of inefficiencies may be a useful step

when designing priorities in matching markets.

1See also Cantillon et al. (2022).
2There is also an important set of papers proposing alternative algorithms and solutions, including Shapley and Scarf

(1974), Kesten (2010), Che and Tercieux (2018), Ehlers and Morrill (2020), Cantillon et al. (2022), and Reny (2022).
3Ergin (2002) introduces acyclical priorities. In school choice applications, priorities derived under single tie breaking

are acyclical.

4



Several papers have observed that school priorities can be designed to impact the performance of the

deferred acceptance algorithm. Abdulkadiroğlu et al. (2009), Ashlagi and Nikzad (2020), Arnosti (2022),

Shi (2022), Allman et al. (2022) notice that when schools solve indifferences by using random lotteries,

the correlation between the scores of a student in different schools is important for efficiency. As the

literature shows –and we confirm in Subsection 4.1–single tie breaking (under which the correlation

between scores is perfect) results in a more efficient matching than multiple tie breaking (under which

the correlation between scores is 0). We make three contributions to this literature. First, Proposition

1 shows that we can compare multiple to single tie breaking even when no assumption is imposed on

students’ demand. Second, we observe that the correlation between students’ preferences and scores

is also important to evaluate the efficiency of a stable matching–see Propositions 2 and 3. Third, we

notice that priority criteria such that a high score in a school implies low scores in other schools make

efficiency hard to achieve; see the discussion of distance-based priorities following Proposition 3. In

this sense, priority criteria that result in no correlation between scores (such as multiple tie breaking)

may produce a more efficient matching than priority criteria resulting in a negative correlation (such as

distance-based priorities).

Our paper also connects to research about distance-based priorities in school choice. Dur et al.

(2018) explore how different precedence orders implementing walk-zone reserves impact the fraction of

reserve-group students assigned to each school. More closely related, Çelebi and Flynn (2021) show

that in a large market model, the optimal coarsening of scores is attained by splitting agents into at

most three indifference classes. They also explore a model in which scores are determined by distance

and show that the the optimal number of zones depends on the diversity goals of the planner. Our

focus is different in that we explore alternative performance measures and our insights highlight how

the correlation between preferences and priorities determine the effectiveness of the deferred acceptance

algorithm. We thus see our analysis as complementary to Çelebi and Flynn’s (2021).

Finally, our work connects to the literature employing large market models to analyze market design

questions (Azevedo and Leshno, 2016; Abdulkadiroğlu et al., 2015; Leshno and Lo, 2021; Allman et al.,

2022). We provide a method to bound cutoffs for stable matchings in large market models, and derive

new insights for priority design in school choice.

Organization of the paper. Section 2 introduces the model. Section 3 presents our bounds for the

fraction of students assigned to their top schools. Section 4 applies our bounds to random priorities and
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distance-based priorities. Section 5 shows simulations using Chilean data. Section 6 presents concluding

remarks. All proofs are in the Appendix.

2 Model

2.1 Environment

There is a finite set of schools C with |C| = N ≥ 2. There is a continuum S of students to be matched

to schools. Each student s has a strict preference ordering ≻s over C ∪ {∅}, where ∅ is the outcome if s

is unassigned. A student s has a score vector es = (esc)
N
c=1. School c has capacity kc. A school c prefers

student s to student s′ iff esc > es
′
c . We simplify exposition and assume that all schools and all students

are acceptable.

Students have types i ∈ I. We endow I ⊆ RL with a measure ν so that
∫
ν(di) = 1 and assume that

ν is absolutely continuous. Preferences and scores are determined by types. Concretely, for each i there

is a distribution Fi over the finite set of preferences over schools, with
∑

≻ Fi(≻) = 1 and Fi(≻) ≥ 0,

so Fi(≻) is the fraction of type i students having preference ≻. Additionally, a type i student has a

score esc = ec(i) ∈ [0, 1]. We assume that the probability of a tie in a school is 0 so that for all c and

all x ∈ [0, 1], ν({i ∈ I | ec(i) = x}) = 0. Implicit in our model is the assumption that any correlation

between the preferences of a student s and her scores in schools is determined by the type i of the

student s ∈ S. Since a student’s type determines scores, a student s can be characterized by her type

i and preferences ≻, s = (i,≻). We denote by ν̄ the measure induced by ν and (Fi)i∈I over the set of

students.4

Let F k
i (c) be the fraction of type i students that put school c in the k-th position:

F k
i (c) =

∑
≻ such that c is ranked k

Fi(≻)

and F̄i(c) be the fraction of type i students listing school c: F̄i(c) =
∑N

k=1 F
k
i (c). Since we assume that

students list all schools, F̄i(c) = 1 for all i and all c.5

4Given any subset of students S′ ⊆ S, ν̄(S′) =
∫ ∑

≻ such that (i,≻)∈S′ Fi(≻)ν(di).
5This assumption simplifies exposition. Our results can be easily accommodated to the case in which F̄i(c) < 1 for

some i and c. In the Appendix, we provide results and proofs that apply even when students do not apply to all schools.
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We assume that the all schools are popular in the sense that for all c,

F 1(c) :=

∫
F 1
i (c)ν(di) > kc.

Our analysis can be extended to the case in which this inequality holds for some but not all schools, but

we simplify exposition by imposing the inequality in all schools. We also assume that F̄ (c) = 1 > F 1(c)

for all c so that each school has a nontrivial mass of students that demand it but not in the top position.

2.2 Priorities

In this paper, we evaluate different priority criteria. We now discuss how prominent priority rules used

in school choice models can be cast as special cases of our general model.

Several papers compare single to multiple tie breaking in school choice problems (Abdulkadiroğlu

et al., 2009; Ashlagi and Nikzad, 2020; Arnosti, 2022; Allman et al., 2022). Our model also accommo-

dates these priorities.

Example 1 (Random tie breakings). Take a school choice model in which students have no types and

students’ preferences are given by a distribution F (≻). Given the set of schools, scores at each school are

randomly determined in [0, 1]. Our general model can accommodate these random priorities as follows.

Let I = [0, 1]N be the set of types and ν be N independent uniform distributions over [0, 1]. The

c-component of a student type i ∈ [0, 1]N determines the score that student i has in school c, that

is, ec(i) = ic. In this case, our model becomes a school choice problem in which students are ranked

according to multiple tie breaking (MTB) (Abdulkadiroğlu et al., 2009).

The model can also accommodate the case of single tie breaking (STB). When I = [0, 1], and ν is the

uniform distribution on [0, 1]. A type i student has score i at each school. Our model becomes a school

choice problem in which students are ranked according to a single lottery (Abdulkadiroğlu et al., 2009).

The setup introduced in Subsection 2.1 can also be used to model a school choice environment with

geographical differentiation and distance-based priorities (Dur et al., 2018; Çelebi and Flynn, 2021).

Example 2 (Horizontal differentiation and distance-based priorities). I ⊂ R2
+ models a city and a

student’s type is her location i ∈ I in the city. Schools are located and spread across the city. Let
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d(i, c) ∈ [0, 1] be a distance between a student located in i and school c.6 Similar to Abdulkadiroğlu et al.

(2017), the utility that a student located in i derives from attending school c is in part determined by

d(i, c). For example, one can generate the utility that a type i student derives from school c as

us,c = −d(i, c) + ϵi,c

where ϵi = (ϵi,c)
N
c=1 is a shock vector and has a distribution Hi.

7 In this case, we can construct the

distribution over the finite set of preferences as:

Fi(≻) = Prob[us,c1 ≥ us,c2 ≥ · · · ≥ us,cN ]

where c1 ≻ · · · ≻ cN .

Schools can rank students using a variety of criteria (including random tie breaking, discussed above).

Under distance-based priorities, the score that a student type i has in school c is given by esc = 1−d(i, c).

2.3 Stable matchings

A matching is a function µ : S ∪ C → (C ∪ {∅}) ∪ 2S such that:

i. For all s ∈ S, µ(s) ∈ C ∪ {∅};

ii. For all c ∈ C, µ(c) ⊆ S with ν̄
(
{s|µ(s) = c}

)
≤ kc;

iii. For all c ∈ C and all s ∈ S, µ(s) = c iff s ∈ µ(c).

iv. For all c, {s ∈ S | c ≻s µ(s)} is open.

The first condition says that each student is assigned to a school. The second condition says that

each school is assigned to a measure of students that does not exceed its capacity. The third condition

says that a student is assigned to a school iff the school is assigned to that student. The fourth condition

6The distance function can be arbitrary. The only property relevant for our analysis is that the distance function
d(i, c) satisfies the triangle inequality.

7Using this formulation, we can model fixed effects and also interaction effects other than distance (Abdulkadiroğlu
et al., 2017).
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is technical and eliminates redundant matchings that differ in a measure 0 of students (Azevedo and

Leshno, 2016).

A matching µ is stable if for all s ∈ S and all c ∈ C such that c ≻s µ(s), the following conditions

hold: (i) ν̄
(
{s|µ(s) = c}

)
= kc; and (ii) esc < es

′
c for all s′ with µ(s′) = c. Intuitively, a matching is stable

if there is no pair (s, c) that can block the matching (Gale and Shapley, 1962). Stability is an important

desideratum in matching theory and its many applications (Roth, 1982; Abdulkadiroğlu et al., 2009).

To characterize stability, we follow Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016)

and find stable matchings as solutions to a supply and demand system of equations. Given cutoffs

p = (pc)
N
c=1, a student s can get admission to c if ec(i) ≥ pc. A student demands her favorite school

among those she can get admission given p. We thus defineDc(p) as the measure of students that demand

school c as a function of cutoffs p.8 A stable matching can be found by means of market-clearing cutoffs

p = (pc)
N
c=1 that solve

Dc(p) = kc ∀c (2.1)

Given market-clearing cutoffs, a stable matching is built by assigning each student to her most preferred

school among those where her score exceeds the cutoff.

While the system of equations (2.1) is neat and simple to interpret, it can be solved in closed-form

solutions only for special cases. When we can find a closed-form solution to (2.1), it is simple to calculate

statistics for the resulting stable matching. However, solving the model in closed-form is unfeasible even

for relative simple models.9

3 Students assigned to their top schools

This Section states and discusses our bounds for the measure of students assigned to their top schools.

We then provide some examples and sketch some of the arguments in the proof.

For a given matching, let R1(c) be the mass of students assigned to school c that put c as their top

school. Obviously, 0 ≤ R1(c) ≤ kc. R
1(c) is an important metric usually employed by policy makers to

8We provide a formula for Dc(p) in the Appendix; see Equation (A.1).
9The system of equations (2.1) is non-linear in p. Under multiple tie breaking, each equation in (2.1) is polynomial of

degree N .
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evaluate the effectiveness of a matching (Abdulkadiroğlu et al., 2009). In the next Section, we discuss

other performance measures.

For each school c, we compute the demands

Λ1
c(x) =

∫
ec(i)≥x

F 1
i (c)ν(di) and Λ̄c(x) =

∫
ec(i)≥x

ν(di)

for all x ∈ [0, 1]. Let ϕc ∈ [0, 1] and Φc ∈ [0, 1] be defined by the equations

ϕc = max
{
x ∈ [0, 1] | Λ1

c(x) = kc
}

(3.1)

Φc = min
{
x ∈ [0, 1] | Λ̄c(x) = kc

}
. (3.2)

In contrast to the cutoff pc that clears the market for school c in a stable matching, cutoffs ϕc and Φc

are entirely determined by the local demand for school c: while ϕc is determined by the mass of students

that demand c first (F 1
i (c))i, Φc is determined by the mass of students that list c in any position (F̄i(c))i.

The following result provides estimates for R1(c) in a stable matching.

Theorem 1. For any stable matching and all c = 1, . . . , N :

R1(c) ≥ kc − η̄c

(∫
ec(i)≥ϕc,eĉ(i)<Φĉ for some ĉ ̸=c

(1− F 1
i (c))ν(di)

)
(3.3)

and

R1(c) ≤
∫
ec(i)≥Φc

F 1
i (c)ν(di) + ηc

(∫
ec(i)≥ϕc,eĉ(i)≥ϕĉ for some ĉ ̸=c

(1− F 1
i (c))ν(di)

)
(3.4)

where

η̄c = min
{
1,

infx∈[ϕc,Φc]
d
dx
Λ1

c(x)

supx∈[ϕc,Φc]
d
dx

(
Λ1

c(x) +
∫
ec(i)≥x,eĉ(i)<Φĉ some ĉ̸=c

(1− F 1
i (c))ν(di)

)}
and

ηc =
infx∈[ϕc,Φc]

d
dx
Λ1

c(x)

supx∈[ϕc,Φc]
d
dx
Λ̄c(x)

.

Both bounds are tight.

Theorem 1 provides estimates for the measure of students assigned to their top schools. To apply

the bounds, we compute cutoffs ϕc and Φc that are entirely determined by each school c supply and
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demand. The real numbers ηc and η̄c adjust for the fact that we do not employ stable matching cutoffs

p but approximated cutoffs ϕc and Φc. As we show in Section 4, getting simple expressions for ηc, η̄c,

ϕc and Φc for specific models is straightforward. Theorem 1 can be easily applied to obtain substantive

insights for several examples and models.

The idea behind bounds (3.3) and (3.4) is that the measure of students assigned to their top schools

depends on how students can congest schools they do not rank top. A student that does not rank a

school c at the top may still congest it depending on her score in c and, critically, her scores in schools

ĉ ̸= c. Thus, the measure of students assigned to their top schools critically depends on how types

determine preferences for each school and scores across schools. We now discuss each of the bounds.

A. Discussion of lower bound. The first bound in the Theorem, inequality (3.3), provides a con-

dition under which a high fraction of students assigned to school c will rank it as their top school.

Most students will be assigned to their top school in c when (i) students that rank c apply to c first,

that is, 1 ≈ F 1
i (c); or (ii) students that rank c second, third, etc have a low score in c, that is,∫

ec(i)≥ϕc
(1 − F 1

i (c))ν(di) ≈ 0); or, more generally, (iii) most students that rank c second, third, etc

and have a high score in c are also likely to get admission in some other school, that is,
∫
ec(i)≥ϕc

(1 −
F 1
i (c))ν(di) ≈

∫
ec(i)≥ϕc,eĉ(i)≥Φĉ all ĉ ̸=c

(1− F 1
i (c))ν(di).

10 In general, to evaluate inequality (3.3), we com-

pute the measure of the set of students that rank c second, third, etc, and have a high score in c and a

low score in some other school ĉ. When this measure is low, most students that get admission to c will

naturally rank c top.

Inequality (3.3) can be used to derive conditions under which all students assigned to a school rank

the school top.

Corollary 1. Suppose that for all i and c such that F 1
i (c) < 1 and ec(i) ≥ ϕc, we have that eĉ(i) ≥ Φĉ

for all ĉ ̸= c. Then, R1(c) = kc for all c and a stable matching is Pareto efficient.

The following example shows a stable matching that results in all students assigned to their top

schools. This happens even when preferences and priorities do not conform: in our example, some

10Note that∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ ̸=c

(1− F 1
i (c))ν(di)

=

∫
ec(i)≥ϕc

(1− F 1
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)≥Φĉ all ĉ̸=c

(1− F 1
i (c))ν(di)).
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students rank a school top, but that school does not rank those students highly.11 The example below

also shows that the lower bound (3.3) is tight.

Example 3. Suppose that N = 2 and I = [0, 1]. Each school has capacity k = 1
4
. Students i ≤ 1/4

are elite students, with outstanding academic performance. For i ≤ 1/4, scores are given by ec1(i) =

ec2(i) = 1− i. School c1 (resp. c2) is located in 0 (resp. 1) and students i > 1/4 are ranked according to

distance. Concretely, for i > 1/4 ec1(i) = 1− i while ec2(i) = i− 1/4. For each i, a fraction α(i) (resp.

1 − α(i)) of students rank school c1 first (resp. school c2 first). Assume that α(i) = 1 for i ≤ 1/2 and

α(i) = 0 for i > 1/2.

It is simple to see that ϕc1 = 3/4, Φc1 = 3/4, ϕc2 = 1/2, Φc2 = 3/4. Note that all students that

rank school c1 second have scores ec1 < 1/2 < 3/4. All students that rank c2 second and have scores

ec2(i) > ϕc2 = 1/2 also have score ec1(i) > Φc1 = 3/4. Using Corollary 1, R1(c1) = R1(c2) = k.

B. Discussion of upper bound. The second bound in Theorem 1, inequality (3.4), provides a

condition under which a low fraction of students assigned to school c will rank it as their top school.

The Theorem shows that in a stable matching, few students assigned to school c will rank it as their

top school when (i) most students that rank c top are unlikely to have sufficiently high scores, that

is, sup{F 1
i (c) | ec(i) ≥ Φc} ≈ 0, and (ii) most students that rank c second, third, etc and have a

high score in c are unlikely to get admission in some other school, that is,
∫
ec(i)≥ϕc

(1 − F 1
i (c))ν(di) ≈∫

ec(i)≥ϕc,eĉ(i)≤ϕĉ all ĉ ̸=c
(1− F 1

i (c))ν(di). If (i) were not satisfied, then we could find a non-negligible mass

of students for whom c is the top choice and are sure to be assigned. Condition (ii) ensures that students

for whom c is listed but is not top are admitted to c in a stable matching.

We now illustrate the upper bound. The next example shows that the upper bound (3.4) is tight.

Example 4. Suppose that N = 2 and I = [0, 1]. Each school has capacity k = 1
4
. Students i live

in position i with preferences given by F 1
i (c) = 1/2 and F̄ 1

i (c) = 1 for each c. Schools c1 and c2 are

located at the extremes of the interval. Priorities are distance-based so the scores of agent i are given

by ec1(i) = 1− i and ec2(i) = i. It is simple to see that ϕc = 1/2 and Φc = 3/4. Thus, inequality (3.4)

11Erdil and Ergin (2008) show simulations in which the preferences of both sides of the market conform and, as a result,
the stable matching is efficient. In those simulations, priorities are given by multiple tie breaking and walk zones. As
distance becomes more important for students (in their model, that is captured by β → 1), the efficiency loss in the stable
matching goes to 0 since in the limit both sides of the market have perfectly conforming preferences. See also Salonen
and Salonen (2018) for theoretical results. See also Proposition 2.
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becomes

R1(c) ≤
∫
1−i≥1−k

1

2
di+

1

2

∫
1−i≥1/2,i≥1/2

1

2
di =

k

2
.

In the unique stable matching, the cutoff equals pc = 3/4, and thus in each school only half of the

students assigned to the school rank the school first: R1(c) = k/2. It thus follows that inequality (3.4)

holds with equality.

3.1 Proof sketch for Theorem 1

We close this Section by discussing the main ideas behind the proof of Theorem 1. Since ϕc solves a

market-clearing condition for a demand Λ1
c that is below the total demand Dc, we deduce that ϕc ≤ pc

for any cutoff vector p from a stable matching. Analogously, pc ≤ Φc. See Lemma 1 in the Appendix

for details.

Cutoffs ϕc and Φc are important in that they provide bounds for cutoffs p characterizing stable

matchings. More subtly, ϕc and Φc are informative about the measure of students assigned to their top

schools. Indeed, when pc = ϕc, then the number of students assigned to their top schools in c equals

kc:
12

R1(c) =

∫
ec(i)≥pc

F 1
i (c)ν(di) =

∫
ec(i)≥ϕc

F 1
i (c) = kc.

Similarly, we note that

R1(c) =

∫
ec(i)≥pc

F 1
i (c)ν(di) =

∫
ec(i)≥Φc

F 1
i (c)ν(di) +

∫
pc≤ec(i)≤Φc

F 1
i (c)ν(di).

It follows that R1(c) = 0 when Φc = pc and F 1
i (c) = 0 for all ec(i) ≥ Φc.

In general, however, ϕc < pc < Φc. The key technical observation that enables us to prove Theorem

1 is that we can bound pc−ϕc and Φc−pc. Indeed, we bound pc−ϕc and Φc−pc by using several relaxed

market-clearing conditions. More technically, the proof bounds the distance between the solutions to

different non-linear market-clearing equations to derive estimates for the measure of students assigned

to their top schools. See the Appendix for details.

12Moreover, R1(c) = kc iff ϕc = pc.
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4 Priorities in school choice

We now explore the impact of different priority structures on the fraction of students assigned to their top

schools and efficiency. The setup for this Section is the model of horizontal differentiation presented in

Example 2. We fix the demand and the capacity of each school and compute the bounds from Theorem

1 for different priorities. Subsection 4.1 explores random multiple and single tie breaking priorities.

Subsection 4.2 explores distance-based priorities. Subsection 4.3 compares multiple tie breaking to

distance-based priorities. We denote the fraction of students assigned to their top schools under distance-

based priorities, multiple tie breaking, and single tie breaking by R1
DB, R

1
MTB and R1

STB, respectively.

4.1 Random priorities

This Subsection applies our bounds to the widely studied model of school choice with random priorities

(Abdulkadiroğlu et al., 2009; Ashlagi and Nikzad, 2020; Arnosti, 2022; Allman et al., 2022).

It is simple to see that under single or multiple tie breaking, cutoffs are identical and given by

ϕRP
c = 1− kc

F 1(c)
and ΦRP

c = 1− kc (4.1)

For multiple tie breaking, we can also compute

η̄c =
F 1(c)

F 1(c) + (1− F 1(c))
[
1−

∏
ĉ ̸=c kĉ

] and ηc = F 1(c). (4.2)

Using Theorem 1, in Appendix B.1.1 we deduce that under multiple tie breaking, for each school c13

kc

(
F 1(c)

F 1(c) + (1− F 1(c))
(
1−

∏
ĉ ̸=c kĉ

))

≤ R1
MTB(c) ≤ kc

(
1− (1− F 1(c))

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

))
. (4.3)

13For multiple tie breaking, is is possible to derive bounds that do not use Theorem 1. By definition,

R1
MTB(c) = F 1(c)(1− pc) ∈ [kc(1− Φc), kc(1− ϕc)] = [kcF

1(c), kc].

The bounds given in (4.3) are strictly sharper than these simple bounds.
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Since F̄ (c) = 1 > F 1(c), both the upper and the lower bound for R1
MTB(c) are informative. Under

multiple tie breaking, some students will be assigned to school c even when c is not their top school,

but there will always be some students assigned to their top schools.

We can also apply Theorem 1 to a model with single tie breaking (see Appendix B.1.2). We can

then compare multiple and single tie breaking.

Proposition 1. Suppose that

kc
F 1(c)

≤ min{kĉ | ĉ ̸= c}
1− F 1(c)

∏
ĉ ̸=c(1−

kĉ
F 1(ĉ)

)
. (4.4)

Then,

R1
STB(c) ≥ R1

MTB(c) (4.5)

This bound says that when school c is sufficiently popular (that is, kc
F 1(c)

is small enough), more

students are assigned to c in the top position under single tie breaking than under multiple tie breaking.

Proposition 1 is similar to the results obtained by Ashlagi and Nikzad (2020), Arnosti (2022), and

Allman et al. (2022). These studies compare the number of students assigned to their top schools under

multiple and single tie-breaking mechanisms. However, Proposition 1 differs in two key respects: (i) it

imposes no specific functional form or restrictions on the demand for schools (the papers above assume

uniform or multinomial logit models), and (ii) it incorporates a constraint on the capacity of school c.14

4.2 Distance-based priorities

Under distance-based priorities, school c ranks students according to esc = 1−d(i, c). In this Subsection,

we argue that the fraction of students assigned to their top schools depends on several factors, including

how much students value proximity, and the capacity and geographical dispersion of schools.

To derive a lower bound for R1
DB(c), it is useful to consider the set of all students that can get

admission to c given cutoff ϕDB
c but are rejected by some school ĉ given ΦDB

ĉ :

H(c) =
{
i | d(i, c) ≤ 1− ϕDB

c and d(i, ĉ) > 1− ΦDB
ĉ some ĉ ̸= c

}
.

14To be clear, most related results impose popularity. We are imposing popularity and that the capacity of schools is
small enough.
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H(c) estimates the set of all the students that could get admission to c but would be rejected by some

school ĉ. In Appendix B.1.3, we employ Theorem 1 to deduce:

R1
DB(c) ≥ kc − ν

(
H(c)

)
sup

d(i,c)≤1−ϕDB
c

(1− F 1
i (c)) (4.6)

This bound shows two forces that make R1
DB(c) close to kc.

A. Consistent preferences and priorities. The first force that makes R1
DB(c) close to kc follows

from a well known observation. When all students living within distance 1 − ϕDB
c of school c list c at

the top,15 then R1
DB(c) = kc. In this case, preferences and priorities are consistent in the sense that

students that have a high score in c (in other words, that live close to c) also rank school c at the top.

When preferences and priorities are consistent, all students will be assigned to their top school and

the matching will be Pareto efficient. The observation that consistent preferences and priorities favor

efficiency is not new and is discussed by Salonen and Salonen (2018), Echenique et al. (2020), Leshno

and Lo (2021), and Cantillon et al. (2022).

B. Clustered schools. The second force that makes R1
DB(c) close to kc follows by noting that when

ν(H(c)) is small, then R1
DB(c) is close to kc. Intuitively, when ν(H(c)) is close to 0, most students with

a score high enough for school c also score high enough in other schools ĉ. In this case, schools are

clustered and distance-based priorities result in a subset of students who are close to all schools and

can get admission anywhere. As a result, many of those students get accepted to the school they like

the most.16 The following example illustrates this idea.

Example 5 (Clustered schools). Suppose that N = 2 and I = [0, 1]. Each school has capacity k < 1/2.

A fraction α(i) (resp. 1 − α(i)) of students rank school c1 first (resp. school c2 first) and we assume

that α(i) = 1− α(1− i) for all i < 1/2. Both schools are located at 1/2. In the unique stable matching,

pc1 = pc2 = k. Students in Ĩ = [1
2
− p, 1

2
+ p] could get accepted to both schools and thus

R1
DB(c1) = R1

DB(c2) = k.

15That is, when for all i such that d(i, c) ≤ 1− ϕDB
c , 1 = F 1

i (c).
16This intuition is similar to the idea that under single-tie breaking, many students are assigned to their top schools

(Allman et al., 2022).
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C. Strong competition and weak preferences for location. We now use Thereom 1 to derive

an upper bound for R1
DB(c). Consider the set of all students that could get admission to c and ĉ given

cutoffs ϕDB
c and ϕDB

ĉ :

A(c, ĉ) =
{
i | d(i, c) ≤ 1− ϕDB

c

}
∩
{
i | d(i, ĉ) ≤ 1− ϕDB

ĉ

}
. (4.7)

Note that if d(i, c) ≤ 1− ϕDB
c , by the triangle inequality, d(i, ĉ) ≥ d(c, ĉ)− d(i, c) ≥ d(c, ĉ)− 1+ ϕc. So,

the set A(c, ĉ) in equation (4.7) is empty whenever

2 ≤ d(c, ĉ) + ϕDB
c + ϕDB

ĉ . (4.8)

The triangle inequality used to derive this condition captures an important intuition about congestion

under distance-based priorities: When cutoffs in schools are high and schools are not clustered, having

a score high enough for some school implies that the scores in other schools are below the cutoffs. This

means that under distance-based priorities, students located near a school will have limited chances

to attend other schools. As we show below, this force makes efficiency under distance-based priorities

harder to achieve.

Condition (4.8) holds for all schools provided that for all c

1. The function x ∈ [0, 1] 7→
∫
d(i,c)<x

F 1
i (c)ν(di) has strictly positive derivative at x = 0;

2. d(c, ĉ) > 0 for all ĉ ̸= c; and

3. kc is small enough.

The first condition says that each school has some demand that is arbitrarily close to it. It is relatively

simple to show that under the first condition, ϕDB
c → 1 as kc → 0. Since d(c, ĉ) > 0, it follows that

(4.8) holds when all capacities (kc)
N
c=1 are small enough.

Under (4.8), it is simple to apply Theorem 1 to obtain:

R1
DB(c) ≤ kc sup

d(i,c)≤1−ΦDB
c

F 1
i (c). (4.9)

When capacities are low, under distance-based priorities some students get assigned to a nearby school
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that is not their top choice. This puts an upper bound on the fraction of students assigned to their

most preferred schools.17

The next example shows that under (4.8), it is entirely possible that an arbitrarily small fraction of

students are assigned to their top schools.

Example 6. Suppose that N = 2 and I = [0, 1]. Each school has capacity k < 1/2. A fraction α(i) (resp.

1−α(i)) of students rank school c1 first (resp. school c2 first) and we assume that α(i) = 1−α(1− i) for

all i < 1/2. Assume that α(i) is increasing in i with α(i) > 0 for all i ∈ [0, 1]. This means that students

tend to value schools that are farther away. Schools rank using distance-based priorities. Under∫
i≤1/2

α(i) > k. (4.10)

it follows that ϕDB(c) > 1/2 and (4.8) holds. Since Λ̄(x) = 1 − x, it is simple to see that Φ = 1 − k.

Clearly,

R1
DB(c) ≤ k sup

i≤k
α(i) = kα(k)

It follows that for any ϵ > 0, there exists an increasing function α and k < 1/2 such that (4.10) holds

and R1
DB(x) < ϵ for all c.18

4.3 Comparing priorities

We now compare distance-based priorities and multiple tie breaking. We evaluate these priority cri-

teria using the fraction of students assigned to their top schools and the fraction of students that

can be Pareto-improved. Given any matching µ, a positive measure set of students S ′ ⊆ S can be

Pareto-improved if there exists a matching µ̄ such that for almost all s ∈ S, µ̄(s) ⪰s µ(s) with strict

preferences for s ∈ S ′. When the matching µ̄ is such that µ̄(c) = µ(c) for all c ∈ C \ {c′, c′′}, with
c′ ̸= c′′, we say that S ′ is part of Pareto-improving pairs. Define

P = ν̄
( ⋃

S′ can be Pareto-improved

S ′
)

and P 2 = ν̄
( ⋃

S′ is part of Pareto-improving pairs

S ′
)

17Clearly, the bound is non-trivial only when some of the students living close to c list the school not in the top.
18Take α(i) ≥ ϵi for all i ∈ [0, 1/2] and k < ϵ/2. Then, R1 ≤ kα(k) < ϵ/2 < ϵ.
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When P = 0, the measure of students that can be Pareto-improved is 0 and thus the matching is

Pareto-efficient. More generally, P provides the measure of all students who could envision a Pareto-

improvement of the proposed matching µ and thus P is a metric of the efficiency of the matching.19

Proposition 2. Suppose that for all c and all i such that d(i, c) ≤ 1− ϕDB
c , F 1

i (c) = 1. Then, for all c

R1
DB(c) = kc and and P 2

DB = PDB = 0.

In particular, no alternative priority criterion can result in more students assigned to top schools than

distance-based priorities.

This result shows that when students value distance strongly, then all students are assigned to their

top schools under distance-based priorities. To see how the sufficient conditions can be satisfied, fix I,

ν, the set of schools C, the distance function d(i, c), and the capacities kc. For c ∈ C, compute ΦDB
c

and assume that capacities are low enough so that {i | ec(i) ≥ Φc} ∩ {i | eĉ(i) ≥ Φĉ} = ∅ for all c ̸= ĉ.

Now, construct Fi such that for all i with eĉ(i) ≥ Φĉ, F
1
i (c) = 1. This implies that F 1

i (c) = 1 for all

i ∈ Ic and therefore ϕDB
c = ΦDB

c and

sup
d(i,c)≤1−ϕDB

c

1− F 1
i (c) = 0.

The following result shows that multiple tie breaking may result in more students assigned to their

top schools than distance-based priorities.

Proposition 3. Assume condition (4.8) and that for all c,

sup
d(i,c)≤1−ΦDB

c

(
F 1
i (c)− F 1(c)

)
≤

(
1− F 1(c)

)(∏
ĉ ̸=c kĉ

)
1 + ( 1

F 1(c)
− 1)

(
1−

∏
ĉ ̸=c kĉ

) (4.11)

Then, for all c

R1
DB(c) < R1

MTB(c).

If we additionally assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I, then

P 2
MTB = PMTB < PDB = P 2

DB.

19If S′ and S′′ can be Pareto-improved, it does not follow that S′ ∪ S′′ can be Pareto-improved.
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This result provides conditions under which multiple tie breaking assigns more students to their

top schools than distance-based priorities. Note that when types do not determine preferences, that is

Fi(≻) = F (≻) for all i ∈ I, then the left-hand side of (4.11) equals 0 and thus condition (4.11) holds.

More generally, condition (4.11) captures the idea that location has a limited impact on preferences so

that F 1
i (c) stays relatively flat as a function of i and close to its average F 1(c).20 Behind this result is

the idea that when preferences for nearby schools are weak and competition is strong, distance-based

priorities assign some students to schools just because they live nearby even when those schools are not

ranked top by them, while under multiple tie breaking those students still have a chance to get accepted

in their top schools.

Our results also compare the fractions of students that can be Pareto improved. It is relatively

simple to prove that for any matching µ, P 2 ≤ P and

N∑
c=1

R1(c) + P ≤
N∑
c=1

kc. (4.12)

We then prove that, under some conditions, these inequalities bind and therefore the fraction of students

assigned to top schools and the fraction of students that can be Pareto-improved add up to the total

capacity of schools. See Appendix B.2.21

5 Simulations

We now validate our theoretical results using data from the centralized public school allocation system

in Chile. Our aim is to showcase the main theoretical results from Section 4 by comparing the deferred

acceptance outcomes under different priority schemes.

We focus on the admission process for Pre-Kinder in Santiago RM (the main urban center in Chile) for

20Note that both conditions (4.11) and (4.8) restrict F and k. They simultaneously hold when types have a limited
impact on preferences so that for all c

sup
i

F 1
i (c) ≤

F 1(c)

F 1(c) + (1− F 1(c))
(
1−

∏
ĉ̸=c

kĉ

F 1(ĉ)

)
and, given preferences, kc is small enough so that (4.8).

21Inequality (4.12) can be strict in some important cases. For example, under single tie breaking the matching is
Pareto-efficient, but it is possible that not all students are assigned to their top schools. Example 7 in Appendix B.2
shows that under distance-based priorities, inequality (4.12) can be strict when condition (4.8) does not hold.
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2021.22 Our data contains students’ applications (preferences), schools’ priorities (scores) and schools’

capacities. We also observe students’ and schools’ geographical location. Our dataset contains 40, 921

students and 1, 481 schools. Since some of our main results (Propositions 1 and 3) apply to tight markets

in which the number of seats is not large, in all our simulations, we reduce all schools’ capacities by

90%.

We simulate the market under different priority structures. Concretely, we run the deferred ac-

ceptance algorithm under multiple and single tie breaking (MTB and STB), and distance-based (DB)

priorities. Table 1 shows the fraction of students assigned to their top schools for each priority rule.

MTB STB DB
Fraction of students assigned to top schools 0.044 0.081 0.070

(0.043, 0.046) (0.079, 0.082) -

Table 1: Fraction of students assigned to their top schools. For multiple and single tie breaking, we run
100 simulations. In brackets, we report the 5th and 95th percentiles of the simulations.

As Proposition 1 and the literature show (Abdulkadiroğlu et al., 2009), Table 1 confirms that mul-

tiple tie breaking is outperformed by single tie breaking. In turn, distance-based priorities outperform

multiple tie breaking. Intuitively, proximity is important when students rank schools.23. As a result, un-

der distance-based priorities, preferences and priorities relatively conform. However, single tie breaking

still outperforms distance-based priorities.

Proposition 3 applies to markets in which proximity is not a decisive factor when applying to schools.

In our dataset, however, students do value proximity. To address this, we modify our dataset to build

a market in which students’ demand is not explained by proximity to schools. Specifically, we simulate

an economy where we maintain students’ applications and schools’ seats but relocate each school by

randomly and independently choosing a point at a given radius r ≥ 0 from its original location.24 When

r = 0, our simulated economy coincides with our original dataset. For r > 0, we keep all the rank order

lists unchanged, but by randomly relocating schools, the schools in a student’s list need not be close to

their home.

Figure 1 shows the simulations. Notably, when r is close to 5 km, more students are assigned to

22Data is publicly available at http://datos.mineduc.cl/dashboards/20514/descarga-bases-de-datos-sistema-de-
admision-escolar/.

23There is significant evidence showing that school proximity is a decisive factor in students’ preferences (Abdulkadiroğlu
et al., 2017) In particular, Aramayo (2018) confirms these findings for the Chilean system.

24That is, we fix r ≥ 0 and each school is relocated by randomly choosing an angle.
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their top schools under multiple tie breaking than under distance-based priorities. This holds true even

when proximity to schools matters –the city has a diameter of 200 km, and in the simulation, students

apply to schools that are on average within 2.6 km from their homes. Thus, we confirm the insights

from Proposition 3.
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Figure 1: Simulation results. For each r > 0, we simulate 100 markets where all schools are randomly
relocated using this radius. For each one of these markets, we run the DA algorithm for MTB, STB,
and DB priorities.25 The figure shows the average fraction of students assigned to their top school along
different radii. The shaded regions correspond to the simulation fluctuations constructed using the 5th
and 95th percentiles.

6 Concluding remarks

This paper provides tight lower and upper bounds for the measure of students assigned to top schools.

These bounds apply to a general large market matching model and can be easily applied to different

environments. We use our results to examine the impact of various priority rules on stable matchings.

In particular, while several school districts employ proximity as a priority criterion, little is known about

how this policy decision affects the outputs of the deferred acceptance algorithm. We show that when

students highly value proximity, efficient outcomes are achievable. However, under weaker proximity

25For MTB and STB, we generate a single random priority draw for each simulated market.
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preferences, even multiple tie breaking may assign more students to their top choices than distance-based

priorities.

Stable matchings are hard to analyze because comparative statics results and closed-form formulas

are typically unfeasible. Future research could sharpen our bounds. Estimating other performance

measures, including different diversity metrics, would also be interesting. We leave these research

questions for future work.
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Appendix

In this Appendix, we provide proofs and supporting material for the main results in the text. In

the main text, we simplified exposition and assumed that all students ranked all schools. We relax

this assumption. We introduce some notation. Denote the set of schools listed by type i students by

supp(i) = {c | F̄i(c) > 0}. We abuse notation and for c ∈ C we denote

supp(c) =
{
ĉ ∈ C \ {c} | ∃i ∈ I : c ∈ supp(i), ĉ ∈ supp(i)

}
the set of schools that are listed by types that also list c. Note that supp(i) may not coincide with C.

If that is the case, there is some c such that F̄ (c) < 1.

A Proof of Theorem 1

Define Pk,c as the set of all orderings ≻ such that school c is listed in position k. Given cutoffs p ∈ [0, 1]N ,

the demand for school c can be written as

Dc(p) =

∫
ec(i)≥pc

F 1
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di) (A.1)

The demand is built as follows. Fix a student type i that has school c as its k-th preference. For

each one of these student types, a mass Fi(≻) reveals preference ordering ≻∈ Pk,c. However, only a

fraction of Fi(≻) effectively demands school c. These are students rejected at all k− 1 schools preferred

over c according to ≻ (eĉ(i) < pĉ∀ĉ ≻ c) and accepted at school c (ec(i) ≥ pc). Then, adding up over all

possible ranking positions k, all preference orderings ≻∈ Pk,c with positive measure (Fi(≻) > 0), and

aggregating over all student types i ∈ I, we get the total demand for school c.

The following result is useful to derive our efficiency bounds.

Lemma 1. Let p be a market-clearing cutoff vector characterizing a stable matching. Then, for all c,

ϕc ≤ pc ≤ Φc.

Proof. For any x ∈ [0, 1]N , Λ1
c(xc) ≤ Dc(x) ≤ Λ̄(xc) which are all decreasing in xc. Then, fix any p−c

and let ϕc, pc,Φc be solutions to Λ1
c(ϕc) = kc, Dc(pc, p−c) = kc and Λ̄c(Φc) = kc respectively, it is true
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that ϕc ≤ pc ≤ Φc.

A.1 Upper bound

Let p be a cutoff vector for a stable matching. Then

kc = Dc(p)

=

∫
ec(i)≥pc

F 1
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di)

≥
∫
ec(i)≥pc

F 1
i (c)ν(di) +

N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

Fi(≻)ν(di)

=

∫
ec(i)≥pc

F 1
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

N∑
k=2

∑
≻∈Pk,c

Fi(≻)ν(di)

=

∫
ec(i)≥pc

F 1
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

N∑
k=2

F k
i (c)ν(di)

=

∫
ec(i)≥pc

F 1
i (c)ν(di) +

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F 1

i (c)
)
ν(di)

:= Λ(pc).

To see the inequality above, note that for any k = 2, . . . , N , ≻∈ Pk,c, and ĉ ≻ c, it follows that

ĉ ∈ supp(i) \ {c}. Thus, for any k = 2, . . . , N and ≻∈ Pk,c{
i ∈ I | ec(i) ≥ pc, eĉ(i) < pĉ∀ĉ ≻ c

}
⊇
{
i ∈ I | ec(i) ≥ pc, eĉ(i) < pĉ∀ĉ ∈ supp(i) \ {c}

}
and therefore ∫

ec(i)≥pc,eĉ(i)<pĉ∀ĉ≻c

Fi(≻)ν(di) ≥
∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

Fi(≻)ν(di)

Since Λ̄(Φc) = kc ≥ Λ(pc)

0 ≤ Λ̄(Φc)− Λ(pc) = Λ̄(pc) +

∫ Φc

pc

Λ̄′(s)ds− Λ(pc) ≤ (Φc − pc) sup
x∈[ϕc,Φc]

Λ̄′ + Λ̄(pc)− Λ(pc)
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therefore

(Φc − pc)
(
− sup Λ̄′

)
≤ Λ̄(pc)− Λ(pc)

=

∫
ec(i)≥pc

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥pc,eĉ(i)<pĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F 1

i (c)
)
ν(di)

=

∫
ec(i)≥pc,eĉ(i)≥pĉ for some ĉ∈supp(i)\{c}

(F̄i(c)− F 1
i (c))ν(di)

≤
∫
ec(i)≥ϕc,eĉ(i)≥ϕĉ for some ĉ∈supp(i)\{c}

(F̄i(c)− F 1
i (c))ν(di)

=

∫
ec(i)≥ϕc

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)<ϕĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F 1

i (c)
)
ν(di).

Since sup Λ̄′ < 0, it follows that

(Φc − pc)

≤ 1(
− sup Λ̄′

)( ∫
ec(i)≥ϕc

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥ϕc,eĉ(i)<ϕĉ∀ĉ∈supp(i)\{c}

(
F̄i(c)− F 1

i (c)
)
ν(di)

)
Finally,

R1(c) =

∫
ec(i)≥pc

F 1
i (c)ν(di)

=

∫
ec(i)≥Φc

F 1
i (c)ν(di) +

∫
pc≤ec(i)≤Φc

F 1
i (c)ν(di)

≤
∫
ec(i)≥Φc

F 1
i (c)ν(di) +

supx∈[ϕc,Φc]
d
dx
(−
∫
ec(i)≥x

F 1
i (c)ν(di))(

− sup Λ̄′
) (∫

ec(i)≥ϕc

(F̄i(c)− F 1
i (c))ν(di)

−
∫
ec(i)≥ϕc,eĉ(i)<ϕĉ,∀ĉ∈supp(i)\{c}

(
F̄i(c)− F 1

i (c)
)
ν(di)

)

where the inequality follows since∫
pc≤ec(i)≤Φc

F 1
i (c)ν(di) = Λ1(pc)− Λ1(Φc) ≤ (Φc − pc) sup

x∈[ϕc,Φc]

d

dx
(−Λ1(x)).
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It follows that

R1(c) ≤
∫
ec(i)≥Φc

F 1
i (c)ν(di) + ηc

∫
ec(i)≥ϕc,eĉ(i)>ϕĉ some ĉ∈supp(i)\{c}

(F̄i(c)− F 1
i (c))ν(di)

≤
∫
ec(i)≥Φc

F 1
i (c)ν(di) + ηc

∫
ec(i)≥ϕc,eĉ(i)>ϕĉ some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

A.2 Lower bound

Define

Λ̂c(x) = Λ1
c(x) +

∫
ec(i)≥x,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

and note that

Λ̂c(pc) ≥ Dc(p) = kc

Since Λ1
c(ϕc) = kc,

Λ1
c(ϕc) ≤ Λ̂c(pc) ≤ Λ̂c(ϕc) + (pc − ϕc) sup

x∈[ϕc,Φc]

d

dx
Λ̂c(x)

Rearranging terms,

pc − ϕc ≤
−1

supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

Now,

R1(c) =

∫
ec(i)≥pc

F 1
i (c)ν(di)

=

∫
ec(i)≥ϕc

F 1
i (c)ν(di)−

∫
ϕc≤ec(i)≤pc

F 1
i (c)ν(di)

≥ kc − (pc − ϕc) sup
x∈[ϕc,Φc]

− d

dx
Λ1

c(x)

≥ kc −
supx∈[ϕc,Φc] −

d
dx
Λ1

c(x)

− supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

∫
ec(i)≥ϕc,eĉ(i)<Φĉ some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)
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Note that

R1(c) ≥ kc −
N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥ϕc,eĉ(i)<Φc ∀ĉ≻c

Fi(≻)ν(di)

≥ kc −
N∑
k=2

∑
≻∈Pk,c

∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ≻c

Fi(≻)ν(di)

= kc −
∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ≻c

(F̄i(c)− F 1
i (c))ν(di),

Setting

η̄c = min
{
1,

supx∈[ϕc,Φc] −
d
dx
Λ1

c(x)

− supx∈[ϕc,Φc]
d
dx
Λ̂c(x)

}
it follows that

R1(c) ≥ kc − η̄c

∫
ec(i)≥ϕc,eĉ(i)<Φc some ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

B Proofs for Section 4

B.1 Applying Theorem 1 to random and distance-based priorities

We apply Theorem 1 for each priority rule.

B.1.1 Multiple tie breaking

Recall that in this setting I = [0, 1]N and ν are N independent uniform distributions. First, we can

specify Λ1
c(x) and Λ̄c(x):

Λ1
c(x) =

∫
ec(i)≥x

F 1
i (c)ν(di) =

∫ [∫ 1

x

F 1
i (c)du

]
ν(di) =

∫
F 1
i (c)ν(di)

∫ 1

x

du = F 1(c)(1− x)

Λ̄c(x) =

∫
ec(i)≥x

F̄i(c)ν(di) =

∫ [∫ 1

x

F̄i(c)du

]
ν(di) =

∫
F̄i(c)ν(di)

∫ 1

x

du = F̄i(c)(1− x)

where the first equality obviates the N − 1 integrals of measure 1. Therefore

ϕc = 1− kc
F 1(c)

Φc = 1− kc
F̄ (c)
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Similarly,

Λc(x) = Λ1
c(x) +

∫
ec(i)≥x,eĉ(i)<Φĉ for some ĉ ∈ supp(c)

(F̄i(c)− F 1
i (c))ν(di)

= F 1(c)(1− x) +

∫
ec(i)≥x

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥x,eĉ(i)≥Φĉ∀ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

= F 1(c)(1− x) +

∫ [∫ 1

x

(F̄i(c)− F 1
i (c))du

]
ν(di)−

∫ [∫ 1

x

∫ 1

Φĉ,∀ĉ̸=c

(F̄i(c)− F 1
i (c))du

]
ν(di)

= F 1(c)(1− x) + (F̄ (c)− F 1(c))(1− x)− (F̄ (c)− F 1(c))(1− x)
∏
ĉ ̸=c

(1− Φĉ)

= F 1(c)(1− x) + (F̄ (c)− F 1(c))(1− x)

[
1−

∏
ĉ̸=c

kĉ
F̄ (ĉ)

]

Having calculated, Λ1
c(x), Λ̄c(x),Λc(x), we have that

η̄c = min

{
1,

infx∈[ϕc,Φc]
d
dx
(Λ1

c(x))

supx∈[ϕc,Φc]
d
dx
(Λc(x))

}

= min

1,
infx∈[ϕc,Φc] −F 1(c)

supx∈[ϕc,Φc] −F 1(c)− (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]


=
F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
and

ηc = min
infx∈[ϕc,Φc]

d
dx
(Λ1

c(x))

supx∈[ϕc,Φc]
d
dx
(Λ̄c(x))

=
infx∈[ϕc,Φc] −F 1(c)

supx∈[ϕc,Φc] −F̄ (c)

=
F 1(c)

F̄ (c)

We now calculate our bounds

R1(c) ≥ kc −
F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

] kc
F 1(c)

(F̄ (c)− F 1(c))

[
1−

∏
ĉ̸=c

kĉ
F̄ (ĉ)

]

= kc

 F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
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and

R1(c) ≤ F 1(c)
kc

F̄ (c)
+

F 1(c)

F̄ (c)
(F̄ (c)− F 1(c))

kc
F 1(c)

[
1−

∏
ĉ̸=c

(
1− kĉ

F 1(ĉ)

)]

=
kc

F̄ (c)

[
F 1(c) +

F̄ (c)− F 1(c)

F̄ (c)

[
1−

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

)]]

= kc

[
1− F̄ (c)− F 1(c)

F̄ (c)

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

)]

B.1.2 Single tie breaking

Recall that in this case I = [0, 1] and ν is given by the uniform distribution. We first note that for

single tie breaking, ϕc = 1− kc
F 1(c)

and Φc = 1− kc
F̄ (c)

. When kc
F 1(c)

< kĉ
F̄ (ĉ)

for all ĉ ̸= c, then ϕc ≥ Φĉ for

all ĉ ̸= c and therefore

(∫
ec(i)≥ϕSTB

c ,eĉ(i)<ΦSTB
ĉ for some ĉ̸=c

(1− F 1
i (c))ν(di)

)
= 0

Thus, Theorem 1 implies that when kc
F 1(c)

< kĉ
F̄ (ĉ)

for all ĉ ̸= c,

R1(c) = kc.

Consider now the case in which kc
F 1(c)

> min{ kĉ
F̄ (ĉ)

| ĉ ̸= c}. This condition implies that ϕc < max{Φĉ |
ĉ ̸= c}. Since η̄c ≤ 1, we deduce that

R1(c) ≥ kc − η̄c

(∫
ec(i)≥ϕSTB

c ,eĉ(i)<ΦSTB
ĉ for some ĉ ̸=c

(F̄ (c)− F 1
i (c))ν(di)

)
= kc −

[∫
ec(i)≥ϕSTB

c

(F̄i(c)− F 1
i (c))ν(di)−

∫
ec(i)≥ϕSTB

c ,eĉ(i)>ΦSTB
ĉ ∀ĉ∈supp(c)

(F̄i(c)− F 1
i (c))ν(di)

]

= kc −
[
(F̄ (c)− F 1(c))(1− ϕSTB

c )− (F̄ (c)− F 1(c))(1−max{ϕSTB
c , (max

ĉ ̸=c
ΦSTB

ĉ )})
]

= kc − (F̄ (c)− F 1(c))

[
(max

ĉ ̸=c
ΦSTB

ĉ )− ϕSTB
c

]
.
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B.1.3 Distance-based priorities

Since η̄ ≤ 1, Theorem 1 implies that

R1(c) ≥ kc − η̄c

(∫
ec(i)≥ϕc,eĉ(i)<Φĉ for some ĉ ̸=c

(1− F 1
i (c))ν(di)

)
= kc − η̄c

∫
d(i,c)≤1−ϕDB

c ,d(i,ĉ)>1−ΦDB
ĉ some ĉ ̸=c

(1− F 1
i (c))ν(di)

≥ kc − ν(H(c)) sup
d(i,c)≤1−ϕDB

c

(1− F 1
i (c)).

Under condition (4.8), Theorem 1 implies that

R1(c) ≤
∫
ec(i)≥ΦDB

c

F 1
i (c)ν(di) + 0

=

∫
ec(i)≥ΦDB

c

F 1
i (c)

F̄i(c)
F̄i(c)ν(di)

≤ kc sup
i:ec(i)≥ΦDB

c

F 1
i (c)

F̄i(c)

= kc sup
i:d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)

B.2 Students assigned to top schools and Pareto efficiency

Lemma 2. a. For any matching µ, P 2 ≤ P and

N∑
c=1

R1(c) + P ≤
N∑
c=1

kc. (B.1)

b. Assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I. When priorities are built from multiple

tie breaking and µ is stable, then P 2 = P and (B.1) holds with equality.

c. Assume that P[c ≻ c′ | i] > 0 for all c ̸= c′ and all i ∈ I. Assume priorities are distance-based,

and that conditions (4.11) and (4.8) hold. Then P 2 = P and (B.1) holds with equality.

Proof of Lemma 2. Let µ be any matching and take S1 as the set of all students assigned to their top
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schools. Clearly, no subset of S1 can be Pareto improved. Let

SP =
⋃

S′′ can be Pareto improved

S ′′

and note that SP ⊆ {s | s is assigned by µ}. It follows that

S1 ∪ SP ⊆ {s | s is assigned} and S1 ∩ SP = ∅.

As a result,

ν̄(S1) + ν̄(SP ) ≤ ν̄({s is assigned}).

Since ν̄(S1) =
∑

c R
1(c), ν̄(SP ) = P and ν̄({s is assigned }) ≤

∑
c kc, we deduce that

∑
c

R1(c) + P ≤
∑
c

kc.

Take now a stable matching under multiple tie breaking. Consider any student s who is assigned to

a school that is not her top choice. We will argue that there is a positive measure set S ′, that contains

s, such that S ′ is part of Pareto-improving pairs. Let c = µ(s) and consider a school ĉ and a set of

students Ŝ assigned to c such that Ŝ has positive measure and contains s, and all students in Ŝ prefer

ĉ over c. Consider the set of all students who prefer c over ŝ but only have scores to get admission to ĉ:

S̄ = {s ∈ S | c ≻s ĉ, iĉ ≥ pĉ, pc′ > ic′∀c′ ̸= ĉ}.

Clearly,

ν̄(S̄) =
( ∫

P[c ≻ ĉ | i]ν(di)
)
(1− pĉ)

∏
c′ ̸=ĉ

pc′ > 0

Without loss, assume that ν̄(S̄) = ν̄(Ŝ).26 Construct the matching µ̄ by µ̄(c′) = µ(c′) for all c′ ∈ C\{c, ĉ}
and

µ̄(c) = (µ(c) ∪ S̄ \ Ŝ and µ̄(ĉ) = (µ(ĉ) ∪ Ŝ \ S̄.
26If not, scale down the set with the largest measure so that the measures coincide.
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It follows that µ̄ is a matching and S ′ = S̄ ∪ Ŝ is part of Pareto-improving pairs. As a result,

{s is assigned to a school that is not her top) ≤
⋃

S̃ is part of Pareto-improving pairs

S̃

and since

ν̄({s is assigned to a school that is not her top) =
∑
c

(kc −R1(c))

it follows that
N∑
c=1

(kc −R1(c)) ≤ ν̄(
⋃

S̃ is part of Pareto-improving pairs

S̃) = P 2.

We deduce that under multiple-tie breaking, P = P 2 and
∑N

c=1(kc − R1(c)) = P 2. The proof for

distance-based priorities is analogous.

The following example shows that under distance-based priorities, inequality (4.12) can be strict

when condition (4.8) does not hold.

Example 7. Suppose that N = 2 and I = [0, 1]. School c1 has capacity k1 and is located in 3/4, while

school c2 has capacity k2 and is located in 1. Students find both schools acceptable and for each i, a

fraction 1/2 of students prefer c1 over c2.

Under distance-based priorities, we characterize a stable matching such that all students with score

above the cutoff p1 also have score above p2 for school c2:∫
|i−3/4|<1−p1

1

2
di = k1 and

∫
i>p2

di−
∫
|i−3/4|<1−p1

1

2
di = k2.

The first condition is the market clearing condition for school c1: the demand for school 1 is given by

half of the student living within distance p1 of the schools. The second condition is the market clearing

condition for school c2: the demand for school 2 is given by all students living with distance p2 of schools

2 minus the fraction of students that get admission to school 1. We can solve for the cutoffs:

(1− p1) = k1 1− p2 = k1 + k2

with 3/4 − k1 > 1 − (k1 + k2) (so that students that can be accepted to c1 can also be accepted to c2).
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For k2 > 1/4 and k1 < k2,

R1
DB(c1) = k1 and R1

DB(c2) =
(k2 − k1)

2
.

The matching is Pareto-efficient and P = 0, but

∑
c

R1(c) + P <
∑
c

kc.

B.3 Proofs for Section 4

Proof of Proposition 1. If kc
F 1(c)

≤ minĉ ̸=c kĉ, then R1
STB(c) and thus obviously R1

STB(c) > R1
MTB(c).

Consider now the case kc
F 1(c)

> minĉ̸=c kĉ. In this case, single tie breaking results in more students

assigned to their top schools provided:

kc

[
1− (1− F 1(c))

∏
ĉ ̸=c

(
1− kĉ

F 1(ĉ)

)]
≤ kc − (1− F 1(c))

[
kc

F 1(c)
−min

ĉ ̸=c
{kĉ}

]

This condition is equivalent to

kc
F 1(c)

≤ minĉ ̸=c kĉ

1− F 1(c)
∏

ĉ ̸=c(1−
kĉ

F 1(ĉ)
)
.

Proof of Proposition 2. From (4.6), we deduce that R1
DB(c) = kc under the conditions in the statement.

Proof of Proposition 3 . We provide a condition such that the lower bound for multiple tie breaking is
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larger than the upper bound for distance-based priorities:

sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
≤ kc

 F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]


sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤ F 1(c)

F 1(c) + (F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

] − F 1(c)

F̄ (c)

sup
d(i,c)≤1−ΦDB

c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤

F 1(c)F̄ (c)− F 1(c)F 1(c)− F 1(c)(F̄ (c)− F 1(c))
[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
F̄ (c)F 1(c) + F̄ (c)(F̄ (c)− F 1(c))

[
1−

∏
ĉ ̸=c

kĉ
F̄ (ĉ)

]
sup

d(i,c)≤1−ΦDB
c

F 1
i (c)

F̄i(c)
− F 1(c)

F̄ (c)
≤

(
1− F 1(c)

F̄ (c)

)∏
ĉ ̸=c

kĉ
F̄ (ĉ)

1 +
(

F̄ (c)
F 1(c)

− 1
) [

1−
∏

ĉ ̸=c
kĉ

F̄ (ĉ)

] .
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Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. (2009). Strategy-proofness versus efficiency in

matching with indifferences: Redesigning the nyc high school match. American Economic Review,

99(5):1954–78.
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