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1. Introduction
Stochastic games are used to model situations where two
or more decision makers, called players, take actions over
time in a competitive manner to achieve their individual
objectives. They consist of states and actions associated
with each player. Players choose their respective actions
in a state and receive payoffs. The play then moves into
a next state, chosen according to a probability distribu-
tion, and continues thereon. Payoffs and transition probabil-
ities are determined by the actions chosen and the state in
which they are chosen. Therefore, stochastic games could
be viewed as a generalization of Markov decision processes
(MDPs) to more than one competing decision maker. They
also generalize one-shot matrix games to a multistage, mul-
tistate setting.

In this paper, we consider n-person discounted stochastic
games where no player knows the transition probabilities
and/or payoffs of a game exactly. More specifically, we
focus on incomplete information finite state/action stochas-
tic games, where parameters belong to an uncertainty set
over which one may not have probabilistic information.
In our model, a player uses robust optimization to cope
with the uncertainty, assuming that other players are robust
optimizers as well. Players’ robust approach is not with

respect to the other players’ strategies, but with respect to
game data.

Stochastic games where uncertain data are known to
belong to a given set can arise when the data are obtained
through subjective judgments, there is a lack of data, there
are random measurement errors on the data, or there are
implementation imprecisions. Eliciting probability distribu-
tions through subjective judgments on unknown parameter
values can be a difficult task, especially when there is lack
of prior knowledge on the parameters. Decision makers
may have difficulty in providing probabilistic information,
and they may be more comfortable with providing sim-
ply ranges of values for the unknown data. As noted by
Ben-Tal and Nemirovski (1998), identifying the underlying
probability distributions can be problematic in a large-scale
problem.

Hence, our motivation to consider a robust optimiza-
tion approach is that it offers an alternative way to address
uncertainty in the absence of distributional information.
Furthermore, solutions to stochastic games may be sensitive
to perturbations in payoff and transition probability data
for which estimates from historical data could be inaccu-
rate due to statistical errors. This stems from the fact that
at equilibrium in a stochastic game, each player faces an
MDP, and optimal solutions to MDPs can be sensitive with
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respect to data (Nilim and El Ghaoui 2005). Therefore,
a robust optimization approach could be used to address
parameter uncertainty in stochastic games.

A concrete example that could benefit from our model
occurs in substitutable product inventory control problems,
where different products are sold by different retailers, and
customers can switch from one product to the other (see
Avşar and Gürsoy 2002). A substitution rate, given by
the probability that a customer switches from one prod-
uct to the other, may be unknown for a new product,
requiring subjective judgments. Another example can occur
in a processor-sharing model, where customers are served
simultaneously, and each arriving customer observes the
current load and then chooses to join a shared system or
uses an alternative service option. Each customer makes an
individual decision, wishing to minimize his own service
time (see Altman and Shimkin 1998). Due to service con-
ditions, imprecisions in implementing a service rate, server
malfunctions, and/or presence of other customers in the
system, there may be uncertainty in service rates.

1.1. Summary of Contributions

Contributions of this paper are summarized as follows:
1. We provide a distribution-free robust optimization

model for n-person finite state/action discounted stochastic
games, extending the notion of robust one-shot games to
stochastic games. Our work can also be seen as an exten-
sion of the infinite-horizon robust dynamic programming
problem to a multiplayer setting.

2. We prove the existence of a robust Markov perfect
equilibrium solution when players are restricted to play sta-
tionary strategies. Our proof extends the existence proof
for robust one-shot games to a stochastic game setting.
It extends the original result proved by Fink (1964) for
the complete information case to an incomplete informa-
tion setup.

3. We then show that a robust Markov perfect equilib-
rium point can be characterized as a solution to a multi-
linear system, when the uncertainty set of transition data is
a polytope intersected with the probability simplex. Since
players have different objective functions in general, their
worst-case expectations from an uncertainty set will be dif-
ferent. Accordingly, our characterization provides equilib-
rium worst-case parameter values that a player expects from
an uncertainty set.

4. We illustrate the use of discounted robust stochastic
games in a queueing control problem.

1.2. Outline of the Paper

We conclude this introductory section with a literature
review. In §2, we review basic ideas on discounted stochas-
tic games and robust optimization, followed by the for-
mulation of discounted robust stochastic games. In §3, we
prove the existence of a robust Markov perfect equilib-
rium point when players use stationary strategies. In §4,

we show that when the uncertainty set of transition data
is a polytope intersected with the probability simplex, the
robust equilibrium can be cast as a multilinear system for-
mulation, the solution of which gives the set of equilib-
rium points of the discounted robust stochastic game. In §5,
we illustrate the use of our approach on an example of a
queueing control problem. Finally, §6 concludes the paper
with remarks and future research directions. We include in
Table A.1 in the appendix a summary of the notation used
in the paper.

1.3. Literature Review

The first paper on finite state/action, two-person zero-sum
stochastic games was written by Shapley (1953). Exten-
sions to Shapley’s basic model have received considerable
attention in the literature. A comprehensive treatment of the
subject is given by Filar and Vrieze (1997). Since stochastic
games generalize MDPs and one-shot games, we next pro-
vide a literature review on addressing uncertainty in MDPs
and game theory.

Robust optimization is used in the literature to cope with
uncertainty in various contexts, including Markov decision
processes and one-shot games. Nilim and El Ghaoui (2005),
and Iyengar (2005) consider a robust optimization approach
in MDPs with uncertainty in transition matrices to cope
with the sensitivity of optimal policies to perturbations in
data. They present independent proofs for the robust value
iteration. Satia and Lave (1973), White and Eldeib (1994),
and Givan et al. (1997) model an MDP, where the transition
matrix lies in a given set, which is most typically a poly-
tope. Bagnell et al. (2001) consider a similar problem and
present the robust value iteration without proof. Different
from a robust approach, a Bayesian approach is presented
by Shapiro and Kleywegt (2002), where a prior distribution
on the transition matrix should be known.

In the incomplete information game theory area,
Harsanyi (1967, 1968a, b) model games where each player
could use a prior probability distribution to obtain a con-
ditional distribution on the unknown data of a game. Dif-
ferent from that method, a worst-case approach to payoff
uncertainty is considered in one-shot games by Aghassi
and Bertsimas (2006). In that paper, the authors present
a distribution-free model of incomplete information one-
shot games, in which the players use a robust optimization
approach to contend with payoff uncertainty. The authors
prove the existence of an equilibrium point when the pay-
off uncertainty set is bounded. They formulate the robust
game by considering that the payoffs belong to a polytope,
yielding a method to compute an equilibrium point. Our
work extends this model and approach to stochastic games.

We note that there are precursors of a worst-case
approach in game theory. Gilboa and Schmeidler (1989),
Lo (1996), and Marinacci (2000) present an approach to
uncertainty in the context of normal form games, based
on a max-min criterion. Lo (1996) models each player as
believing that his opponents’ actions are realizations from
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an unknown probability distribution, which belongs to a set
of known multiple priors. A player in that model wishes
to maximize his minimum expected utility, where the min-
imization is with respect to the set of multiple priors. Lo
(1996) is motivated by the possibility that the beliefs of
a decision maker may not be representable by a prob-
ability measure and generalizes equilibrium concepts for
normal form games to allow the beliefs of each player
to be representable by a closed convex set of probability
measures. Gilboa and Schmeidler (1989), and Marinacci
(2000) adopt a similar approach, where nonadditive proba-
bility distributions are used instead of sets of multiple pri-
ors. Challenging expected utility models that could be used
when probabilistic information is available, these authors
argue that decision makers may lack distributional informa-
tion. We note that these approaches are different from our
model because they address complete information games
and adopt a worst-case approach with respect to players’
behaviors towards each other, rather than addressing data
uncertainty.

The incomplete information case within the repeated
games is first introduced by Aumann and Maschler (1968).
Sorin’s work (1984, 1985) considers a special class of
stochastic games with incomplete information on one side
that have a single nonabsorbing state. In Sorin (1984,
1985), the payoff matrix of the game is chosen according to
a probability distribution. It is then shown that these games
have a min-max and a max-min value. In a more recent
effort, Rosenberg et al. (2004) consider two-person zero-
sum games, where incomplete information is described by
a finite set of stochastic games. A game is to be played
out of this finite set, over which a probability distribu-
tion is specified. That paper focuses on stochastic games
in which one player controls the transitions. We note that
the approach adopted by Rosenberg et al. (2004) is based
on the approach proposed by Aumann and Maschler (1968)
and requires a probability distribution over a set of games.

2. Problem Setup

2.1. Stochastic Games

This section reviews the basics of stochastic game theory,
as presented by Fink (1964) and Filar and Vrieze (1997).
We denote the set of states by S = 811 0 0 0 1 S9, and the
set of players by I = 811 0 0 0 1 I9. If the game is in state s,
player i can choose the action ai from a finite set of actions.
We assume that each player has J actions in every state.
The extension to the case where players have different num-
ber of actions in states is straightforward and involves no
new insights—only more complex notation.

Suppose that each player makes a choice in a state, i.e.,
we have an action tuple a = 4a11 0 0 0 1 aI5 ∈ A, where A
is the set of all possible action tuples in any state. Then
the game moves into state k with probability Psak ¾ 0,
∑S

k=1 Psak = 10

Let xi
s be a probability distribution over player i’s actions

in state s. That is, the strategy of player i in state s is xi
s =

4xi
s11 0 0 0 1 x

i
sJ 5, which belongs to the J -dimensional proba-

bility simplex, ã= 8xi
s ∈ <J

+
�
∑J

j=1 x
i
sj = 19. Indeed, the set

of mixed strategies for every player i in state s is ã.
In this work, we consider stationary strategies, which

prescribe a player the same probabilities for his choices
each time the player visits a certain state, no matter what
route he follows to reach that state. Stationary strategies
have been prevalent in the study of stochastic games due to
their mathematical tractability. It is known that the objec-
tive values the players achieve using stationary strategies in
complete information discounted stochastic games are not
worse than the values achieved using nonstationary strate-
gies (Filar and Vrieze 1997).

Let us represent the stationary strategies of a player i
by xi = 4xi

11 0 0 0 1xi
S5 and denote the set of mixed strate-

gies of all players in the state space of the game by x =

4x11 0 0 0 1xI5. We denote, for all states, the mixed strate-
gies of all players except player i by x−i = 4x11 0 0 0 1xi−11
xi+11 0 0 0 1xI50 The following notation is used to distin-
guish a mixed strategy of player i from those of others:
4x−i1ui5 = 4x11 0 0 0 1xi−11ui1xi+11 0 0 0 1xI50 We refer to the
space of mixed strategies for all players and all states as X,
e.g., x ∈X.

Suppose players choose their actions independently of
each other at a given state. The probability that an action
tuple a is chosen by the players in state s is denoted by

�a
s 4x

−i1ui5=

I
∏

m=1
m6=i

xm
samu

i
sai 0

Let C i
sa be the immediate cost to player i induced by the

action tuple a chosen by the players in state s. We note that
the immediate costs to the players do not depend on the
state to which the system transitions. Fink (1964) shows
that, given all other players’ strategies x−i, the unique value
of the �-discounted stochastic game to player i starting the
process in state s, denoted by vis , is given by

vis = min
uis∈ã

∑

a∈A

�a
s 4x

−i1ui5

{

C i
sa +�

S
∑

k=1

Psakv
i
k

}

1

∀ i ∈I1 s ∈S0 (1)

Equation (1) is a Bellman-type equation, and it is inter-
preted as follows: Given all other players’ strategies fixed,
if player i knew how to play optimally from the next stage
on, then, at the current stage, he would select the strategy
that minimizes the expected immediate cost at the current
stage plus the total expected future costs. Hence, player i
is not only concerned with the immediate outcome of his
actions but also with the future consequences of his strate-
gies in the current stage.

We now define equilibrium points in this setting, which
are known as Markov perfect equilibria. We note that these
types of equilibria form a small subset of the set of sub-
game perfect equilibria.
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Definition 1. A point x ∈ X is a Markov perfect equi-
librium point in a stochastic game if and only if, ∀ i ∈ I,
∀ s ∈ S, there exists a value vis that satisfies Equation (1),
such that,

xi
s ∈ arg min

uis∈ã

(

∑

a∈A

�a
s 4x

−i1ui5

{

C i
sa +�

S
∑

k=1

Psakv
i
k

})

0 (2)

This definition states that x is an equilibrium point if
and only if no player can improve his cost by unilater-
ally changing his strategy. That is, when Equation (1) is
considered for every player and state, the minimization of
the right-hand side yields back the same vector x. Stated
in another way, x is an equilibrium point if each player’s
strategy is a best response to the other players’ strategies.
Here, a player’s best response to other players is obtained
via Equation (1). We note that this equilibrium concept is
the same as Nash. Fink (1964) proves that an equilibrium
point exists in n-person nonzero sum discounted stochas-
tic games, extending the original result by Nash (1950) to
stochastic games.

2.2. Robust Optimization

This section briefly reviews the basics of robust opti-
mization, as introduced by Ben-Tal and Nemirovski
(1998). Consider the following optimization problem
P� 2 minx∈<n f 4x1Ã5 s.t. F 4x1Ã5 ∈ K ⊂ <m, where Ã ∈ <M

is the data vector, x ∈ <n is the decision vector, and K
is a convex cone. Suppose that the data of P� is uncer-
tain and all that is known about the data is that it belongs
to an uncertainty set U ∈ <M . Now, consider the problem
P = 8P�9�∈U

, where the constraints F 4x1Ã5 ∈ K must be
satisfied no matter what the actual realization of Ã ∈U
is. An optimal solution to the uncertain problem P is
defined as a solution that gives the best possible guaranteed
value under all possible realizations of constraints. For-
mally, it should be an optimal solution of the following pro-
gram PR2 minx∈<n8sup�∈U f 4x1Ã5 s.t. F 4x1Ã5 ∈ K1 ∀Ã ∈

U9. Problem PR is called the robust counterpart of P , and
its feasible and optimal solutions are called robust feasi-
ble and robust optimal solutions, respectively (Ben-Tal and
Nemirovski 1998). Prior work (Bertsimas and Sim 2004,
Ben-Tal and Nemirovski 1998) has shown that for many
function types and uncertainty sets, the robust counterpart
problem PR can be solved as a single optimization prob-
lem of size comparable to a deterministic version of the
problem.

2.3. Formulation of Robust Stochastic Games

In this section, we formalize our robust model for incom-
plete information stochastic games by considering that both
payoffs and transition probabilities of a game belong to
respective uncertainty sets. In discounted robust stochastic
games, it is assumed that the players commonly know the
uncertainty set of payoffs Cs at each state, the set of tran-
sition probabilities Ps out of each state, and that they all

take a robust optimization approach. Different from, and as
an alternative to the approach in Rosenberg et al. (2004),
players do not have distributional information on the uncer-
tainty, and they adopt a robust approach using stationary
strategies.

We assume in our model that the uncertain parameters
are realized anew every time a state is visited and that they
are realized from the same, state dependent, uncertainty
sets. Since the players cannot engage in learning this game
beyond the uncertainty sets, stationary policies stand as a
natural choice in our model.

We would like to note that assuming stationary strate-
gies restricts our focus to an infinite horizon model. This
is because optimal strategies in finite horizon models are
nonstationary in general. Also, as demonstrated in the
game “Big Match,” for limiting average stochastic games,
the value of a game does not need to exist within the
class of stationary strategies (Blackwell and Ferguson 1968,
Vrieze 2004). This result shows that, in general, nonstation-
ary strategies are essential for limiting average stochastic
games. We note that, compared to nonstationary strategies,
whether using stationary strategies in discounted robust
stochastic games results in a loss of optimality is an open
research problem.

Now, in light of the results summarized in the previous
section, we notice the following: If a player knew how to
play in the robust stochastic game optimally from the next
stage on, then, at the current stage, he would play with
strategies that minimize the maximum sum of expected
immediate costs at the current stage and expected costs
possibly incurred in future stages. Hence, if optimal robust
values for player i exist, given x−i, they must satisfy the
following Bellman-type equation,

�i
s = min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

∑

a∈A

�a
s 4x

−i1ui5

{

C̃ i
sa +�

S
∑

k=1

P̃sak�
i
k

}

1 (3)

where the inner maximization problem is with respect to
the uncertain transition probabilities and immediate costs.
Here, for each s ∈ S, elements of the set Cs are vectors
C̃s = 6C̃ i

sa7i∈I1 a∈A. That is, for each player i and action
tuple a in state s, there is an uncertain immediate cost C̃ i

sa

that varies within the set Cs . The vectors P̃s = 6P̃sak7a∈A1k∈S

are elements of the set Ps . We provide the conditions under
which the robust values exist (and Equation (3) holds) in
the next section when we study the existence of equilibrium
(Theorem 2).

To ease the notation, let us define

�i
s4C̃s1P̃s3x−i

s 1ui
s3×

i5=
∑

a∈A

�a
s 4x

−i1ui5

{

C̃ i
sa+�

S
∑

k=1

P̃sakw
i
k

}

1

where x−i
s denotes, for state s, the mixed strategies of all

players except player i. We are now ready to state our def-
inition of robust Markov perfect equilibrium in discounted
robust stochastic games.
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Definition 2. A point x is a robust Markov perfect equi-
librium point in a discounted robust stochastic game if and
only if, ∃× = 6×11 0 0 0 1×I 7 satisfying Equation (3), such
that, ∀ i ∈I1 ∀ s ∈S,

xi
s ∈ arg min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3 x−i

s 1 ui
s3 ×

i50 (4)

This definition states that x is a robust Markov per-
fect equilibrium if each player’s strategy is a robust best
response to the other players’ strategies. While calculat-
ing his robust best response via Equation (3), player i
assumes a worst-case perspective of the uncertain parame-
ters. To interpret, given all other players’ mixed strategies
are fixed, player i assumes that for any mixed strategy con-
sidered, nature would choose parameters that constitute the
worst-case for himself.

In general, since players have different objective func-
tions, their worst-case expectations from an uncertainty set
will be different. For example, if one player pays the other
a fixed immediate cost for each action tuple (as in a zero-
sum game) and there is uncertainty only in the transition
data, players’ resulting robust value expectations will not
sum up to zero. We present such an example in §5. We
note that this phenomenon is also observed in the context
of robust one-shot games by Aghassi and Bertsimas (2006).

3. Existence of Equilibrium
Our proof of existence of equilibrium points in discounted
robust stochastic games parallels Fink (1964). However, a
different point-to-set mapping (correspondence) is defined
that takes the robustness into account. This mapping uses
a maximum expected total cost function with respect to
mixed strategies. The proof is separated into two parts:
The first part shows that for any strategy x, there exists a
unique robust value vector for a player. The second part
uses Kakutani’s fixed point theorem (Theorem 3) to show
that the correspondence we consider has a fixed point that
coincides with an equilibrium point.

Before we begin, we introduce some additional nota-
tion and present Kakutani’s fixed point theorem (Kakutani
1941). In the following proofs, Cs and Ps are closed and
bounded sets.

Let W i = <S be the space of robust game values for
player i and let W = çi∈IW

i. The infinity norm on W is
given by �×�� = maxi∈I1 s∈S ��i

s�. Let f i
s 4x

−i
s 1ui

s3×
i5 be

the worst-case expected cost to player i in state s, i.e.,

f i
s 4x

−i
s 1ui

s3×
i5= max

C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i50

We next define a best response function which, given the
strategies of all other players x−i

s , takes any robust value
vector ×i and minimizes the maximum expected total cost

with respect to player i’s mixed strategies. Let � i
s2 X

−i
s ×

W i → < be defined by

� i
s4x

−i
s 1×i5= min

ui
s∈ã

f i
s 4x

−i
s 1ui

s3×
i51

where X−i
s denotes the strategy space of all players in

state s except player i.
Part I: The next theorem shows that the best response

function for a player is a contraction mapping, and Theo-
rem 2 below shows that a unique robust value vector exists
for any given strategy of the players.

Theorem 1. For x ∈ X, define �x4×52 W → W by
4�x4×55is = � i

s4x
−i
s 1×i5. The function �x4×5 is a contrac-

tion mapping.

When all other players’ strategies are fixed, player i faces
a robust MDP. Hence, proof of Theorem 1 follows directly
from Theorem 5 given by Iyengar (2005). For complete-
ness, we also give an alternative proof of Theorem 1 in the
appendix.

Theorem 2 (Application of Banach’s Theorem). For
any x ∈ X, and ∀ i ∈ I1 s ∈ S, there exists a unique �i

s

such that

�i
s = min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i5= � i
s4x

−i
s 1×i50

Proof. Note that 4W1�·��5 is a complete metric space
and by Theorem 1, �x2 W → W is a contraction map-
ping. Therefore, by Banach’s Theorem, �x4×5 has a unique
fixed point, ×. That is, there exists a unique vector,
×1 such that �x4×5=×, which means

�i
s = min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i5

= � i
s4x

−i
s 1×i51 ∀ i ∈I1 s ∈S0 �

We define the unique robust best response values for
player i by

Ò i4x−i5=

{

×i
= 4�i

11 0 0 0 1�
i
S52

�i
s = min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i51 s ∈S

}

1

and denote the sth element of Ò i4x−i5 by � i
s4x

−i5.
Part II: We now show the existence of an equilibrium

point that satisfies conditions (4) by using Kakutani’s fixed
point theorem, which we present below.

Definition 3. A correspondence �2 X → 2X is
upper semicontinuous if yn ∈ �4xn5, limn→� xn = x,
limn→� yn = y imply that y ∈�4x5.
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Theorem 3 (Kakutani’s Fixed Point Theorem). If X is
a closed, bounded, and convex set in a Euclidean space,
and � is an upper semicontinuous correspondence mapping
X into the family of closed, convex subsets of X, then ∃ x ∈

X, s.t. x ∈�4x5.

We will show that the fixed point of a suitably con-
structed correspondence is an equilibrium point. To this
end, let

�4x5=

{

y ∈X � yi
s ∈ arg min

uis∈ã

f i
s 4x

−i
s 1ui

s3×
i51

�i
s = min

uis∈ã
f i
s 4x

−i
s 1ui

s3×
i51 ∀ s ∈S1 i ∈I

}

0

To show that this correspondence satisfies the assump-
tions of Kakutani’s theorem, we first need several technical
results. Let us denote, for all players, the space of mixed
strategies in state s by Xs , i.e., xs ∈Xs . Since xs ∈ <IJ and
×i ∈ <S , we consider the metrics induced by the infinity
norm in each space:

dXs
4xs1ys5= max

i∈I1 j∈8110001J 9
�xi

sj − yisj �1

dW i4×i1Èi5= max
s∈S

�wi
s − �i

s�0

For the strategy vectors xs and us , and for the value vec-
tors ×i and Èi, let p = 4xs1×

i5, q = 4ys1È
i5. d14p1q5 =

dXs
4xs1ys5 + dW i4×i1Èi50 We need the following lemma

to show that f i
s satisfies the properties needed to use

Kakutani’s theorem.

Lemma 1. Given � > 0, ∃�4�5 > 0 such that if for any
p1q ∈Xs ×W i, d14p1q5 < �4�51 then, ∀ C̃s ∈Cs , ∀ P̃s ∈ Ps ,
��i

s4C̃s1 P̃s3xs1×
i5−�i

s4C̃s1 P̃s3ys1È
i5�< �0

Proof. Since C̃s ∈Cs and Cs is bounded ∀ s ∈S, we have
�C̃ i

sa� ¶K1 where K < �. It is clear that robust values are
bounded. Hence, we have ∀ i ∈ I1 s ∈ S, that ��i

s� ¶ H1
where H <�. Note that

��i
s4C̃s1 P̃s3xs1×

i5−�i
s4C̃s1 P̃s3ys1È

i5�

=

∣

∣

∣

∣

∑

a∈A

I
∏

m=1

xm
samC̃

i
sa +�

∑

a∈A

( I
∏

m=1

xm
sam

)( S
∑

k=1

P̃sak�
i
k

)

−
∑

a∈A

I
∏

m=1

ymsamC̃
i
sa −�

∑

a∈A

( I
∏

m=1

ymsam

)( S
∑

k=1

P̃sak�
i
k

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

a∈A

C̃ i
sa

( I
∏

m=1

xm
sam −

I
∏

m=1

ymsam

)

+�
∑

a∈A

S
∑

k=1

P̃sak

( I
∏

m=1

xm
sam�

i
k −

I
∏

m=1

ymsam�
i
k

)

∣

∣

∣

∣

¶
∣

∣

∣

∣

∑

a∈A

C̃ i
sa

( I
∏

m=1

xm
sam −

I
∏

m=1

ymsam

)

∣

∣

∣

∣

+

∣

∣

∣

∣

�
∑

a∈A

S
∑

k=1

P̃sak

( I
∏

m=1

xm
sam�

i
k −

I
∏

m=1

ymsam�
i
k

)

∣

∣

∣

∣

¶K
∑

a∈A

∣

∣

∣

∣

I
∏

m=1

xm
sam −

I
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m=1

ymsam

∣

∣

∣

∣

+�
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a∈A

S
∑
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∣

∣

∣

∣
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∏

m=1

xm
sam�

i
k −

I
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m=1

ymsam�
i
k

∣

∣

∣

∣

0

The second to last inequality above follows from the
triangle inequality. The last inequality follows because we
have �C̃ i

sa�¶K and P̃sak ¶ 11∀ i ∈I, s ∈S, a ∈A, k ∈ S.
Let

�14�5=
min8�119

3K42I − 15J I
1 �24�5=

min8�119
3S�J I

1

�34�5=
min8�119

3HS�42I − 15J I
1

and let �4�5 = min8�14�51 �24�51 �34�590 Now, d14p1q5 <
�4�5 implies that, ∀ i ∈ I1 s ∈ S, and for all actions ai,
xm
sam = ymsam + �m

sam and �i
s = �i

s + � i
s1 where ��m

sam � < �4�5,
and �� i

s� < �4�5. We will make use of the following alge-
braic identity.

∣

∣

∣

∣

I
∏

m=1

4ymsam +�m
sam5−

I
∏

m=1

ymsam

∣

∣
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∣
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∣
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�ì�¾1
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m∈ì

�m
sam

)(

∏

m∈ìC

ymsam

)

∣

∣

∣

∣

∣

1

where ìC = I\ì. Note that
∏

m∈ì ��m
sam � < 4�14�55

�ì� ¶
�14�51 and that
∣

∣

∣

∣

∣
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ì⊆I
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∣
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Hence, we have
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∣
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4ymsam +�m
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We also have
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+�H
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a∈A
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ì⊆I
�ì�¾1
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(5)
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+

�

3
= 2

�

3
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The inequality (¶) in (5) above follows from the triangle
inequality, from the fact that the robust values are bounded,
and from the facts
∣
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The inequality (¶) in (6) above follows because
�
∏

m∈ìC ymsam �¶ 1, and �i
s − �i

s = � i
s .

The inequality (<) in (7) follows because

�� i
s�<�4�5¶ �24�51 and
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Thus,
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Lemma 1 proves the equicontinuity of the set of func-
tions 8�i

s4C̃s1 P̃s3xs1×
i51 C̃s ∈ Cs , P̃s ∈ Ps9. This is a key

result in our existence proof. It is first used to show the
continuity of the function f i

s 4x
−i
s 1ui

s3×
i5 in Lemma 2. The

continuity of the function f i
s 4x

−i
s 1ui

s3×
i5 is then used in

the main existence theorem below (Theorem 4). Lemma 1
is also needed to establish the upper semicontinuity result
used in Theorem 4.

Lemma 2 below follows from the basic real analysis
result that states that the pointwise maximum of a family
of equicontinuous functions is continuous. We also provide
a detailed proof for our specific functions f i

s and �i
s in the

appendix for completeness. Lemma 3 below follows from
the definition of f i

s .

Lemma 2. The function f i
s 4x

−i
s 1ui

s3×
i5 is continuous in all

of its variables ∀ i ∈I1 and s ∈S.

Lemma 3. f i
s 4x

−i
s 1ui

s3×
i5 is convex in ui

s for fixed x−i
s

and ×i.

The following two technical results are the final ingre-
dients needed to show the upper semicontinuity of the
correspondence �4x5. Proof of Lemma 4 below follows
directly from Fink (1964) and Lemma 1 above. Proof of
Lemma 5 follows directly from Lemma 4 as shown in Fink
(1964). These proofs are presented using our notation in
the appendix. Lemma 4 is used to prove Lemma 5, and
Lemma 5 is used to show the upper semicontinuity result
required by Kakutani’s fixed point theorem.

Lemma 4. � i
s4x

−i
s 1×i5 is continuous in x−i

s . Furthermore,
the set 8� i

s4·1×
i5 �×i is bounded9 is equicontinuous.

Lemma 5. If x−i1 n → x−i and � i
s4x

−i1 n5 → �i
s as n → �,

then � i
s4x

−i5=�i
s .

We are now ready to prove the main result of this section.

Theorem 4 (Existence of Equilibrium in Robust
Stochastic Games). Suppose that uncertain transition
probabilities and payoffs in a discounted robust stochastic
game belong to compact sets and that the set of actions
and players, who use stationary strategies, are finite. Then,
an equilibrium point of this game exists.

Proof. By Lemma 2, f i
s 4x

−i
s 1ui

s3×
i5 is continuous in its

variables. Since the minimum of this continuous function
on a compact set ã exists, arg minui

s∈ã
f i
s 4x

−i
s 1ui

s3×
i5 6= �.

Also, by Theorem 2, the equality in the expression
�i

s = minui
s∈ã

f i
s 4x

−i
s 1ui

s3×
i5 can be established. Therefore,

�4x5 6= �. Note that by definition, �4x5⊆X, ∀x ∈X.
Next, we show that �4x5 is a convex set. Suppose

that 4z11 0 0 0 1 zI51 4v11 0 0 0 1vI5 ∈ �4x11 0 0 0 1xI50 Then, ∀ui
s ,

and s ∈ S, i ∈ I, �i
s = f i

s 4x
−i
s 1 zis3×

i5 = f i
s 4x

−i
s 1vi

s3×
i5 ¶

f i
s 4x

−i
s 1ui

s3×
i50 Hence, for any � ∈ 60117 and ∀ i ∈ I,

s ∈S,

�i
s = �f i

s 4x
−i
s 1 zis3×

i5+ 41 −�5f i
s 4x

−i
s 1vi

s3×
i5

¶ f 4x−i
s 1ui

s3×
i50

By the convexity of f i
s 4x

−i
s 1ui

s3×
i5, we obtain

f i
s 4x

−i
s 1ui

s3×
i5¾�i

s

= �f i
s 4x

−i
s 1 zis3×

i5+ 41 −�5f i
s 4x

−i
s 1vi

s3×
i5

¾ f i
s 4x

−i
s 1 44�5zis + 41 −�5vi

s53×
i5¾�i

s1

and hence, 4�54z11 0 0 0 1 zI5 + 41 − �54v11 0 0 0 1vI5 ∈

�4x11 0 0 0 1xI50
Finally, we must show that �4x5 is an upper semi-

continuous correspondence. Suppose xn → x, yn → y,
and yn ∈ �4xn5. Taking a subsequence, we can consider
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� i
s4x

−i1 n5→�i
s . Using the triangle inequality, we have

∀ i ∈I, s ∈S that

�f i
s 4x

−i
s 1yi

s3×
i5−�i

s�

¶ �f i
s 4x

−i
s 1yi

s3×
i5− f i

s 4x
−i1 n
s 1yi1 n

s 3Ò i4x−i1 n55�

+ �f i
s 4x

−i1 n
s 1yi1 n

s 3Ò i4x−i1 n55−�i
s�

= �f i
s 4x

−i
s 1yi

s3×
i5− f i

s 4x
−i1 n
s 1yi1 n

s 3Ò i4x−i1 n55�

+ �� i
s4x

−i1 n5−�i
s� → 0 as n→ �0

Therefore, �i
s = f i

s 4x
−i
s 1yi

s3×
i5. By Lemma 5, we also have

� i
s4x

−i5=wi
s . Thus, we obtain that

�i
s = f i

s 4x
−i
s 1yi

s3×
i5= � i

s4x
−i5= min

ui
s∈ã

f i
s 4x

−i
s 1ui

s3×
i50

Therefore, y ∈ �4x5, completing the proof that � is an
upper semicontinuous correspondence. The fact that �4x5
is a closed set for any x follows from the fact that it is an
upper-semicontinuous correspondence. Therefore, � satis-
fies the assumptions of Kakutani’s fixed point theorem. �

4. A Multilinear System Formulation for
Robust Markov Perfect Equilibria

Now that we have proved the existence of an equilibrium
point in a discounted robust stochastic game, our next step
is to calculate such a point. We will show that when the
uncertainty in the probability transition data of a game
belongs to a polytope intersected with the probability sim-
plex, the problem of finding an equilibrium point could be
cast as a multilinear system formulation. The characteri-
zation result we present here generalizes a previous result
for normal form one-shot games by Aghassi and Bertsimas
(2006) to stochastic games. For simplicity, we only con-
sider uncertainty in the transition data in constructing a
formulation that characterizes equilibrium points. An anal-
ogous approach can be used to consider uncertainty both
in payoffs and transition data of a game.

Recall the definition of a robust Markov perfect equilib-
rium and conditions (4). These conditions are equivalent
to the requirement that ∀ i ∈ I1 s ∈ S1∃�i

s ∈ < such that
4xi

s1�
i
s5 is an optimizer of the following robust mathemat-

ical program PR:

4PR5

{

min
uis 1q

i
s

qi
s2 q

i
s ¾ max

P̃s∈Ps

�i
s4Cs1 P̃s3x−i

s 1ui
s3×

i51 ui
s ∈ã

}

0

Here, 4x−i1×i5 is treated as data. Define the uncertain prob-
ability transition matrix induced by a strategy 4x−i1ui5:

P̃4x−i1ui5=

[

∑

a∈A

I
∏

m=1
m6=i

xm
samu

i
sai P̃sak

]S1S

s=11 k=1

0

Denote the sth row of P̃4x−i1ui5 by the vector
6p̃s4x

−i1ui57′. Let p̃s denote the uncertain transition prob-
ability vector associated with the starting state s, that is,

p̃s = 6P̃sak7a∈A3k∈S 0 Let 1 be a column vector of ones of
appropriate dimension. Let Ei

s4x
−i
s 1C i5 ∈ <4J I−15×J denote

the matrix whose rows are given by the vectors

[

I
∏

m=1
m6=i

xm
samC

i
s4a−i1 ai5

]

ai∈8110001J 9

0 (8)

Note that we represent an action tuple a by 4a−i1 ai5.
Here, a−i denotes an action tuple comprising all play-
ers’ actions except player i. That is, a−i = 4a11 0 0 0 1 ai−11
ai+11 0 0 0 1 aI5. The number of possible action tuples for
all players except player i is J I−1, and hence the matrix
Ei

s4x
−i
s 1C i5 has J I−1 rows. We have the following require-

ment in PR:

qi
s ¾ max

P̃s∈Ps

�i
s4Cs1 P̃s3x−i

s 1ui
s3×

i5

= max
p̃s

�6p̃s4x
−i1ui57′×i

+ 1T Ei
s4x

−i
s 1C i5ui

s0 (9)

Note that, on the right-hand side of the equality in expres-
sion (9), the first term yields the discounted total expected
future cost and the second term yields the total expected
immediate cost in state s, induced by the strategy 4x−i1ui5.

We assume that the uncertain transition probabilities out
of a state s belong to a polytope intersected with the prob-
ability simplex. That is, transition probabilities belong to
the following uncertainty set:

P = 8p̃s1 s ∈S2 Asp̃s ¾ bs1Qsp̃s = 11 p̃s ¾ 091 (10)

where As ∈ <l×SJ I . The number of rows l of As can be
chosen appropriately to obtain a desired polytope. In this
uncertainty set, Qs ∈ <J I×SJ I is a matrix of 0s and 1s (such
that, when multiplied by p̃s , each of its rows corresponding
to a pure strategy tuple a yields

∑

k∈S P̃sak = 150
Consider the maximization problem in PR, where

4x−i
s 1ui

s1×
i5 is regarded as data. Given that the uncertainty

set is as stated, for fixed 4x−i
s 1ui

s1×
i5, this maximization

problem is equivalent to the following LP:

{

max
p̃s

�6p̃s4x
−i1ui57′×i2 Asp̃s¾bs1Qsp̃s =11 p̃s¾0

}

0 (11)

Let us denote the set of all action tuples for all players
except player i by A−i, i.e., a−i ∈ A−i. Define the column
vector zis ∈ <J IS as

zis =

[

I
∏

m=1
m6=i

xm
samu

i
sai�

i
k

]

a−i∈A−i3 ai∈Ai3 k∈S

(12)

such that the indices of zis match the indices of p̃s . Let
Yi

s4x
−i
s 1×i5 ∈ <J IS×J be the matrix such that

Yi
s4x

−i
s 1×i5ui

s = zis0 (13)
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Let mi
s and ni

s be the dual variable vectors of problem (11).
The dual of problem (11) is
{

min
ms 1 ns

66bs7
′3 617′7

[mi
s

ni
s

]

2

[As

Qs

]′[mi
s

ni
s

]

¾ �Yi
s4x

−i
s 1×i5ui

s1mi
s ¶ 0

}

0 (14)

By the definition of our uncertainty set, problem (11) is
feasible, and it is clear that it is bounded. By strong duality,
problem (14) is bounded, feasible, and its optimal objec-
tive value is equal to that of problem (11). Therefore, if
4x−i1ui1×i5 satisfies condition (9), then (9) is equivalent to
the condition that ∃mi

s ∈ <l and ∃ni
s ∈ <J I such that

qi
s − 1′Ei

s4x
−i
s 1C i5ui

s ¾ 66bs7
′3 617′7

[mi
s

ni
s

]

(15)

[As

1s

]′[mi
s

ni
s

]

¾ �Yi
s4x

−i
s 1×i5ui

s

mi
s ¶ 00

Conversely, if condition (15) is satisfied, then prob-
lem (14) is feasible. Then by weak duality, any feasible
solution 66bs7

′3 617′76mi
s

ni
s
7 of problem (14) is greater than or

equal to any solution �6p̃s4x
−i1ui57′×i of problem (11), so,

qi
s − 1′Ei

s4x
−i
s 1C i5ui

s ¾ 66bs7
′3 617′7

[mi
s

ni
s

]

¾ max
p̃s

�6p̃s4x
−i1ui57′×i0

Therefore conditions (9) and (15) are equivalent. This
proves the following lemma:

Lemma 6. Condition (9) is equivalent to condition (15).

Let

Ti4x5=

[

∑

a∈A

I
∏

m=1

xm
sam t

i
sak

]S1S

s=11 k=1

1 (16)

and denote the sth row of Ti4x5 by the vector 6tis4x57
′. Let

tis denote the variables representing the transition probabil-
ities adopted by player i according to i’s worst-case per-
spective, associated with the starting state s. That is, tis =

6tisak7a∈A3k∈S 0

Theorem 5. A stationary strategy x is a robust Markov
perfect equilibrium point with the robust value vector ×i,
iff ∀ i ∈ I1 s ∈ S1∃mi

s ∈ <l1ni
s ∈ <J I 1 tis ∈ <SJ I such that

for j = 11 0 0 0 1 J , 4×i1xs1mi
s1ni

s1 tis5 satisfies
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s 1C i5xi
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i
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where ej is the jth unit column vector of dimension J ,
1 is a column vector of all ones of appropriate dimension,
Ei

s4x
−i
s 1C i5 is obtained from expression (8), As , Qs , and

bs are as given in the uncertainty set (10), Yi
s4x

−i
s 1×i5 is

the matrix given by Equation (13), and tis4x5 is given by
Equation (16).

Proof. Recall problem PR. By conditions (4) and
Lemma 6, if x is a robust Markov perfect equilibrium point,
given 4x−i

s 1×i5, ∀ i ∈ I1 s ∈ S1∃mi∗
s ∈ <l1ni∗

s ∈ <J I such
that 4xi

s1�
i
s1mi∗

s 1ni∗
s 5 is an optimizer of

min
uis 1 q

i
s 1m

i
s 1 n

i
s

qi
s (17)
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]
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s

ni
s
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The dual of the above is

max
�is 1 t

i
s

�i
s2 Ast

i
s¾bs1 Qst

i
s =11

�i
s¶e′

jE
′i
s 4x

−i
s 1C i51+�e′

jY
′i
s 4x

−i
s 1×i5tis1 j=110001J 0 (18)

The statement in the theorem follows from strong dual-
ity and Theorem 2. For the other direction, suppose that
∀ i ∈I, s ∈S, (×i∗1x∗

s 1mi∗
s 1ni∗

s 1 ti∗s 5 satisfies the system in
the statement of the theorem. Let

�i
s = min

j∈8110001J 9
e′

jE
′i
s 4x

−i∗
s 1C i51 +�e′

jY
′i
s 4x

−i∗
s 1×i∗5ti∗s 1

qi
s = 66bs7

′3 617′7
[mi∗

s

ni∗
s

]

+ 1′Ei
s4x

−i∗
s 1C i5xi∗

s 0

Then, given 4x−i∗
s 1×i∗5, ∀ i ∈I1 s ∈S, 4xi∗

s 1 q
i
s1mi∗

s 1ni∗
s 5

is feasible for problem (17), and 4�i
s1 ti∗s 5 is feasible for

problem (18) with �i
s ¾ qi

s . By weak duality �i
s ¶ qi

s ,
so �i

s = qi
s . Hence, 4xi∗

s 1 q
i
s1mi∗

s 1ni∗
s 5 is optimal for prob-

lem (17). Equivalently, 4xi∗
s 1 q

i
s5 is optimal in PR. Therefore,

x∗ is an equilibrium point of the discounted robust stochas-
tic game. �

Theorem 5 states that when the uncertainty set for
the transition probability data of a game is a polytope
intersected with the probability simplex, the set of robust
Markov perfect equilibria can be characterized as a mul-
tilinear system formulation. In a discounted zero-sum
stochastic game, there can be multiple equilibrium points
with the same equilibrium value. Consequently, equilib-
ria in zero-sum games are simpler to compute (Filar and
Vrieze 1997). However, there may be multiple equilibrium
points and nonunique equilibrium values in robust stochas-
tic games. Therefore, the robust version of even the zero-
sum case becomes more difficult to solve than its complete
information version.
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The formulation in Theorem 5 can be used to solve
large-scale problems to the extent that we can solve large
scale-multilinear systems. In general, solving these noncon-
vex problems is a difficult task and developing efficient
algorithms is an active area of research. Recent algorithms
using nonlinear methods to solve multilinear systems that
arise from one-shot games are able to find solutions to
problems with up to four players and four actions per
player in less than five minutes (Datta 2003, Aghassi and
Bertsimas 2006). Similarly, homotopy methods have been
used to solve multilinear systems that arise from complete
information stochastic games for two players, two actions
per player, and five states in less than a minute (Herings
and Peeters 2004).

In the next section, we use an existing solver LOQO
(Vanderbei 2006) to solve the problem defined in Theo-
rem 5 for an application in queuing control. This problem
is a two-person stochastic game with 30 states and two
actions per player in each state. LOQO is a generic solver
for nonlinear, nonconvex problems and is able to solve the
instances of our problem within four minutes on a Dell
workstation with a CPU at 3.20 GHz, 2 GB RAM, using
the Red Hat Linux 3 operating system.

5. A Queueing Control Application
Game theoretical analysis has been widely applied to queue-
ing control problems (Altman and Shimkin 1993, 1998;
Heyman 1968; Sobel 1969, Stidham and Weber 1989;
Yechiali 1971; Altman 1994a, b; Altman and Hordijk
1995). In this section, we present an application of our
robust model for incomplete information stochastic games
to a single-server exponential queuing system.

Consider a queueing control problem encountered in
packet switched networks. The most well-known packet
switched networks are the Internet and local area networks
(Peterson 2007). In these networks, packets (blocks of data)
are routed among nodes over data links shared with other
traffic. Here, a node is a server connected to the network.
For example, a server can be a computer or a personal
digital assistant. The service rate of a server can be set
to different levels and is controlled by a service provider
(player 1)—for instance, by increasing or decreasing the
processing capacity of a server at a node. The service rate
may change in time in an unpredictable way (see Altman
1994a, b). The reasons for this can be the imprecision dur-
ing the implementation of an intended service rate due to
operating conditions, service conditions, presence of other
packets in the system, and/or server malfunctions.

In packet switched networks, packets are routed by a
programmable physical device, called a router (player 2).
A router dynamically controls the flow of arriving pack-
ets into a finite buffer at a server. The rates that the
service provider and the router choose depend on the
number of packets in the system. This allows players to

choose rates in order to address congestion and through-
put (Altman 1994b). In fact, it is to the benefit of a ser-
vice provider to increase the amount of packets processed
in the system. However, such an increase may result in
an increase in packets’ waiting times in the buffer (called
latency), and routers are used to reduce packets’ waiting
times. The game theoretical nature of the problem arises
because the service provider and the router have conflicting
objectives. We model this problem as a zero-sum stochastic
game, where a player is incurred payoffs that are modeled
as being paid to the other player. In our model, having
uncertainty in the service rates results in uncertainty in the
transition probabilities. This affects both players, who use
stationary strategies and deal with the uncertainty using a
robust optimization approach. Next, we present the details
of our model.

The state space is S = 80111 0 0 0 1 S9, where S < � is
the maximum number of packets that can be present in the
system. Only one packet can be in service at any time, with
the remaining packets waiting for service in the buffer. The
router admits one packet into the system at a time. Every
time a state is visited, the service provider and the router
simultaneously choose a service rate � and an admission
rate � from their respective finite set of rates. We assume
that any selected service rate � can deviate unpredictably
within a given interval, i.e., � ∈ 4�min1�max5. For instance,
if the service provider intends to have a service rate of 1
packet per 20 seconds, in practice he may observe that the
actual service rates vary between 1 packet per 19 seconds to
1 packet per 21 seconds. Suppose that there are s packets in
the system and the players choose the action tuple 4�1�5.
Then the router is incurred a holding cost h4s5, and a cost
�4�1�5 associated with having packets served at rate �

when it admits packets at rate �. If there are no packets in
the system, this cost represents the setup cost of the server.
These payoffs are modeled as being paid to the service
provider, since the players’ objectives are in conflict. The
service provider, in turn, pays the router �4�1�5, which
represents the reward to the router for choosing the rate �.
It can also be interpreted as the setup cost of the router.

We assume that the time until the admission of a new
packet and the next service completion are both exponen-
tially distributed with means 1/� and 1/�, respectively. We
can, therefore, represent the number of packets in the sys-
tem with a birth and death process, which has the following
state transition probabilities:

p̃4k �s1�1�5=



















�/4�+�51 1¶s¶S1k=s−1

�/4�+�51 0¶s¶S−11k=s+1

11 s=01k=1

11 s=S1k=S−10

(19)

Although there is uncertainty only in the service rates,
both players face uncertainty in the transition data among
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the states. This is so because the transition probabilities
depend not only on the admission rates but also on the ser-
vice rates. For instance, if the players choose � and � in
a state, with � ∈ 4�min1�max5, then the transition probabil-
ity to the next state would be minimum �/4�+�max5 and
maximum �/4�+�min5.

For every fixed strategy of the players in a state, the
uncertainty in service rates results in interval uncertainty on
the transition probabilities. Note that since this uncertainty
is resolved after the players select their strategies, the entire
transition probability interval is valid. Therefore, the uncer-
tainty set on the transition probabilities out of each state is
represented by a polyhedron formed by the intersection of
these intervals and the probability simplex.

5.1. Problem Description

We set up an example of the above problem with the
router and the service provider having two (pure) actions
in each state. For simplicity, we keep the two actions for
each player the same for every state. However, since the
players can use mixed strategies, the rates they choose in
effect may differ over the states. The router’s first action,
denoted by �̄, is to admit a packet into the system every
10 seconds. Its second action,

¯
�, is to admit a packet every

25 seconds. The service provider’s first action is to serve
a packet every 11 seconds. We call this rate the intended
service rate. For instance, due to the uncertainty, if the ser-
vice rate is set to 11 seconds, it may vary between 10 and
12 seconds. We denote his first action by �̄; hence we have
�̄ ∈ 61/1211/107. The service provider’s second action is to
serve a packet every 20 seconds, which may vary between
19 and 21 seconds due to uncertainty. Therefore, we have

¯
� ∈ 61/2111/197. Hence, the interval length within which
the service rate varies is 2 seconds per packet for each
action.

In this example, we use an exponential holding cost
h4s5= ab�s1 s ¾ 1 with a= 102, b = 109, and �= 002. The
holding cost when there are no packets in the system is 0.
For each state, we let �4�̄1 �̄5 = �4�̄1

¯
�5 = 110, �4

¯
�1 �̄5 =

�4
¯
�1

¯
�5 = 90, �4�̄1 �̄5 = 60, �4�̄1

¯
�5 = 30, �4

¯
�1 �̄5 = 20,

�4
¯
�1

¯
�5= 70.

This payoff scenario indicates that the router pays the
service provider more when the service rate is higher. It
also indicates that the reward that the router receives is
higher when both players choose their first actions (higher
rates), or second actions (lower rates). In other words, the
router receives a smaller reward when the admission and
service rates are inconsistent; that is, when the service

Table 1. Intervals of rates for different instances.

Instance
number 1 2 3 4 5

�̄ 61/1211/107 61/1411/87 61/1611/67 61/1811/47 61/2011/27

¯
� 61/2111/197 61/2311/177 61/2511/157 61/2711/137 61/2911/117

rate is relatively higher compared to the admission rate, or
vice versa.

We use S = 30. Actions for the router at the boundary
state 30 represent the setup options for the router so that it
can control admissions at specified rates when the system is
not full. When the system is full, packets are dropped, and
� represents the setup cost of the router. Similarly, actions
of the server at state 0 represent the setup options. If there
are no packets in the system, � represents the setup cost
of the server so that, given an admission rate, it can be
controlled to operate at a required rate at the next state.
When the system is full or empty, players still choose a
strategy based on the setup costs. However, their strategies
at the boundary states 0 and 30 do not affect the transition
probabilities out of these states, which are 1 according to
formula (19). Therefore, there can be at most 30 packets in
the system.

We generate four more instances of this problem by
increasing the interval length for service rates to 6, 10, 14,
and 18 seconds per packet, keeping the intended service
rates the same. Intervals of service rates for each instance
are depicted in Table 1. For instance, when the interval
length is 10 seconds per packet (for the instance number 3),
we have �̄ ∈ 61/1611/67, and

¯
� ∈ 61/2511/157 for states 1

through 30. Therefore, given the players choose an action
tuple in a state, the difference between the minimum and
maximum transition probabilities to another state becomes
larger for larger interval lengths. For example, when the
interval length is 10, if the players choose their second
actions in a state, the transition probability to the next state
would be minimum 0.3753, and maximum 0.5.

The purpose of Figure 1 below is to demonstrate that the
nominal solution of this example is sensitive to perturba-
tions in service rates. To this end, for simplicity, we use an
a-priori sample for each state and service rate action. To
generate Figure 1, we solve the nominal problem using the
nonlinear programming formulation for zero-sum stochas-
tic games given by Filar and Vrieze (1997). We disregard
the uncertainty in the nominal problem and assume that the
possible service rates are fixed at �̄= 1/11 and

¯
�= 1/20,

the midpoints of their respective intervals. The probabil-
ity that the service provider assigns to his first action (i.e.,
the nominal solution strategy) is represented by the solid
line in Figure 1. Then, for each state and first service rate
action, we take a service rate sample from the uniform dis-
tribution defined on the first interval of instance 3, i.e., on
61/1611/67. We do the same for the service provider’s sec-
ond action, using the second interval of instance 3, i.e.,
using 61/2511/157. Therefore, we obtain a sample for each
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Figure 1. Sensitivity of the nominal solution.
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state and service rate action, solve the resulting nominal
game using the probabilities given by the sampled service
rates, and plot the solution represented by a dashed line
(sample 1) in Figure 1. We repeat the process for two more
sets of samples represented by dashed lines. We observe
that the server equilibrium strategy is sensitive to the sam-
pled values of the service rates, with markedly different
solutions depending on the samples.

5.2. Equilibrium Solution

Now we investigate how the robust and nominal solutions
differ for different instances of our problem. In particular,
we are interested in calculating the admission and service
rates, average number of packets, average amount of time
a packet spends in the system, and the average value of
the game for the players given by the nominal and robust
solutions. To this end, for each instance, we calculate the
intervals that the transition probabilities belong to. We then

Figure 2. Admission rates.
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solve each instance using Theorem 5 with the calculated
lower and upper bounds on the transition data, the payoffs
given above, and with the discount factor �= 0095. A fea-
ture of Theorem 5 is that it yields the equilibrium strategies
xi
s and the probabilities tis that each player expects from the

uncertainty set.
Figure 2 depicts the equilibrium admission rates for

the nominal and robust solutions. This admission rate is
obtained by combining the two possible admission rate
actions with the optimal router strategy. The service rate
cannot be computed directly from the server strategy
because it also depends on players’ worst-case transition
data expectations. That is, each player expects a differ-
ent service rate at the equilibrium. We present in Figure 3
the equilibrium service rates expected by the server and the
router, respectively. These rates are computed by using the
formula of transition probabilities for a birth-death process
(19) along with the solution weighted transition probabili-
ties of each player given by Ti4x5 in Lemma 6.

Figure 3. Service rates expected by the service
provider and the router.
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We note from these figures that the router expects that
the service provider decreases the service rates as the
uncertainty gets larger, and therefore tends to decrease the
admission rates to protect himself against congestion. On
the other hand, service rates the service provider expects
increase as the uncertainty set becomes larger, which is
a pessimistic approach, because this might result in a
decrease in the queue size and, consequently, in a decrease
in his overall profit.

Next, we calculate steady state probabilities, the average
number of packets in the system (L), the average amount
of time a packet spends in the system (W), and the average
value (AV) of the game from the point of view of each
player. The AV for a player is calculated by weighting the
value to that player in a state by the respective steady state
probabilities from that player’s perspective and taking the
summation over states.

The results are depicted in Figures 4 and 5. Figure 4(a)
indicates that as far as the service provider is concerned,
the average number of customers in the system is less than

Figure 4. Average number of packets in the system (L)
and average time a packet spends in the
system (W).
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Figure 5. Average values for the players.
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that of the nominal solution when there is uncertainty in
the system. From the router’s perspective, L increases as
the intervals become larger. Note that these are pessimistic
points of views for both players, because an increase in the
number of packets in the system would be an advantage for
the service provider, whereas it would be a disadvantage
for the router. Figure 4(b) indicates that the average wait-
ing time for a packet decreases from the service provider’s
perspective and increases from the router’s perspective. The
reason for this is that in equilibrium, the service provider
assumes the pessimistic perspective of having fewer cus-
tomers in the system, whereas the router assumes the oppo-
site. Accordingly, as the uncertainty sets get larger, AV of
the game to the service provider (i.e., the overall profit that
he makes) decreases, whereas AV to the router (i.e., the
overall cost of the game to the router) increases. Note that,
although this stochastic game is zero-sum, the resulting val-
ues differ for each player when they play robustly. This
example illustrates that although the problem is a zero-sum
game, formulations for zero-sum games cannot be used to
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Table 2. Means and standard deviations of the values
obtained in simulation for different
equilibrium strategies.

Nominal Robust
Instance % stdv
number Mean Stdv Mean Stdv reduction

1 11194 1601 11192 1508 109
2 11196 2100 11196 2005 206
3 11194 1608 11193 1500 1006
4 11194 1709 11193 1505 1307
5 11192 1708 11192 1608 508

solve discounted robust stochastic games, despite the fact
that one player pays the other player a fixed amount.

5.3. Simulation

Since solutions to stochastic games can be sensitive to
changes in data, one motivation for using a robust approach
is to reduce the sensitivity of a solution to data perturba-
tions. Our first purpose in this section is to compare the
means and standard deviations of the values given by nomi-
nal and robust strategies, when the service rates vary within
their respective intervals. The second purpose of this sec-
tion is to study the effect of the uncertainty sets on the
robust value estimates and the actual expected values play-
ers achieve when the service rates vary.

Accordingly, for each instance, we fix the robust and
nominal solution strategies for both players, sample the ser-
vice rates, and calculate the corresponding value of the
game via a discrete event simulation, starting from the
empty (initial) state. Every time a state is visited in a sim-
ulation, service rates are sampled from uniform distribu-
tions given by the corresponding interval for each service
rate action. We ran 300 simulations for each instance, ter-
minating each simulation run after the value of the game
starting at the empty state converges to the 10th decimal
point. Means and standard deviations of the values starting
the process from the empty initial state for each instance
are depicted in Table 2.

Table 2 depicts that means obtained using robust strate-
gies are about the same as those obtained using nominal
strategies. It presents that the standard deviations obtained
using robust strategies are lower than those obtained using
nominal strategies. This is to the benefit of both players as

Table 3. Differences between robust value estimates and actual expected values achieved in
simulation.

4mean − RobS5
RobS

4RobR − mean5
RobR

Freq Freq
Inst no RobS RobR Diff val > RobS val < RobR

1 1118503 1119202 609 006 0002 0065 0057
2 1117908 1120006 2008 104 004 0083 0076
3 1117504 1121005 3500 105 105 0094 0085
4 1117109 1122104 4905 108 204 0099 0095
5 1116808 1123209 6401 200 303 0099 0096

lower standard deviations imply less sensitivity to pertur-
bations in the data or more stability in the system. In this
example, we observe that the standard deviation reduction
seems to increase with the size of the uncertainty set; how-
ever, as instance 5 shows, this is not always the case as
the robust equilibrium could have players adopting overly
conservative strategies.

The next set of results show the differences between
robust value estimates and actual expected values achieved
in the simulation for this example. The second and third
columns in Table 3 give robust value estimates for the ser-
vice provider’s profit (RobS) and the router’s cost (RobR),
respectively, for the initial state 0. The fourth column is
the difference between these estimates. The fifth and sixth
columns present the percent differences between robust
value estimates and actual expected values achieved. They
are calculated using the robust value estimates and the
means given in Table 2 by fixing the robust strategies in the
simulation. The seventh column presents for each instance
the frequency that a simulated value is greater than the
robust value estimate for the service provider, when robust
strategies are used in the simulation. Similarly, the last col-
umn depicts the frequency that a simulated value is less
than the robust value estimate for the router. The last two
columns indicate that, when both players are using robust
strategies, the frequencies with which their simulation out-
put outperforms their robust value estimates increase with
the size of the uncertainty.

In this zero-sum model, router minimizes (over the
mixed strategies) the maximum expected costs, where the
maximum is taken with respect to the transition uncertainty.
On the other hand, the service provider maximizes over
his mixed strategies the minimum expected costs. At equi-
librium, player 1 considers one point in the uncertainty
set and player 2 considers a different point, which provide
their worst-case expected values. Therefore, as the uncer-
tainty set gets larger, the worst-case outcomes of the uncer-
tainty become farther apart, and consequently the difference
between the robust value estimates and sampled expected
values players achieve increases.

6. Concluding Remarks and
Future Research

In this paper, we consider n-person, nonzero-sum dis-
counted stochastic games in which none of the players
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knows the true transition probabilities and/or payoffs of
a game and each player adopts a robust optimization
approach to data uncertainty. We offer an alternative equi-
librium concept for stochastic games with incomplete infor-
mation. We propose a distribution-free model that lends
itself to computational results via a multilinear system for-
mulation that characterizes equilibrium points. We finally
illustrate the use of discounted robust stochastic games in
a queueing control example.

We observe the following points in this research. First,
an equilibrium exists even if there exist players who do not
adopt a robust optimization approach. This stems from the
fact that when there are no uncertainty sets for the data
of a stochastic game, best response functions are already
continuous, as shown in Fink (1964). Hence, we can con-
struct a correspondence that satisfies Kakutani’s theorem
and takes into account the players who disregard uncer-
tainty. Second, if the uncertainty in a discounted stochastic
game is a common set for the players, the zero-sum prop-
erty of the equilibrium values do not necessarily hold. This
is so since if there is uncertainty in any data of a game,
the players’ approach to this uncertainty may differ. This
is the case even if a game is zero-sum and there is uncer-
tainty only in transition data. Therefore, formulations for
zero-sum stochastic games could not be used for analyses,
and properties that pertain to zero-sum games may not hold
in the presence of uncertainty.

In the example of §5, the robust solution’s strategies
yield lower standard deviations compared to those of the
nominal solution. This may not always be the case because
a robust solution can cause the players to adopt overly
conservative strategies or there may be instances that are
not sensitive to perturbations in the data. When players
are overly conservative and the service rates are sampled
from large intervals, there may be substantial discrepancies
between the sampled rates and the rates that the players
expect. Therefore, high standard deviations can be observed
as a result of overly conservative strategies. Future research
should investigate in more detail the problem conditions
and/or a-priori measures to identify when a robust formu-
lation of a stochastic game is preferable. Another research
direction would be taking the players’ risk attitudes into
account and investigating the player behavior for which a
robust approach is most beneficial. We note that whether
using stationary strategies in robust stochastic games results
in a loss of optimality is not known. A future research
direction would be to tackle this problem and to extend the
model proposed in this paper to finite horizon and limiting
average stochastic games.

Appendix
To clarify the notation used throughout the paper, we
provide a notation summary in Table A.1. In this paper,
matrices are denoted by boldfaced capital, and vectors by
boldfaced lowercase letters. For a matrix A, A′ denotes
its transpose. The remainder of this appendix presents the

statement of Banach’s contraction mapping theorem, as
well as the detailed proofs for Lemmas 2, 4, and 5.

Theorem (Banach’s Contraction Mapping Theorem).
Let 4W1�5 be a complete metric space and let �2 W →W
be a contraction mapping. Then there exists a unique fixed
point of the function �.

Lemma 2. The function f i
s 4x

−i
s 1ui

s3×
i5 is continuous in all

of its variables ∀ i ∈I, and s ∈S.

Proof. Recall that f i
s 4x

−i
s 1ui

s3×
i5 = maxC̃s∈Cs 1 P̃s∈Ps

�i
s4C̃s1

P̃s3x−i
s 1ui

s3×
i5.

Let maxC̃s∈Cs 1 P̃s∈Ps
�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i5= a.
Let p = 4x−i

s 1ui
s1×

i5, q = 4y−i
s 1 zis1È

i5. Lemma 1 states
that given � > 0, ∃�4�5 > 0 such that for any p1q ∈

Xs ×W i, with d14p1q5 < �4�51 then, ∀ C̃s ∈ Cs , ∀ P̃s ∈ Ps ,
��i

s4C̃s1 P̃s3x−i
s 1ui

s1×
i5−�i

s4C̃s1 P̃s3y−i
s 1 zis1È

i5�< �0
Therefore, ∀ C̃s ∈ Cs , ∀ P̃s ∈ Ps , �

i
s4C̃s1 P̃s3y−i

s 1 zis1È
i5 ¶

�i
s4C̃s1 P̃s3x−i

s 1ui
s1×

i5+ �¶ a+ �.
Hence, maxC̃s∈Cs 1 P̃s∈Ps

�i
s4C̃s1 P̃s3y−i

s 1 zis1È
i5¶ a+ �.

For the other direction, take C̃0
s ∈ Cs and P̃ 0

s ∈ Ps such
that �i

s4C̃
0
s 1 P̃

0
s 3x−i

s 1ui
s1×

i5¾ a− �/2. From Lemma 1, we
have that since d14p1q5 < �4�5, ��i

s4C̃
0
s 1 P̃

0
s 3y−i

s 1 zis1È
i5 −

�i
s4C̃

0
s 1 P̃

0
s 3x−i

s 1ui
s1×

i5�< �. Then,

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3y−i

s 1 zis1È
i5¾ �i

s4C̃
0
s 1 P̃

0
s 3y−i

s 1 zis1È
i5

¾ �i
s4C̃

0
s 1 P̃

0
s 3x−i

s 1ui
s1×

i5− �

¾ a− 3�/20

In conclusion, we have that ∀ � > 01∃�4�5 such that if
d14p1q5 < �4�5 then

a− 2�¶ a− 3�/2 ¶ max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3y−i

s 1 zis1È
i5

¶ a+ �¶ a+ 2�1

which completes the proof. �
Lemma 4 (Fink 1964). � i

s4x
−i
s 1×i5 is continuous in x−i

s .
Furthermore, the set 8� i

s4·1×
i5 � ×i is bounded9 is

equicontinuous.

Proof. Let

� i
s4x

−i
s 1×i5=�i

s4C
i
s4x

−i
s 1u∗

s
i51P i

s 4x
−i
s 1u∗

s
i1×i53x−i

s 1u∗

s
i3×i51

� i
s4y

−i
s 1×i5=�i

s4C
i
s4y

−i
s 1z∗

s
i51P i

s 4y
−i
s 1z∗

s
i1×i53y−i

s 1z∗

s
i3×i50

Furthermore,

� i
s4y

−i
s 1×i5−� i

s4x
−i
s 1×i5

¶ �i
s4C

i
s4y

−i
s 1u∗

s
i51P i

s 4y
−i
s 1u∗

s
i1×i53y−i

s 1u∗

s
i3×i5

−�i
s4C

i
s4x

−i
s 1u∗

s
i51P i

s 4x
−i
s 1u∗

s
i1×i53x−i

s 1u∗

s
i3×i51

� i
s4x

−i
s 1×i5−� i

s4y
−i
s 1×i5

¶ �i
s4C

i
s4x

−i
s 1 z∗

s
i51P i

s 4x
−i
s 1 z∗

s
i1×i53x−i

s 1 z∗

s
i3×i5

−�i
s4C

i
s4y

−i
s 1 z∗

s
i51P i

s 4y
−i
s 1 z∗

s
i1×i53y−i

s 1 z∗

s
i3×i50

If ×i is restrained to be in a bounded region, then the right-
hand sides can be made uniformly small because of the
uniform continuity of �i

s on compact sets. �
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Table A.1. Notation summary used in the paper.

Notation Definition

Sets
I and S Set of players: I= 811 0 0 0 1 I9. Set of states: S= 811 0 0 0 1 S9.
A Set of all action tuples in a state for all players.
A−i Set of all action tuples in a state for all players except i.
ã J -dimensional probability simplex, i.e., strategy set for player i in s.
X Strategy set for all players and states.
Xs Strategy set for all players and only state s.
Cs and Ps Uncertainty sets for immediate costs and transition probability, resp.

Actions
J No. of actions for any i ∈I, s ∈S.
ai and a ai: Action chosen by i. a: Action tuple, a= 4a11 0 0 0 1 aI 5.
a−i Action tuple of all players except i, a−i = 4a11 0 0 0 1 ai−11 ai+11 0 0 0 1 aI 5.

Strategies
xisj Probability that i assigns to action j in state s.
xi
s Strategy of player i in state s, xi

s = 4xis11 0 0 0 1 x
i
sJ 5 ∈ã.

xi, xs , and x xi = 4xi
11 0 0 0 1xi

S5, xs = 4x1
s 1 0 0 0 1xI

s 5 ∈Xs , and x = 4x11 0 0 0 1xI 5 ∈X.
x−i Strategy of all players except player i, x−i = 4x11 0 0 0 1xi−11xi+11 0 0 0 1xI 5.
4x−i1ui5 Distinguishes i’s strategy, 4x−i1ui5= 4x11 0 0 0 1xi−11ui1xi+11 0 0 0 1xI 5.

Parameters
� Discount factor, 0 ¶ �< 1.
C i

sa and Psak Immediate cost and transition probability, resp.
C̃ i

sa and P̃sak Uncertain immediate cost and transition probability resp.
C̃s ∈Cs and P̃s ∈ Ps Vectors of uncertain costs and transition probabilities, resp.

Values
vis and �i

s Value and robust value to i in s, resp.
×i Robust value vector for i, ×i = 6�i

s7s∈S.

Other quantities
�a

s 4x5 Probability that a is chosen in s under x.
�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i5 Exp cost function for i in s, i.e., the objective function.
f i
s 4x

−i
s 1ui

s3×
i5 Worst-case exp cost function for i in s.

Matrices
P Uncertainty set for transition probabilities.

P = 8p̃s1 s ∈S2 As p̃s ¾ bs1Qs p̃s = 11 p̃s ¾ 090
p̃s p̃s = 6P̃sak7a∈A3k∈S .
ej jth unit column vector.
1 Column vector of ones of appropriate dimension.
Ei

s4x
−i
s 1C i5 4J I−15× J matrix associated with immediate costs (see expression (8)).

zis zis ∈ <J I S , vector associated with future costs (see Equation (12)).
Yi

s4x
−i
s 1×i5 Yi

s4x
−i
s 1×i5 ∈ <J I S×J , Yi

s4x
−i
s 1×i5ui

s = zis .
Other notation

�, � Service and arrival rates, resp.
h4 · 5 Holding cost.
�4·1 ·5 and �4·1 ·5 Cost of service and admission reward to the router, resp.

Lemma 5 (Fink 1964). If x−i1 n → x−i and � i
s4x

−i1 n5 → �i
s

as n→ �, then � i
s4x

−i5=�i
s .

Proof. We have

��i
s −� i

s4x
−i
s 1×i5�

¶ ��i
s − � i

s4x
−i1 n5� + �� i

s4x
−i1 n5−� i

s4x
−i
s 1Ò i4x−i1 n55�

+ �� i
s4x

−i
s 1Ò i4x−i1 n55−� i

s4x
−i
s 1×i5�0

Now, by assumption, as n→ ���i
s − � i

s4x
−i1 n5� → 0

and �� i
s4x

−i
s 1Ò i4x−i1 n55 − � i

s4x
−i
s 1×i5� → 00 Note that

�� i
s4x

−i1 n5 − � i
s4x

−i
s 1Ò i4x−i1 n55� = �� i

s4x
−i1 n
s 1Ò i4x−i1 n55 −

� i
s4x

−i
s 1Ò i4x−i1 n55� → 0 as n → � by Lemma 4. Hence,

��i
s −� i

s4x
−i
s 1×i5� → 0 as n→ �. �

An alternative proof of Theorem 1 follows.

Theorem 1. For x ∈ X, define �x4×52 W → W by
4�x4×55is = � i

s4x
−i
s 1×i5. The function �x4×5 is a contrac-

tion mapping.

Proof. Let ×, È ∈W . For x−i
s fixed, ∀ i ∈I1 s ∈S,

� i
s4x

−i
s 1×i5= min

ui
s∈ã

max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1ui
s3×

i5

= �i
s4C

i
s4x

−i
s 1u∗

s
i51P i

s 4x
−i
s 1u∗

s
i1×i53x−i

s 1u∗

s
i3×i51
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where u∗
s
i is the minimizer, and C i

s4x
−i
s 1u∗

s
i5 ∈ Cs and

P i
s 4x

−i
s 1u∗

s
i1×i5 ∈ Ps are the optimizers that now depend

on 4x−i
s 1u∗

s
i5. Similarly, with z∗

s
i and C i

s4x
−i
s 1 z∗

s
i5 ∈ Cs ,

P i
s 4x

−i
s 1 z∗

s
i1Èi5 ∈ Ps1 we have

� i
s4x

−i
s 1Èi5= min

zis∈ã
max
C̃s∈Cs

P̃s∈Ps

�i
s4C̃s1 P̃s3x−i

s 1 zis3È
i5

= �i
s4C

i
s4x

−i
s 1 z∗

s
i51P i

s 4x
−i
s 1 z∗

s
i1Èi53x−i

s 1 z∗i
s 3È

i50

Now,

� i
s4x

−i
s 1×i5−� i

s4x
−i
s 1Èi5

=�i
s4C

i
s4x

−i
s 1u∗

s
i51P i

s 4x
−i
s 1u∗

s
i1×i53x−i

s 1u∗

s
i3×i5

−�i
s4C

i
s4x

−i
s 1z∗

s
i51P i

s 4x
−i
s 1z∗

s
i1Èi53x−i

s 1z∗i
s 3È

i5

¶�i
s4C

i
s4x

−i
s 1z∗

s
i51P i

s 4x
−i
s 1z∗

s
i1×i53x−i

s 1z∗i
s 3×

i5

−�i
s4C

i
s4x

−i
s 1z∗

s
i51P i

s 4x
−i
s 1z∗

s
i1Èi53x−i

s 1z∗i
s 3È

i5

=
∑

a∈A

I
∏

m=1
m 6=i

xm
s1amz

∗i
s1ai

{

C i
sa4x

−i
s 1z∗

s
i5+�

S
∑

k=1

P i
sak4x

−i
s 1z∗

s
i1�i

k5�
i
k

}

−
∑

a∈A

I
∏

m=1
m 6=i

xm
s1amz

∗i
s1ai

{

C i
sa4x

−i
s 1z∗

s
i5+�

S
∑

k=1

P i
sak4x

−i
s 1z∗

s
i1�i

k5�
i
k

}

¶
∑

a∈A

I
∏

m=1
m 6=i

xm
samz

∗i
sai�

{ S
∑

k=1

P i
sak4x

−i
s 1z∗

s
i1�i

k54�
i
k−�i

k5

}

¶
∑

a∈A

I
∏

m=1
m 6=i

xm
samz

∗i
sai�

( S
∑

k=1

P i
sak4x

−i
s 1z∗

s
i1�i

k5

)

�×−���

=��×−���0

The second to the last inequality above follows from the
fact that

∑

a∈A

I
∏

m=1
m 6=i

xm
samz

∗i
sai

S
∑

k=1

P i
sak4x

−i
s 1 z∗

s
i1�i

k5�
i
k

¶
∑

a∈A

I
∏

m=1
m 6=i

xm
samz

∗i
sai

S
∑

k=1

P i
sak4x

−i
s 1 z∗

s
i1 �i

k5�
i
k1

because for a given 4x−i
s 1 z∗

s
i1 �i

k5, 6P
i
sak4x

−i
s 1 z∗

s
i1 �i

k57k=110001S

is the maximizer of �i
s4C̃s1 P̃s3x−i

s 1 zis3È
i5 over P̃s ∈ Ps .

Similar to the above arguments, we have for x−i
s fixed

that, ∀ i ∈I1 s ∈S,

� i
s4x

−i
s 1Èi5−� i

s4x
−i
s 1×i5¶ ��×− ���0

Thus, ��x4×5−�x4È5�� ¶ ��×−È��0 �
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Kardeş, Ordóñez, and Hall: Discounted Robust Stochastic Games
382 Operations Research 59(2), pp. 365–382, © 2011 INFORMS

Harsanyi, J. C. 1968a. Games with incomplete information played by
“Bayesian” players, part II. Bayesian equilibrium points. Manage-
ment Sci. 14(5) 320–324.

Harsanyi, J. C. 1968b. Games with incomplete information played by
“Bayesian” players, part III. The basic probability distribution of the
game. Management Sci. 14(7) 486–502.

Herings, P. J., R. J. A. P. Peeters. 2004. Stationary equilibria in stochas-
tic games: Structure, selection, and computation. J. Econom. Theory
118(1) 32–60.

Heyman, D. P. 1968. Optimal operating policies for M/G/1 queuing sys-
tems. Oper. Res. 16(2) 362–382.

Iyengar, G. 2005. Robust dynamic programming. Math. Oper. Res. 30(2)
1–21.

Kakutani, S. 1941. A generalization of Brouwer’s fixed point theorem.
Duke Math. J. 8(3) 457–459.

Lo, K. C. 1996. Equilibrium in beliefs under uncertainty. J. Econom. The-
ory 71(2) 443–484.

Marinacci, M. 2000. Ambiguous games. Games Econom. Behav. 31(2)
191–219.

Nash, J. 1950. Equilibrium points in n-person games. Proc. Natl. Acad.
Sci. USA 36(1) 48–49.

Nilim, A., L. El Ghaoui. 2005. Robust control of Markov decision pro-
cesses with uncertain transition matrices. Oper. Res. 53(5) 780–798.

Peterson, L. L. 2007. Computer Networks: A Systems Approach. Morgan
Kaufmann Publishers.

Rosenberg, D., E. Solan, N. Vieille. 2004. Stochastic games with a single
controller and incomplete information. SIAM J. Control Optim. 43(1)
86–110.

Satia, J. K., R. L. Lave. 1973. Markov decision processes with uncertain
transition probabilities. Oper. Res. 21(3) 728–740.

Shapiro, A., A. J. Kleywegt. 2002. Minimax analysis of stochastic prob-
lems. Optim. Methods Software 17(1) 523–592.

Shapley, L. S. 1953. Stochastic games. Proc. Natl. Acad. Sci. USA 39(10)
1095–1100.

Sobel, M. J. 1969. Optimal average-cost policy for a queue with start-up
and shut-down costs. Oper. Res. 17(1) 145–162.

Sorin, S. 1984. Big match with lack of information on one side I. Internat.
J. Game Theory 13(4) 201–255.

Sorin, S. 1985. Big match with lack of information on one side II. Internat.
J. Game Theory 14(3) 173–204.

Stidham, S., Jr., R. R. Weber. 1989. Monotonic and insensitive optimal
policies for control of queues with undiscounted costs. Oper. Res.
37(4) 611–625.

Vanderbei, R. J. 2006. LOQO user’s manual—Version 4.05. Technical
report, Department of Operations Research and Financial Engineer-
ing, Princeton University, Princeton, NJ.

Vrieze, O. J. 2004. Stochastic games and stationary strategies. Stochas-
tic games and applications. A. Neyman, S. Sorin, eds. Proc. NATO
Adv. Study Inst., NATO Sci. Ser. C. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

White, C. C., H. K. Eldeib. 1994. Markov decision processes with impre-
cise transition probabilities. Oper. Res. 42(4) 739–749.

Yechiali, U. 1971. On optimal balking rules and toll charges in the
GI/M/1 queuing process. Oper. Res. 19(2) 349–370.


