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Abstract Over half a century ago, Baum (J Exp Anal Behav 20:137-153, 1973)
proposed a theory based on the idea that behavior should be analyzed in terms
of rates of activities rather than single, discrete units of analysis. The evidence
from animal experiments suggests that his theory could be underlying goal-directed
control, in that actions are performed more often when there is a direct correlation
between behavior rate and reinforcement rate in a given period of time and are
more sensitive to changes in outcome value than when the rate correlation is weak.
This correlational system, coupled with a reinforcement learning algorithm of habit
learning, can capture a wide range of data from animal experiments. In this chapter,
I discuss this theory in light of recent human data and possible extensions of this
idea to other areas of research.
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A paper published by Baum five decades ago presented an argument that called
for a reassessment of the classic behaviorist idea which assigned a critical role
for stimulus-response (S-R) learning to behavior. Baum’s argument was based on
compelling data indicating that another variable, the correlation between the rate
of behavior and the rate of reinforcement, offered a more effective explanation of
instrumental conditioning results across a wide range of studies and species (Baum,
1973). This theory challenged the prevailing notion that a subject’s experience could
be reduced to simple S-R links formed through contiguous reinforcement of specific
behaviors in specific contexts. Instead, Baum proposed a more comprehensive
perspective, arguing that behavior should be viewed as an activity that extends over
time—the response rate—where multiple responses and reinforcers within a given
period in a particular context contribute to strengthening the S-R link. Consequently,
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behavior should not be considered as a collection of discrete events, but rather an
ongoing process where the reinforcement rate serves as a nondiscrete reinforcer
following the response rate in a feedback system between the organism and the
environment (Baum, 2012).

1 Correlational Theory as Goal-Directed Behavior

Dickinson (1985) proposed a departure from Baum’s correlational perspective,
offering a novel approach without compromising the computational concept or
explanatory potential of the idea. Instead, Dickinson argued that correlational theory
would be best understood as the foundation for goal-directed control, distinct from
the simplistic S-R reinforcement commonly referred to as a habit. In this context, an
agent guided by correlations between events should encode the causal relationship
between actions and impending outcomes by computing the correlation between
response and reinforcer rates, while also incorporating the sensory properties of
the obtained reinforcers. This forward-looking system should therefore incorporate
the strength of the causal link as the rate correlation experienced by the subject
and an incentive system that assigns utility or value for the outcomes produced by
behavior. As a consequence, behavior should be sensitive to changes in the causal
contingency between responses and reinforcers (the rate correlation) and also to
changes in outcome value.

The primary method for assessing goal-directed control of behavior is through
the implementation of an outcome devaluation procedure (Adams & Dickinson,
1981). This procedure is founded on the notion that in goal-directed behavior,
alterations in the value of the outcome resulting from an action should directly and
immediately impact performance, without requiring reexperiencing of the newly
assigned value of the outcome upon performing the response. In a seminal study,
Adams and Dickinson (1981) trained hungry rats to press a lever to obtain a
rewarding outcome while a noncontingent alternative reinforcer was provided. To
reduce the relative value of one outcome with respect to the other, they established
a flavor aversion by associating its consumption with gastric malaise in a distinct
context until the animals ceased consuming the reinforcer when freely presented
(i.e., the devaluation manipulation reduced the value of the outcome). During the
subsequent test phase, they allowed the animals to press the same lever as in training,
but without delivering the outcome (i.e., extinction phase). Critically, they observed
that the animals whose devalued outcome was contingent upon responding exhibited
reduced lever-pressing compared to animals in which the noncontingent outcome
was devalued. As the test was conducted during extinction, the change in behavior
reflects knowledge acquired during the training phase rather than during the test
itself. Clearly, the rats in the study considered the consequences of their actions and
the rewarding value associated with the outcome.

Later on, Dickinson and his colleagues demonstrated that the response-outcome
schedule in effect (ratio or interval schedule) could render behavior habitual or goal-
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directed (Dickinson et al., 1983). On a ratio schedule of reinforcement, there is a
fixed probability of reinforcement per action performed so that more effort (that is, a
higher response rate) leads to a higher reinforcement rate. By contrast, under interval
schedules the reinforcer becomes available on average after a period of time since
the last delivered reinforcer, so that higher effort does not necessarily lead to higher
rates of reinforcement. These studies showed that two behavioral systems could be
engaged under different circumstances. This groundbreaking finding—which has
received more recent replications (Gremel & Costa, 2013)—is the basis for a whole
line of research in humans and animals to this day.

The first observation made by Dickinson et al. (1983) was that ratio schedules
supported higher response rates than interval schedules when reward probabilities
or rates were matched between groups. An explanation for this phenomenon was
on the basis of the experienced response-reinforcer rate correlation, which should
be positive for ratio schedules and weaker for interval schedules once the response
rate reaches a level such that all reinforcers are collected as soon as they become
available. More importantly, however, is the second observation from this study:
ratio schedules of reinforcement were able to maintain goal-directed control more
effectively than interval schedules. It appeared that the experienced rate correlation
of ratio schedules was not only underlying behavioral performance but was also
involved in goal-directed control.

Perez and Dickinson (2020) formalized this and other ideas in a theory includ-
ing two concurrent systems that control behavior and collectively determine the
observed level of responding across different experimental conditions. The first
system, the goal-directed, is sensitive to the correlation between response rate
and reinforcement rate, while the second system, the habitual, aligns with the
established principles of reward prediction error which are present in model-
free reinforcement learning algorithms (Bush & Mosteller, 1951; Sutton & Barto,
2018). In this habit system, it is the response-reinforcer contiguity—instantiated by
reinforcer probability—that drives behavior, and the prediction from both systems
determines the reward prediction error. Unlike the goal-directed system where
events are considered as rates in time, in the habit system it is the relationship
between each response and its reinforcement that drives changes in habit strength. If
events are received with some delay, for example, the habit strength will be affected
because there is no immediate reinforcement for those responses (a negative reward
prediction error), but the correlational goal-directed system will still consider those
events as being a consequence of the response rate in a given period of time. For
the goal-directed system, what matters is the number of responses and reinforcers
in time, not whether each of the responses was followed (or not) by a reinforcer.

Figure 1 presents a schematic representation of this theory in a dual-system
model. In each memory recycle, the agent deploys a local memory of time samples
(size m = 5 in the figure) to compute the correlation between events. On the next
recycle, the agent randomly forgets one of the time samples and adds a new sample,
from which a new local correlation is computed. Goal-directed strength is assumed
to be a direct function of the experienced local rate correlation in each memory
recycle. The habit system, by contrast, computes a prediction error at the level of
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Fig. 1 Schematic representation of Perez and Dickinson’s (2020) model. Agents deploy a
mnemonic system of m time samples (m = 5 in this example) and experience a correlation between
response and reinforcer rates (ry) within each memory recycle k. On the next recycle k + 1, one
of the time samples is randomly forgotten and a new experienced correlation is computed. This
gives the agent a response strength from the goal-directed system (gi41). Likewise, during each
memory recycle, habit strength (k) is accumulated in each second t as a function of the reward
prediction errors experienced in the recycle (H is the strength accumulated up to cycle k). The
probability of responding is a direct (nonlinear) function of the sum of the two strengths. Since
both systems cooperate to determine responding for each second in a recycle, outcome revaluation
effects depend on the proportion of strength coming from each system

single events within a recycle (response, and reinforcers obtained (or not) in each
second) from which the habit strength /4 increases or decreases accordingly. The sum
of the strength of the two systems determines the total instrumental performance for
the next memory recycle. The proportion of strength of each system determines the
sensitivity to devaluation.

Within the framework of Perez and Dickinson’s theory (2020), a wide range of
empirical data from various species is readily explained. These include not only
the higher performance under ratio compared to interval training when equating
reinforcement probabilities or reinforcement rates between conditions (Dickinson
et al.,, 1983) but also the comparable rates of responding observed when subjects
are overtrained and stable behavior no longer exhibits variation in reinforcement
rate that could update the agent’s computation of the rate correlation (Pérez et al.,
2018)—the strength of the habit system is expected to be similar between conditions
when reinforcement rates or probabilities are matched, resulting in similar rates of
responding.
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Fig. 2 Stress-affect modulates the effect of overtraining on sensitivity to devaluation. Left panel:
After moderate and extended training under interval schedules, most of the participants are habitual
in both groups. This is consistent with a low rate correlation established by interval schedules. The
behavioral adaptation index is a measure of how goal-directed participants are. The peak at zero
for most subjects shows that participants were mostly habitual in both groups. Right panel: The
effect of overtraining on the transition from goal-directed behavior to habits is modulated by a
combination of factors associated with stress and anxiety

This theory also predicts that behavior becomes controlled by habits and there-
fore insensitive to outcome revaluation after overtraining on ratio schedules, as the
rate correlation weakens when responding stabilizes and variations in reinforcement
rate are only weakly experienced by subjects. For interval schedules, by contrast, the
transition should be more rapid.

Direct evidence supporting this prediction in humans was demonstrated recently
by Pool et al. (2022), who trained participants across four different laboratories
to press two keys to obtain salty or sweet rewards under two different training
conditions. In the moderate training group, participants completed two sessions
in a single day while those in an extensive training group participated in four
sessions across three consecutive days. Following training, participants had the
opportunity to consume one type of food until satiation. Liking ratings revealed that
participants were indeed satiated by the procedure, as they reported a preference for
the nondevalued outcome after having consumed the food.

‘What Pool and her colleagues found was that interval training rendered behavior
habitual in most subjects in both groups (Fig. 2, left panel). Consistent with the
predictions of rate-correlation theory, a weak experienced rate correlation under
interval training is anticipated. Consequently, behavior should become habitual
under these circumstances. However, when the authors separated participants with
respect to their answers in a battery of psychological questionnaires related to
stress and anxiety, they found that these factors modulated the effect of training on
devaluation sensitivity (Fig. 2, right panel), in line with previous data in animals and
humans demonstrating that these factors can accelerate habit formation (Schwabe
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& Wolf, 2009, 2010). In Pool et al.’s data, only those participants who scored low
on these factors transitioned from goal-directed to habitual control with training
extension. The findings of this study indicate that individuals with high stress-
anxiety scores tend to develop habitual behavior even with minimal training in the
moderate group, whereas the transition occurs slower for individuals with low levels
of stress/anxiety.

2 Evidence That Rate Correlation Drives Behavior
in Humans

Until recently, the available data examining the specific predictions of rate corre-
lation theory in humans, particularly concerning instrumental goal-directed perfor-
mance as proposed in Perez and Dickinson’s (2020) model, were limited. However,
Perez and colleagues have presented compelling evidence of rate correlation’s
influence on human responding in two recent studies. Perez and Soto (2020)
conducted an experiment in which human participants were trained to press a
spacebar with the goal of flashing a triangle on the screen. Their objective was
to compare the response rates generated by random-ratio (RR) and random-interval
(RI) schedules for matched reward probabilities and how this performance related to
causal attribution of the action-outcome contingency. Importantly, participants were
not told that there were different reward schedules in effect, but simply to report the
causal strength between their behavior and the triangle appearing on the screen. In
spite of this lack of information, participants responded more on an RR than on an RI
schedule when reward probabilities were matched within-subjects, supporting the
hypothesis that instrumental performance is sensitive to rate correlation. However,
if rate correlation underlies goal-directed control, then causal judgments of the
action-outcome association should be higher on ratio than interval schedules
given the higher rate correlation of the former. Their findings did not support
this prediction. What Perez and Soto observed instead was that causal ratings
followed the reward probabilities programmed by the schedules. That is, when they
programmed the schedules so that participants would experience comparable reward
probabilities, they observed that ratio performance surpassed interval performance
(as expected), but the causal ratings were similar between schedules. In a follow-
up experiment, when the experienced reward probabilities were higher than in the
previous experiment, they observed again higher performance between ratio and
interval conditions but also higher mean causal ratings compared to the previous
experiment, suggesting that different mechanisms of causal attribution and response
strength might be at play when subjects undergo free-operant training.

Perez and Soto (2020) recognized a challenge in establishing definitive conclu-
sions regarding the impact of rate correlation on the ratio/interval difference if only
RR and RI schedules were employed. The reason is that the RI schedule effectively
assigns higher reward probabilities to long pauses between responses (or long inter-
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Table 1 Predictions of performance for different reward schedules when reward rates or reward
probabilities are matched

‘Reward schedule Positive rate correlation Differential reinforcement of long IRTs
RR ' Yes 'No

RI 'No ' Yes

RPI 'No 'No

‘Performance prediction 'RR >RPI =RI RR > RPI > RI

response times, IRTs). The more the subject waits since the last response, the more
likely it is that the reinforcer will become available. It could then be argued that
the lower performance of RI training is due to differential reinforcement of long
IRTs, not due to the weaker rate correlation established by the schedule. For this
reason, Perez and Soto implemented a random-probability interval schedule (RPI)
which avoids reinforcing long IRTs by setting the reward probability for the next
performed response according to p = #, where ¢ is the time it has taken the
subject to perform the last m IRTs and T is the scheduled interval (the inverse of the
reinforcement rate). In the RPI, the reward probability is not based on the current
IRT, but on the size of a number (m) of IRTs emitted before the current IRT. The
RPI, in other words, considers a local response rate b, = (m + 1)/t given by the last
m + 1 responses in the last ¢ secs and varies the reward probability inversely with
respect to this local response rate so that the agent still receives a constant reward
rate of 1/T rewards/s independently of the size of the current IRT, establishing
the null response-outcome rate correlation typical of interval schedules. Since the
current IRT size contributes only a fraction 1/m of the change in reward probability,
the RPI neutralizes the effect of timing on increasing reward probabilities for long
IRTs. Therefore, an RR/RPI performance comparison should shed light on the real
contribution of rate correlation to responding. Table 1 presents the predictions of
rate correlation theory and IRT reinforcement on the performance under different
reward schedules.

The study by Perez and Soto (2020) was not designed to test response rates
for comparable reward probabilities between the schedules, but to obtain evidence
of which factor was behind action-outcome causal attribution; response rates
were spontaneously in line with the predictions of rate-correlation theory. To
establish more definite conclusions, Perez (2021) set out to investigate instrumental
performance using a within-subject design where participants experienced four
different schedules and matched both reinforcement probabilities (by yoking a ratio
to master interval schedules) and reinforcement rates (by yoking interval schedules
to a master ratio schedule) across these options. To this end, Perez (2021) presented
participants with a set of four different fictitious candy dispensers. All participants
experienced a master RR schedule that was then followed by two interval schedules,
an RI and an RPI (order counterbalanced across subjects), both of which were
matched with respect to reinforcement rate obtained in the master RR dispenser.
The purpose of comparing performance between these two interval schedules and
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the master RR was to obtain direct evidence of rate correlation driving behavior
(RR vs RI and RR vs RPI) and also for the role of reinforcing long pauses between
responses (RPI vs RI) in the same subject. Indeed, Perez obtained evidence that
performance on the RR was higher than for both of the interval schedules but
that there was no effect of reinforcing pauses, in that performance was equivalent
between the two interval schedules. Perez then matched the mean reward probability
experienced by subjects in the two interval schedules to a final RR schedule, to
test if controlling for reward probability but not reinforcement rate would change
the results. Again, RR performance was higher than both RI and RPI schedules.
Moreover, there was no difference in performance between these two interval
schedules, indicating a null contribution of IRT reinforcement on responding. Given
the limited training participants underwent for multiple options, Perez’s results
suggest that rate correlation drives goal-directed performance in humans.

3 Rate-Correlation Theory and Avoidance

Perez and Dickinson (2020)’s model was concerned with the most common
experimental procedure: appetitive conditioning. However, in their paper they also
speculated that the same ideas may be extended to avoidance behavior where
responding is contingent to a reduction in the rate of an aversive event. Although the
idea that avoidance behavior can be goal-directed is not new (Seligman & Johnston,
1973), it was not until a set of experiments some 10 years ago came out that the
idea regained traction (Fernando et al., 2014a, b). Apart from a single study by
Wang et al. (2018) using discrete-trial procedures with a human RL framework, no
experiments had suggested a role for multiple systems in explaining avoidance, and
indeed, RL theory had been so far based on the assumption that a single model-free
system was sufficient to explain it (see Maia, 2010).

However, in a series of experiments, Fernando et al. (2014a, b) have reported
compelling evidence demonstrating that goal-directed and habitual processes also
underlie avoidance behavior. They employed a free-operant schedule and revalu-
ation procedure to investigate the impact of aversive outcome devaluation. Rats
were trained to engage in lever-pressing to avoid foot-shocks delivered at fixed
intervals under a variable-cycle (VC) schedule. During an extinction test, a group
of rats that received noncontingent shock presentations while under the influence of
morphine exhibited decreased responding compared to a control group that did not
receive morphine. These findings demonstrate that diminishing pain and devaluing
the aversive nature of the shock yield similar effects to the devaluation procedures
employed in appetitive conditioning, revealing that goal-directed behavior can be
performed to avoid undesirable outcomes, just as it can be performed to obtain
pleasurable outcomes.

That avoidance is controlled by more than one behavioral system was demon-
strated in another experimental study by Fernando et al. (2014b), who set out to
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examine the role of habit learning in free-operant avoidance. To explain avoidance,
the literature usually distinguishes between events prior and after the response
as drivers of avoidance responding. In signaled paradigms, where a stimulus is
presented before an impending shock, this warning signal produces fear as it
predicts the unpleasant outcome; the avoidance response releases the fear produced
by the signal with a subsequent period without shocks, called the safety period.
But there is also evidence that feedback after or during an avoidance response can
produce safety.

In Pavlovian conditioning, stimuli can signal the presence or absence of an
event, which could be appetitive or aversive (Konorski, 1967). When a stimulus
signals the absence of an otherwise present outcome by being inversely correlated
with it, the stimulus turns into a conditioned inhibitor. When the absence is that
of an appetitive event, the inhibitor acquires specific properties, such as retarding
learning about other appetitive outcomes or interacting with the learning accrued
by other stimuli (Dickinson & Pearce, 1977; Rescorla & Wagner, 1972; Wagner &
Rescorla, 1972; Williams & McDevitt, 2002). By contrast, when the absence is that
of an aversive event, the stimulus acquires the opposite properties. For example,
including an explicit stimulus after an avoidance response can turn the stimulus
into an aversive conditioned inhibitor, because it arranges for a negative Pavlovian
relationship between the stimulus and the unpleasant outcome. When this happens,
the stimulus can produce motivation and become a conditioned reinforcer, in that
animals would work for its presentation in the absence of the primary reinforcer.

Consistent with this notion, Fernando et al. (2014b) observed that the addition
of a feedback stimulus to the response resulted in augmented avoidance responding
in a free-operant schedule. To assess the type of behavioral control exerted by the
stimulus, they also included an outcome revaluation test where presentations of the
stimulus were associated with morphine. Their findings indicated that this enhance-
ment of responding did not persist in an outcome revaluation test, suggesting that
responding for the conditioned reinforcer was under habitual control. Collectively,
these two studies by Fernando and colleagues provide the first evidence for the
involvement of both goal-directed and habitual systems in avoidance learning.

Based on these findings, Perez and Dickinson (2023) have recently proposed a
dual-system model of avoidance that includes a rate-correlation system that encodes
specifically aversive events in free-operant avoidance schedules. In this type of
schedule, shocks are programmed to occur at random intervals (a variable cycle,
VC, in avoidance terminology), while subjects have the freedom to respond at any
time. If a subject responds before the next scheduled shock, the shock is canceled,
and a new cycle begins. Importantly, all responses made between the current time
and the avoided shock have no impact on subsequent programmed shocks; they are
irrelevant to the environment, except for the reinforcing proprioceptive feedback
stimuli that shape habitual responses.

The only study to systematically investigate avoidance using different VC
schedules was conducted by de Villiers (1974). Using parameters similar to those
employed by Fernando et al. (2014a), de Villiers showed that the response rate of
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his rats consistently decreased as the interval between shocks (the shock-shock)
increased. To investigate if a rate-correlation system could be applied to this
free-operant avoidance setting, Perez and Dickinson (2023) modeled a short-term
memory where the agent computes the rate correlation between the responses per
memory sample and received shocks per memory sample. The memory was recycled
so that one sample was randomly forgotten by the agent and responding in a new
sample was determined by a sublinear combination of the current experienced
correlation between responses and shocks per sample and the average correlation
experienced during training. Response strength from the goal-directed system, g, is
explained in their model under this framework by noting that the correlation between
responding and shocks in memory r is negative, but so is the incentive value of the
outcome I. Therefore, as g = Ir (the incentive value I times the experienced rate
correlation r), the system yields a positive response strength. By simulation, Perez
and Dickinson (2023) demonstrated that a rate-correlation system can capture the
qualitative relationship between response rate and shock rate reduction observed
by de Villiers (1974). These results suggest that rate correlation theory offers a
plausible explanation for performance not only in the context of appetitive rewards
but also in aversive outcomes such as shocks. Considering that the parameters
simulated by Perez and Dickinson (2023) align closely with those utilized by
Fernando et al. in their recent experiments, it is likely that goal-directed control
also underlies the behavior observed in de Villiers’ (1974) rats.

More problematic for a dual-system view of avoidance in free-operant training
is formulating the cooperation between the goal-directed strength g and the habit
strength hA. Perez and Dickinson (2023) pointed out the difficulties of determining
h from a model based on reinforcement by conditioned inhibition for feedback
stimuli, as there is no sufficient evidence to provide a full Pavlovian theory of
inhibitory signals in avoidance. Perez and Dickinson (2023) speculated, however,
that the prediction error of the habit system could be determined by the difference
in the strength of Pavlovian inhibition elicited by the feedback stimuli at the time
when a response is performed and the current habit strength. Likewise, from a
psychological perspective, it is not clear how the predictions for the habit strength
should incorporate the predictions of the goal-directed system, as in their original
theory. The reason for this is that, unlike their original model for appetitive
conditioning where both systems were driven by a common outcome, in the case
of avoidance the events that drive each system are different. For the goal-directed
system, it is the shock reduction, but for the habit system, it is the feedback stimuli.
These are pending issues that will require more data to be resolved.

Regardless of these pending issues, their approach shows how free-operant
avoidance can be captured by a rate-correlation goal-directed system and a habitual
system based on the inhibitory properties of the response-generated feedback
stimuli, both of which should cooperate to explain responding and devaluation
sensitivity.
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4 Extinction, Causal Degradation, and Goal-Directed
Control

In a few seminal experiments in rats, Prof. Rescorla demonstrated that extinction
procedures—where outcome delivery is suspended—did not affect sensitivity to
outcome devaluation. In an elegant design, Rescorla (1993) trained rats to perform
two different actions for two different outcomes before an extinction session where
the outcome was suspended for one of the actions. Then, to recover responding of
the extinguished actions, he introduced another session where a different outcome
was delivered contingent upon responding. Finally, he devalued one of the outcomes
and compared responding on the extinguished and nonextinguished actions by
having equated the response rates in the previous retraining session. Rescorla found
that extinguished actions were equally sensitive to devaluation as non-extinguished
actions, showing that goal-directed control survives extinction.

The fact that an action that no longer produces an outcome can still be sensitive
to changes in the value of that outcome is a puzzling and challenging phenomenon
from a theoretical perspective. If the action-outcome connection has been severed
by extinction, then it is unclear why there should still be any connection between
the action and the incentive value or utility of the outcome. So far there is only
one explanation for this result. Perez and Dickinson (2020) propose that the habit
system inhibits the contribution of the goal-directed system to responding during
extinction. As noted before, their theory assumes that both a correlational-based
system for goal-directed control and a habitual system based on reward prediction
error cooperate to produce response strength. This prediction error is defined as the
difference between the current habit strength and the sum of the response strength of
the goal-directed and habitual systems. For limited amounts of training, the habitual
system is not strong enough to control responding; the correlational-based goal-
directed system is positive and explains most of the behavior. When extinction
comes on, the outcome is suspended and the short-term memory system does not
contain any events to compute a rate correlation, so g remains at the same level as
the average rate correlation experienced during the task. However, the habit system,
whose prediction includes the goal-directed strength g, continues experiencing a
negative reward prediction error driven by the positive and constant value of g across
extinction. This implies that eventually, in future memory recycles, 2 will become
negative, counteracting the effect of g on responding and explaining why behavior
extinguishes with sufficient extinction training. However, since outcome devaluation
is determined by g, goal-directed responding is still active after extinction. As can be
appreciated, this result is explained in Perez and Dickinson’s model by appealing
to an inhibitory process, whereby the habit system masks the contribution of the
rate-correlation system to responding.

An additional prediction is anticipated from Perez and Dickinson’s theory
regarding a classic manipulation of the action-outcome link. When the causal action-
outcome contingency is compromised by delivering outcomes at the same rate
as in training but independently of responding, the experienced rate correlation
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within memory weakens, leading the goal-directed system to systematically reduce
its contribution to overall responding (Balleine & Dickinson, 1998; Vaghi et al.,
2019). In contrast, the habit strength & takes longer to be influenced by the negative
prediction errors as well as by reinforcement occurring by chance due to some
responses being reinforced. Consequently, devaluing the outcome following such
manipulation renders behavior insensitive to devaluation, as the habit strength A
surpasses the goal-directed strength g when the outcome is devalued. Crimmins et
al. (2022) provide evidence for this prediction in rats pressing levers.

In two experiments utilizing a 2-lever 2-outcome design, Crimmins et al.
first observed that causal degradation did not affect goal-directed behavior. Rats
continued to decrease their response rate for a devalued outcome compared to a
valued outcome even after causal degradation, just as in the case of Rescorla’s
experiments on extinction. However, their design did not rule out the possibility
that the diminution in responding was a consequence of the Pavlovian association
between the stimuli associated with pressing the different levers and the rewarding
outcome, which has previously been demonstrated to affect responding selectively
and independently of the instrumental relationship between actions and outcomes.
When the influence of Pavlovian stimuli in motivating the performance of the
still-valued action was neutralized by employing a bidirectional vertical pole—
which effectively neutralized the subjects’ experience with the surrounding stimuli
regardless of the action performed—the devaluation effect vanished and rats did not
decrease their responding to the devalued compared to the valued action. Consistent
with the predictions of Perez and Dickinson’s theory, rats became insensitive to
outcome revaluation.

In a nonpublished study, Perez et al. (in preparation) have extended this work by
investigating the impact of different manipulations of action-outcome contingency
on human goal-directed actions. In their design, online participants were required
to perform four specific actions (keypresses) in order to obtain two different
fictitious outcomes: silver and gold coins (Gillan et al., 2015). Each pair of actions
was concurrently trained within individual blocks of training. The outcomes were
programmed to be delivered under an RI-7s schedule and a changeover delay
was imposed so that switching between options was not reinforced. In one of
their experiments, after training the pairs of actions concurrently, they selectively
extinguished one pair by suspending the delivery of the associated outcomes,
while the other pair did not undergo extinction. Subsequently, they retrained the
extinguished actions with a different type of coin to restore the response levels
observed at the end of the initial training. To devalue the outcome, participants
were informed that the fictitious piggy banks where one of the earned outcomes
was being deposited throughout the experiment had become full. This manipulation
effectively reduced the probability of participants selecting that particular coin
during a subsequent free consumption test, where they had the opportunity to collect
coins of all types from the screen, providing evidence that the devaluation was
successful in decreasing the value of the outcome relative to the other, nondevalued
outcome. Lastly, participants underwent a final test in which the pairs of actions
presented during training were available, but the outcome was hidden behind a
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curtain, preventing participants from seeing the earned rewards. This effectively
constituted a “pseudoextinction” test, because participants still thought the rewards
were coming up behind the curtain as during training. During the test phase,
participants exhibited a consistent reduction in responding to the devalued outcome
across both extinguished and nonextinguished actions. This decrease in responding
was observed in both conditions, providing a replication of Rescorla’s findings and
aligning with the predictions of the rate-correlation system proposed by Perez and
Dickinson (2020).

The authors also ran another experiment where the action-outcome contingency
was partially degraded by including on top of the RI schedules free delivery
of outcomes of each type in each individual block of training of two concur-
rent actions. Although the manipulation should weaken the causality between
action and outcome compared to regular RI training, participants were still goal-
directed during the last test, suggesting that goal-directed control could also survive
partial degradation of the causal action-outcome contingency. It remains to be
tested if full degradation—where outcomes are delivered freely independently of
responding—would also keep goal-directed behavior intact. If rate correlation is
driving goal-directed behavior, full degradation should render behavior insensitive
to devaluation, just as in the Crimmins et al. (2022) experiment.

Overall, these results support the predictions of Perez and Dickinson’s model,
highlighting the role of rate correlation and reinforcing the understanding of the
different dynamics between goal-directed and habitual systems in response to causal
degradation and outcome devaluation.

5 Future Extensions and Implications for Other Areas
of Research

The key message conveyed in this chapter is that a substantial body of recent
evidence, encompassing both human and animal studies, aligns with the predictions
of a dual-system framework in which goal-directed behavior is driven by the
mechanism of rate-correlation theory. This theory provides an explanation for the
differences in instrumental performance between different reinforcement schedules
in humans and the susceptibility to outcome devaluation following schedule train-
ing, extinction, and causal degradation in both rats (Crimmins et al., 2022) and
humans (Perez et al., in preparation). Previously overlooked areas of research, such
as exploring avoidance behavior from this perspective, have regained attention and
opened new avenues of investigation.

One still-pending issue with respect to rate correlation and goal-directed behavior
is the challenge to produce habitual behavior in the laboratory. After the first
demonstration of habitual behavior in humans by manipulating training extension
by Tricomi et al. (2009) inside an MRI scanner, follow-up attempts have been
largely unsuccessful (de Wit et al., 2018). The demonstration of Pool et al. (2022)
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of habitual control for both moderate and extensive training is consistent with rate-
correlation theory, as the interval schedules employed in their study are predicted to
have weak goal-directed strength given the low rate correlation experienced even for
moderate amounts of training. As noted, most of their participants only transitioned
to habits with training when their self-reported levels of stress/anxiety were low,
whereas those reporting high levels showed habits from the outset of the experiment.
This shows that habitual control can be observed in humans in the laboratory, but
it does not explain the discrepancy between Tricomi et al.’s (2009) study and the
failures to replicate it.

A logical progression from this experiment would involve incorporating a ratio
schedule instead of an interval schedule during the training phase. As suggested by
Perez and Dickinson (2020), it is ratio schedule that demonstrates initial positive
rate correlations, gradually diminishing as behavior stabilizes. While this presents a
testable and unambiguous hypothesis, the practical implementation faces challenges
due to variations in individual participants and slight disparities in manipulanda,
instructions, and experimental procedures across different laboratories. For instance,
the ease of executing keypresses and the absence of an explicit cost for exceeding
the required responses under interval training might have hindered participants’
comprehension of the interval contingency and their sensitivity to it. To address
this concern, a potential solution would involve employing a manipulandum with
some resistance, which not only introduces an explicit cost but also imposes an
evident energetic burden on participants who engage in excessive responding. This
adjustment would likely enhance their engagement with the reinforcement schedule.

The investigation of the interplay between behavioral systems in free-operant
training and discrete-trial scenarios within human reinforcement learning (RL)
models (model-free and model-based) represents another important area of inquiry
that has not yet been explored. Model-free computations have been associated with
habitual strategies, while model-based computations, which consider future reward
probabilities, are believed to underlie goal-directed control. Prior evidence indicates
that both systems can exert influence on behavior and are correlated with distinct
computational algorithms in the brain. However, no studies have yet examined
whether goal-directed behavior, as evidenced by the experienced rate correlation,
correlates with the degree of reliance on model-based strategies (O’Doherty et
al., 2021). This would require using free-operant and discrete-based choice tasks
in the same subjects. Such design should help elucidate the connection between
the psychological construct of habit and the algorithmic-based explanation from
reinforcement learning theory.

Likewise, it remains unclear whether the same brain structures would exhibit
relatively greater activation for both behavioral strategies at the individual level.
By conducting such studies, valuable insights could be gained regarding whether
distinct computational strategies underlie a shared behavioral system. This would
suggest that the brain is selecting between these strategies at a meta-level, deploying
them based on the specific scenario being encountered. These results would shed
light on the intricate interplay between computational processes and behavior,
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unraveling the mechanisms by which the brain navigates and adapts to different
situations.

Rate-correlation theory is also readily applicable to other natural scenarios. In the
context of foraging theory (which focuses on how animals search and utilize energy
resources), the classification of resources as depleting or nondepleting parallels the
concepts of interval and ratio schedules, respectively. Foraging theory (Hayden,
2018; Stephens & Krebs, 1986) addresses the problem of energy intake from
these resources by applying microeconomic principles, where organisms maximize
expected utility by considering the costs and benefits of resource acquisition,
including risk and competition. This cost-benefit analysis enables organisms to
make optimal decisions in resource utilization. Generally, nondepleting resources,
characterized by predictability and sustainability, promote more consistent foraging
behavior (higher response rate), while the dynamic nature of depleting resources
leads to greater variability in foraging strategies (lower response rate).

Despite foraging theory’s foundation in expected utility maximization, it lacks a
correlational mechanism to explain the higher behavioral consistency observed with
nondepleting resources compared to depleting ones. However, it is possible that even
when resources share similar probabilities or rates, nondepleting resources still elicit
a greater degree of foraging, indicating that animals in natural environments might
be considering longer time periods in their decision-making beyond the emphasis
on reward probability per each patch visit. Incorporating dual-system theory,
specifically rate-correlation theory, alongside foraging theory’s utility-maximizing
agent, may offer a more comprehensive explanation by integrating both goal-
directed and habitual processes in foraging behavior.

Indirect evidence suggests that rate correlation may also play a role in human
behavior beyond laboratory settings. In consumer behavior, for instance, it has been
observed that incentives designed to stimulate product demand are inversely related
to the rate of consumer engagement. Specifically, individuals with lower purchase
rates baseline levels (response rate) for a product are more likely to increase their
purchases when promotions, incentives, or loyalty programs are introduced, as
they are still experiencing a positive correlation between the rate of purchases
and the rewards. However, as purchase rates increase, the behavioral variability
decreases, leading to a shift towards habitual consumption. As these programs
are specifically aimed at emphasizing the attributes of the products (their sensory
properties), they should not be effective in boosting demand when purchase rate
is high (Taylor & Neslin, 2005). Additionally, consumers who selectively choose
products often exhibit reduced loyalty to specific stores, aligning with the notion
that constantly switching between products impedes habitual consumption by a
constant reexperience of different rewards, which maintains a positive experienced
correlation between the response and the rewards (Fox & Semple, 2002). This
corresponds to the idea that multiple actions and outcomes contribute to goal-
directed behavior, which maintains consumers’ attention to the different attributes
of products (Kosaki & Dickinson, 2010). For these consumers, loyalty programs
or promotions should be expected to have a significant impact on their purchasing
behavior.
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Whatever the extensions of rate-correlation theory, the evidence in the last
decade or so supports Baum’s (1973) original conception of rate correlation as
a promising framework for explaining a diverse range of goal-directed decisions
observed in both laboratory settings and, potentially, our everyday lives. Indeed,
the unsignaled nature of behavior in free-operant settings is closer to the situations
subjects encounter in real life than the discrete-trial procedures generally used in
human laboratory experiments. The scenarios modeled by free-operant training may
exhibit superior ecological validity compared to those typically explored in human
reinforcement learning literature, as they mimic the spontaneous performance of an
action in natural environments which is not signaled by specific discrete stimuli and
more readily attributed by subjects to a general situation or stimulus configuration.
Perez and Dickinson’s (2020) theory offers an explanation for many of the free-
operant phenomena found in the laboratory concerning actions and habits, but
extending the idea to real-life data would represent a significant advancement in
this area. Some researchers have undertaken such an approach, but providing formal
explanations from a computational model of actions and habits in real life would
provide us with valuable insights about the mechanisms governing actions and
habits in society.
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