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Abstract. The secretary problem is probably the most well-studied optimal stopping prob-
lem with many applications in economics and management. In the secretary problem, a 
decision maker faces an unknown sequence of values, revealed successively, and has to 
make irrevocable take-it-or-leave-it decisions. Her goal is to select the maximum value in 
the sequence. Although in the classic secretary problem the values of upcoming elements 
are entirely unknown, in many realistic situations, the decision maker has access to some 
information, for example, from past data. In this paper, we take a sampling approach and 
assume that before starting the sequence, each element is sampled independently with 
probability p. We study both the adversarial and the random arrival models. Our main 
result is to obtain the best possible algorithms for both settings and all values of p. As p 
grows to one, the obtained guarantees converge to the optimal guarantees in the full infor-
mation case. Notably, we establish that the best possible algorithm in the adversarial order 
setting is a fixed threshold algorithm. In the random order setting, we characterize the best 
possible algorithm by a sequence of thresholds, dictating at which point in time we should 
accept a value. Surprisingly, this sequence is independent of p. We complement our theo-
retical results with numerical experiments on data of people playing the secretary problem 
repeatedly. Our results help explain some behavioral issues they raised and indicate that 
people play a strategy similar to our optimal algorithms from the start onwards, albeit 
slightly suboptimally.
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1. Introduction
The secretary problem, in which we search for the best 
secretary of an online sequence of candidates, is proba-
bly the most well-studied optimal stopping problem. 
These problems, motivated as decision making under 
uncertainty, are characterized by a decision maker who 
needs to decide when to stop an input sequence of 
information and take an action upon stopping. Optimal 
stopping problems, and in particular the secretary 
problem, originally arose in connection to labor mar-
kets, which is also insinuated by the name of the secre-
tary problem. However, they have applications in 
many subfields of economics and management, such as 

monetary theory, industrial organization, e-commerce, 
and finance.

In finance, a well-known application of high- 
dimensional optimal stopping is in option pricing, such 
as swing and American options (Chen and Goldberg 
2018, 2019; Ciocan and Mišić 2020). Ideas from optimal 
stopping, often closely related to prophet inequalities, 
have been used to design posted price mechanisms in 
various scenarios (Chawla et al. 2010, Chen et al. 2019, 
Beyhaghi et al. 2021, Ma et al. 2021). Recently, Derakh-
shan et al. (2021) considered the problem of computing 
personalized reserve prices in online advertising using 
a data set of past bids. Moreover, Ma et al. (2021) use 
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techniques from optimal stopping in assortment opti-
mization. Babaioff et al. (2007) and Kleinberg (2005) 
show that generalizations of the classic secretary prob-
lem serve as a framework for online auctions. In indus-
trial organization, extensions of the secretary problem 
have modeled situations where a group decision 
within a firm has to be made (Alpern and Baston 2017), 
or firms are competing to hire employers from a pool 
of candidates (Immorlica et al. 2006, Cownden and 
Steinsaltz 2014). Finally, because of its simplicity and 
broad applicability, variations of the secretary problem 
have been studied experimentally. Such papers usu-
ally describe the optimal policy for the scenario they 
are studying, and then, through field experiments, try 
to explain the cognitive strategies that the agents 
develop. Some examples include the classical secretary 
problem (Seale and Rapoport 1997), a cardinal inde-
pendent and identically distributed (i.i.d.) setting 
(Angelovski and Güth 2020), choosing which apart-
ment to rent (Zwick et al. 2003), trying to buy a plane 
ticket online (Baumann et al. 2020), and learning when 
to stop by playing a repeated secretary problem (Gold-
stein et al. 2020).

Mathematically, in the secretary problem, we are 
faced with a randomly permuted sequence of n ele-
ments with arbitrary values. The elements’ values are 
revealed one at a time. Upon receiving an element, we 
need to make an irrevocable decision of whether we 
keep the value and stop the sequence or drop the value 
forever and continue observing the next. The goal is to 
maximize the probability of stopping with the largest 
value. For this problem, the best possible success guar-
antee has long been known to be 1=e. The optimal algo-
rithm is remarkably simple: Look at the first n/e values 
without taking any of them, and then stop with the first 
value larger than all values seen thus far (Lindley 1961, 
Dynkin 1963, Ferguson 1989). In the last decades, the 
secretary problem, its variants, and related basic opti-
mal stopping problems such as the prophet inequality 
and the Pandora’s box problem have been considered 
fundamental building blocks of online selection pro-
blems (Krengel and Sucheston 1977, 1978; Weitzman 
1979; Doval 2018; Beyhaghi and Kleinberg 2019).

An essential limitation of the secretary problem for 
modeling real-world situations is the assumption that 
the values of the elements that have not yet been 
revealed are completely unknown. This is a very pessi-
mistic assumption, as in realistic situations, one would 
expect to have some available information, coming, for 
instance, from the context or past data. As a conse-
quence, the best possible 1=e success probability for 
the secretary problem can be substantially improved 
in many settings. This gives rise to the following natu-
ral question: What is a reasonable model to take into 
account this additional available information? A first 
approach is to assume that the numbers originate from 

a distribution that is known to the algorithm. This 
assumption is relevant when the process at hand has 
been repeated many times, and past data can be aggre-
gated into a distribution. Along these lines, already in 
the 1960s, Gilbert and Mosteller (1966) considered the 
so-called full information secretary problem in which 
we additionally know that the elements’ values are 
i.i.d. random variables from a known distribution. For 
this variant, they showed how to compute the optimal 
stopping rule by dynamic programming and were 
able to conclude, numerically, that the best possible 
success probability is γ ⇡ 0:5801. In subsequent work, 
Samuels (1991) finds an explicit expression for this 
quantity. Esfandiari et al. (2020) relaxed the i.i.d.-ness 
assumption, considering the problem when the ele-
ments’ values are arbitrary independent random vari-
ables. They show that one can guarantee a success 
probability of 0.517, which, quite surprisingly, was 
very recently improved to γ�by Nuti (2022). Interest-
ingly, in this full information model with independent 
but not necessarily identical values, Allart and Islas 
(2015) showed that if the order is not random but 
adversarial, the optimal stopping rule guarantees a 
success probability of 1=e.1

Although assuming no knowledge about the values 
seems too pessimistic, assuming that the full distribu-
tion is known might be too optimistic for most scenar-
ios. Indeed, a typical situation would be that we have 
access to past data but not enough to safely reconstruct 
a distribution. These informational issues in optimal 
stopping have given rise to a stream of research aiming 
at understanding the relationship between the amount 
of information available and the success probabilities 
that can be derived. In this context, Azar et al. (2014) 
pioneered the study of data-driven versions of optimal 
stopping problems. Recently, Rubinstein et al. (2020) 
established a notable result in this direction for the 
classic prophet inequality.2 They prove that a single 
sample from each distribution, rather than its full 
knowledge, is enough to achieve the optimal guaran-
tee. Also, for the prophet secretary problem, the variant 
of the prophet inequality when the elements come in 
random order, one sample has been proven to be quite 
effective (Correa et al. 2020, Nuti and Vondrák 2023).

However, this sampling approach still assumes that 
there is an underlying distribution from which we can 
effectively sample. In many situations, this assumption 
may be strong, and ideally, we would like to combine 
the idea of having samples representing past data with 
having arbitrary values chosen adversarially, to ensure 
maximum robustness while requiring no distributional 
assumption. Recently, Kaplan et al. (2020) study such a 
model.3 In their model, there are n arbitrary values, and 
they sample a fraction p of them at random. Then the 
nonsampled values are presented to the decision maker 
in either random order or adversarial order. Kaplan 
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et al. (2020) design algorithms for maximizing the 
expectation rather than the probability of picking the 
maximum that translate into algorithms for data-driven 
versions of prophet inequalities.

In this paper, we consider an alternative sampling 
model, inspired by that of Campbell and Samuels 
(1981) and Kaplan et al. (2020). The main difference is 
that in our model, the sampling of each element is per-
formed independently with the same fixed probability 
p. In other words, roughly a p-fraction of the elements 
are considered to be samples and revealed to the 
player upfront, before the nonsampled elements are 
revealed one by one, whose maximum value the 
player aims to obtain. Such data-driven versions are 
well motivated from several perspectives. First, in 
many applications, the decision maker has access to 
historical data that gives some insight into the distri-
bution of future values. In our model, this information 
is captured in the form of samples that the decision 
maker knows a priori. Second, the model is robust 
in the sense that only minimal knowledge of the 
involved data are needed. Third, the general idea is 
closely related to machine learning methods that use 
predictors to learn the distribution (Goodfellow et al. 
2016). The insight here is that for problems that can be 
modeled as data-driven versions of the secretary prob-
lem, these learning procedures are overly compli-
cated: The simple combinatorial model presented in 
this paper already makes it possible to increase the 
solution quality even with modest sampling.

Of course, for large n our model is essentially equiv-
alent to the model of Campbell and Samuels (1981) 
and Kaplan et al. (2020). However, our independent 
sampling has two crucial advantages. On the one 
hand, independence makes many mathematical cal-
culations a lot simpler and thus allows to obtain sim-
pler expressions. It allows dealing with instances of 
unknown size, which is often the case in practical 
applications. In particular, several of our results hold 
if we do not know n. A slight disadvantage of the inde-
pendent sampling model is that we may end up sam-
pling all n elements. For consistency in this case, we 
assume, by vacuity, that we win (i.e., pick the maxi-
mum). However, this is not very restrictive because, 
as we will see, the difficult instances involve large 
values of n for a fixed value of p.

Our main result is to obtain the best possible algo-
rithms, that is, those maximizing the probability of 
selecting the largest element, for any prescribed sam-
pling probability p. We present results for both the set-
ting in which the order in which the elements are 
presented is random and for the adversarial order set-
ting. These results uncover interesting relationships 
between the quality of the solution and the amount of 
past data available to a decision maker.

1.1. Problem
We are given n elements with values α1, : : : ,αn, which 
are unknown to us, and an order σ : [n]! [n], where 
[n] à {1, : : : , n}. Each element is sampled indepen-
dently with probability p. Let S be the (random) set of 
sampled elements and V be the remaining elements, 
also referred to as the online set or the set of online ele-
ments. First, the set S of sampled elements are revealed 
to us. Then the elements in V are presented to us in the 
order dictated by σ. Once an element is revealed, we 
either pick it and stop the sequence, or drop it forever 
and continue. The goal is to maximize the probability 
of picking the maximum valued element in V. In par-
ticular, it is not allowed to pick an element of S, which 
is justified by the fact that we consider S to represent 
past data. In the adversarial order secretary problem with 
p-sampling (AOSp), the order σ�is chosen by an adver-
sary that knows all values α1, : : : ,αn and the random 
sets S and V.4 In the random order secretary problem with 
p-sampling (ROSp), the order σ�is just a uniform ran-
dom permutation.

Given n and an algorithm, we define its success proba-
bility as the infimum over all values α1, : : : ,αn of the 
probability that the algorithm stops with the maximum 
αi 2 V. Moreover, the success guarantee of an algorithm is 
the infimum over all values of n of its success probability.

All algorithms considered in this paper are ordinal, 
that is, algorithms whose decision to stop at a given 
point depend only on the relative rankings of the values 
seen thus far and not on the actual values that have been 
observed, plus, possibly, on some external randomness. 
We observe that this is without loss of generality as for 
AOSp and ROSp general algorithms cannot perform 
better than ordinal algorithms. Indeed, as noted by 
Kaplan et al. (2020, theorem 2.3), a result of Moran et al. 
(1985) implies the existence of an infinite subset of the 
natural numbers where general algorithms behave like 
ordinal algorithms (for single selection ordinal objec-
tive functions such as ours). Therefore, and because the 
worst-case performance of our algorithms is attained as 
n!1, our bounds apply to general algorithms; see 
also Theorem 1.

1.2. Our Results
For AOSp, we consider a very simple algorithm, that 
we call the k-max algorithm. Upon observing the sam-
ple set S it sets a threshold equal to the value of its kth 
largest element for k à b1=(1� p)c. Then it accepts the 
first element in V whose value surpasses the threshold. 
If there are less than k samples, the algorithm accepts 
the first online value (we define the kth largest element 
from a set of less than k elements as �1).

We show that this algorithm achieves a success guar-
antee of b1=(1� p)cpb1=(1�p)c(1� p), so for instance, for 
pà 1=2, the guarantee evaluates to 1/4. Although the 
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proof of this fact is relatively easy, what is more sur-
prising is that this guarantee is best possible. To prove 
the latter, we analyze a related optimal stopping prob-
lem, which we call the last zero problem. Suppose an 
adversary picks a number of identical blank cards n. 
Then, independently with probability p, each card is 
marked and you are informed about the total number 
of marked cards, but you ignore their position in the 
deck. Finally, one by one, you get to see the cards and 
whether they are marked or not. When you stop the 
sequence, you win if the card was the last blank card; 
otherwise, you lose. By using a related conflict graph 
over possible sequences, we show that for this problem, 
no ordinal algorithm can guess the last blank card with 
probability better than b1=(1� p)cpb1=(1�p)c(1� p). Then, 
we relate this problem to a different one, in which the 
objective is to guess the last number of an increasing 
sequence of unknown length. Finally, we go back to the 
original AOSp by considering an adversary that picks a 
growing sequence which at some point in time decreases 
to a low value, and this time is difficult to guess.

It is worth noting that this simple best possible algo-
rithm does not use knowledge of n and, as opposed 
to most variants of the secretary problem, for AOSp 
knowledge of n is irrelevant in worst-case terms. More-
over, we discuss the case in which n is known but p is 
unknown. Here it is quite natural that the algorithm 
works again by simply estimating p using the size of 
the sample set. However, if neither n nor p are known, 
then no nontrivial success guarantee can be obtained.

For ROSp, we obtain a randomized algorithm with 
best possible success guarantee that works as follows. 
First, we assign to each of the n elements a uniformly 
random arrival time in the interval [0, 1], which implies 
that the elements arrive in uniform random order. All 
elements whose arrival time is less than p are placed in 
the sample set S. Then we find a sequence of time 
thresholds 0 < t1 < t2 < ⋯ < 1, dictating that if an ele-
ment’s arrival time is between ti and ti+1, the algorithm 
stops if its value is the maximum among elements 
arriving after p and it is among the i largest values of all 
elements seen so far. To obtain the success guarantee of 
this algorithm we first prove that for a fixed sequence 
0 < t1 < t2 < ⋯ < 1, the success guarantee of the algo-
rithm decreases with n. Then we write the optimization 
problem over the time thresholds, and interestingly, 
this turns out to be a separable concave optimization 
problem with a fairly simple solution. Moreover, the 
solution is universal in the sense that it does not 
depend on p. The resulting guarantee is thus easily 
computed and grows from 1=e when pà0 to γ ⇡ 0:58 as 
p! 1.5 We also prove that this is a best possible algo-
rithm. To this end, we first argue that ordinal algo-
rithms in our model are essentially equivalent to a 

ranking function that determines what global ranking 
an element, which is a local maximum, should have to 
accept it. Here, by global ranking, we mean the ranking 
an element has among all samples and values revealed 
so far, and local ranking refers only to the values 
revealed and not to the samples. Finally, as n grows, 
this ranking function converges to a sequence of time 
thresholds as we defined them.

Figure 1 illustrates the success guarantee for our 
problems. For AOSp, it can be observed that the suc-
cess guarantee can be bounded below by the function 
p1=(1�p) and bounded above by (p� 1)=(log p) · p�1=log p 

(see also the Online Appendix for details).
Finally, we demonstrate some of the strengths of our 

algorithms in practice, by evaluating them on the real- 
world data set of Goldstein et al. (2020). In particular, 
we first show that our algorithm for ROSp can help 
explain some behavioral issues raised by Goldstein 
et al. (2020); we then perform a sensitivity analysis on 
the k-max algorithm to test its robustness. Goldstein 
et al. (2020) set up an experiment in which people play 
repeated secretary problems. The values come from 
any of three possible distributions unknown to the 
players (the distribution is fixed for all games played 
by a person). They analyze a total of 48,336 games 
played by 6,537 players. Among other issues, Goldstein 
et al. study how close to optimal people play. However, 
they find difficulty in establishing what optimal means 
in their context, because for the first game that players 
played, optimal means simply the secretary algorithm, 
but after playing many games, optimal should mean 
something close to the dynamic program of Gilbert 
and Mosteller (1966). They thus consider several candi-
date models for the players’ behavior and conclude 
that the closest to actual play is a multithreshold algo-
rithm that is very much in the spirit of that of Gilbert 
and Mosteller. Interestingly, they find that by the fifth 
game, players have essentially learned the optimal 
thresholds (Goldstein et al. 2020, figure 9). However, 

Figure 1. Best Possible Success Guarantee for ROSp and 
AOSp as a Function of p 
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they also find an apparent dichotomy between the 
strategy players use in the first few games and that 
used later on. Indeed, they state that “One possible 
explanation for the apparent change in strategy is that 
players spent the first few games primarily collecting 
information about the distribution and then switched 
to trying to actually win the game only in later games: 
that is, they spent the first few games exploring and 
then switched to exploiting only later.”

Our results for ROSp, being optimal in a closely 
related model, shed more light on the players’ strate-
gies and strengthens existing insights in the work of 
Goldstein et al. (2020). To see this, observe that the first 
game the players face is just the normal secretary prob-
lem, or ROS0, the second closely corresponds to ROS1

2, 
the third to ROS2

3, and so on. With this observation, we 
are able to directly compare the performance of the 
players’ strategies with that of our algorithms. Our 
experimental evaluation leads to two main conclu-
sions: (a) the players’ strategies are strongly correlated 
with our algorithm (i.e., players use similar, subopti-
mal series of thresholds), and (b) a good fraction plays 
near-optimally from the start; the players, in any case, 
improve their performance in the first few games by 
learning how to optimally use the information they 
gain (as Goldstein et al. (2020) also observe) and at some 
point their success rate stabilizes. For the sensitivity 
analysis of the k-max algorithm we observe what theory 
suggests: a wrong estimation of the parameter p in the 
first games does not affect the success rate much due to 
the robustness of the algorithm, but mistakes later on 
can be very costly, especially when p is overestimated.

A final remark we would like to make is the fact that 
our models and methods are not limited to the secre-
tary problem. In the random order case, Azar et al. 
(2014) observed that many algorithms only use the ran-
dom order to realize a random sample from the input 
and are thus order oblivious. Such a random sample is 
simply given in our model, and as such, existing order- 
oblivious algorithms can be adapted to the adversarial 
order secretary problem using our approach. On the 
other hand, by combining our approach for the secre-
tary problem with algorithms for online problems in 
the random order case, we can find algorithms for 
diverse online problems. As an example, our results for 
the random order secretary problem can be extended 
easily to the weighted bipartite matching problem with 
the same performance guarantees by using the results 
of Kesselheim et al. (2013).

1.3. Further Related Literature
An interesting connection arises between our model 
and results when p is close to one and the so-called full 
information case. First, recall that Gilbert and Mosteller 
(1966) obtained the optimal algorithm with worst-case 
performance γ�(Samuels 1982, 1991), in the secretary 

problem where the elements’ values are taken as i.i.d. 
random variables from a known distribution. It may 
thus seem natural that our guarantee matches this 
quantity as p! 1. However, this is far from obvious. 
Indeed, for the prophet inequality with i.i.d. values 
from an unknown distribution (a model that arguably 
gives more information than ours), Correa et al. (2019) 
proved that with O(n2) samples, one can achieve the 
best possible performance guarantee of the case with 
known distribution, and only very recently Rubinstein 
et al. (2020) improved this to O(n) samples. This is in 
line with our result here because for p close to, but 
strictly less than one, the size of the sample set is linear 
in the size of V.

Still in the random order case, Correa et al. (2023) 
study the same sampling model we discuss in this paper 
but with the objective of maximizing the expected value 
of the chosen element. They obtain best possible ordinal 
algorithms for all values of p and the implied guarantees 
grow from 1=e when pà0 to 0.745 when p tends to one, 
which is the optimal guarantee for the i.i.d. prophet 
inequality (Hill and Kertz 1982, Correa et al. 2021b), 
because in both cases the optimal guarantees converge 
to those of the full information case.

A more intriguing connection to the full information 
case pops up in the adversarial order case. In this context, 
Allart and Islas (2015), and independently Esfandiari et al. 
(2020), considered the adversarial order secretary problem 
in which an adversary chooses n distributions F1, : : : , Fn. 
Then, independent values are drawn from these distribu-
tions and sequentially uncovered. A decision maker who 
knows F1, : : : , Fn needs to stop at the maximum realiza-
tion. They prove that the optimal stopping rule is a simple 
single threshold algorithm, and the best possible success 
guarantee equals 1=e. Although this problem has a similar 
flavor as our AOSp, and the optimal guarantee is the 
same, we are unaware of a precise connection.

On the other hand, our last zero problem, used as a 
tool for AOSp, is related to an old optimal stopping 
problem first studied by Bruss (2000). We face a 
sequence of n independent Bernoulli random vari-
ables where we know n and the distributions, and we 
want to stop with the last zero. Bruss obtains the opti-
mal stopping rule for this problem, which also turns 
out to be a simple threshold rule. Our last zero prob-
lem is simpler in that the Bernoulli random variables 
are homogeneous. However, rather than knowing n, 
we only know the total number of ones. This subtle 
difference makes the problem substantially different.

The line of research exploring the use of additional 
information to improve solutions to problems in online 
decision making has gained momentum over the past 
years (Mahdian et al. 2012, Lykouris and Vassilvitskii 
2021, Golrezaei et al. 2022). Our sampling approach can 
be considered in this setting as a case of the secretary 
problem with advice based on past data. Dütting et al. 
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(2021) study this problem from a more general perspec-
tive and use a factor revealing linear program to gain 
structural insight into the optimal policy, depending on 
the type of advice the algorithm is given.

Another recent line of work studies robust or semi-
random versions of the classical secretary problem 
(Bradac et al. 2020, Kesselheim and Molinaro 2020). The 
main idea is that the problem input should be a mix of 
stochastic and adversarial parts. More specifically, in 
their (similar) models, some of the elements arrive at 
adversarially chosen times, and the rest at times uni-
formly randomly drawn from [0, 1]. Their objective 
functions (and in some cases also the benchmarks) are 
quite different from ours. Kesselheim and Molinaro 
(2020) consider the knapsack secretary problem in this 
mixed model, whereas Bradac et al. (2020) design algo-
rithms for selecting k items or maximizing the expecta-
tion under various matroid or knapsack constraints. It 
would be interesting to incorporate their ideas in our 
setting and study a problem that interpolates between 
ROSp and AOSp. The idea of mixing stochastic and 
adversarial inputs in online resource allocation has 
appeared earlier (Esfandiari et al. 2018, Hwang et al. 
2021).

Outline of the Paper. Section 2 presents the model and 
some basic definitions formally. Then, Section 3 pre-
sents an overview of the techniques and results for the 
adversarial order case, and Section 4 does the same for 
the random order case. Section 5 follows with some 
insights into the results that can be obtained if we 
assume different knowledge of the parameters. Our 
numerical experiments can be found in Section 6. We 
close with a discussion about possible extensions of 
our results in Section 7. Most of the full proofs are 
deferred to the Online Appendix.

2. Model and Definitions
Let p 2 [0, 1]. We consider the following game between 
a player and an adversary. The game takes place in sev-
eral phases. 

• Phase 1: The adversary chooses an integer n and a 
set U of n integers.

• Phase 2: This phase is the only place where the 
game is different in AOSp and ROSp. In AOSp the 
adversary chooses a permutation σ�for U. In ROSp σ�is 
a random permutation, where each permutation is 
equally likely. U is then ordered according to σ.

• Phase 3: Every element of U is added to the sample 
set S independently with probability p, and otherwise 
it is added to the set U \ S of online elements.

• Phase 4: The sample set is revealed to the player.
• Phase 5: The elements of the online set are pre-

sented to the player one after the other, according to 
the order σ. The player chooses at each step to continue 

or to stop the game. If the player continues, the next 
element is presented to her.

An instance of the game can be denoted as (U,σ, S), 
where U is the set of n values, σ�is the permutation and 
S is the result of the sampling process. In particular, it is 
a sequence of values from U, presented in order σ, 
where the first |S | values are considered to be sampled 
elements. We will identify an instance of the problem 
with such a sequence of values. A prefix r of the 
sequence then corresponds to the game until a certain 
decision point: |r | < n values have been revealed at 
this time, and the player currently has the choice to 
stop the game at this last element of the prefix or to con-
tinue with the next, currently unrevealed, element.

We say that a player wins or an algorithm succeeds in 
an instance of the problem if it stops on the largest ele-
ment of the online set U \ S. This allows us to formally 
define the success guarantee of an algorithm.
Definition 1. The success guarantee of a deterministic 
algorithm A for AOSp is

inf
n

min
U, σ PS(A succeeds on (U,σ, S)), 

where PS takes the probability over the sampling phase. 
For ROSp it is defined as

inf
n

min
U

PS,σ(A succeeds on (U,σ, S)), 

where PS,σ�takes the probability over the sampling 
phase and the permutation.

Observe that the success probability is uncondi-
tional on the sample set S.

We use a minimum for U,σ�even if there is poten-
tially an infinite number of possible sets U. This is 
because of the following result. This theorem is the 
analogue of theorem 2.3 in Kaplan et al. (2020), and 
the proof is essentially the same. For completeness, 
and because this statement is central to the paper, we 
sketch the following approach.

For the proof, we need the following definitions 
similar to Kaplan et al. (2020). We call two sequences 
x1, : : : , xk and y1, : : : , yk order-equivalent if xi < xj �yi <
yj for all 1  i, j  k. The equivalence class of x1, : : : , xk 
is called its order-type. We say that a function is order- 
invariant on a set C if the value of the function on a 
sequence of elements from C depends only on the 
order-type of the sequence.
Theorem 1. Suppose there exists an α 2 [0, 1] such that no 
ordinal algorithm can achieve a success guarantee of at least 
α�for AOSp or ROSp. Then no cardinal algorithm can 
achieve a success guarantee of at least α�for AOSp or 
ROSp.

Proof. Any algorithm ALG for AOSp or ROSp can be 
described as a series of n functions ft : R2n !̀ {0, 1}. 
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Indeed, we can encode both the sample set and revealed 
values of the online set as sets of at most n reals (pad-
ding with zeros for example), and the decision (stop 
or continue) as a bit. Then ft represents the function 
used for the decision at the tth step.

The functions ft can be considered predicates 
defined on R2n. Because R is totally ordered, theorem 
3.3 in Moran et al. (1985) ensures that there exists a 
subset C ⇢ R such that each function ft is order-invariant 
on C2n. Therefore, in any instance on this subset C, ALG 
only uses ordinal information and is, as such, an ordinal 
algorithm. Indeed, on this subset C, any cardinal algo-
rithm behaves as an ordinal algorithm.

As a consequence, if on a fixed order of elements of C, 
the highest success guarantee any ordinal algorithm can 
achieve is α, then the success guarantee of any cardinal 
algorithm on the same order is also at most α. Thus, in 
this case, any cardinal algorithm has a success guarantee 
of at most α�for AOSp or ROSp. The result follows. w

We will see that our positive results are actually also 
ordinal, and that they match the negative bounds. In partic-
ular, once we restrict to ordinal algorithms, we can assume 
that the input sequence is a permutation of {1, : : : , n}.

3. Adversarial Order
In this section, we study the adversarial order secretary 
problem with p-sampling (AOSp). We present the k-max 
algorithm and prove that it is optimal (in the worst-case 
sense) for this setting. All omitted proofs can be found in 
the Online Appendix.

Recall that we defined the k-max algorithm as in Algo-
rithm 1: We set the kth largest value of the set S of sam-
pled elements as a threshold, and the algorithm accepts 
the first element in the set V of online values whose value 
surpasses this threshold. If |S | < k, that is, if there are 
less than k sampled elements, then the algorithm accepts 
the first online element.6 It turns out that this decision 
does not prevent us from achieving the success guaran-
tee we aim for, as this case occurs with small probability 
only. From now on, we define k à b1=(1� p)c as the 
value of k for the k-max algorithm. This section is dedi-
cated to proving the following theorem.

Algorithm 1 (k-Max Algorithm (for the Optimal k))
k à b 1

1�pc.
if |S | � k then

T the k-th largest value of S.
else

T �1
end if
while Current value < T do

Discard the value.
end while
Accept the current value (if there are no more 

values left, accept nothing).

Theorem 2. Let k à b1=(1� p)c. The k-max algorithm 
achieves a guarantee of kpk(1� p) for AOSp. Furthermore, 
no algorithm can achieve a better success guarantee.

Naturally, when p tends to zero, the guarantee natu-
rally tends to zero: If there are very few samples, the 
problem reduces to the secretary problem with adver-
sarial order, which does not allow for any nontrivial suc-
cess guarantee. What is more surprising is that when p is 
close to one, the success guarantee approaches 1=e 
(Figure 1), which is the performance obtained for the sec-
retary problem with full knowledge of the distribution 
of the values of the elements (Allart and Islas 2015, 
Esfandiari et al. 2020).

The proof of the success guarantee of the algorithm is 
easy and appears in Section 3.1. The proof of its opti-
mality is more advanced and requires new tools. Sec-
tion 3.2 first introduces the new concepts we require 
before diving into the proof. A surprising fact of this 
proof is that it suffices to focus on the special case 
where the values of the elements are in nondecreasing 
order (thus where the algorithm aims to stop at the last 
element), with the twist that the algorithm is size- 
oblivious; that is, it does not know the size n of the 
instance.

3.1. Success Guarantee of the k-Max Algorithm
As the success guarantee of the k-max algorithm 
clearly depends on the value of k, we need to specify 
its value. Intuitively, the bigger the value of p, the 
higher the probability that the largest valued elements 
are sampled. Therefore, a larger value of p suggests to 
use a lower threshold. As is common for many thresh-
old algorithms, there is a tradeoff between (1) setting 
the threshold too low and risking acceptance of an ele-
ment that does not have the maximum online value 
and (2) setting it too high and risking finishing the 
game without selecting any element, which happens 
with probability pk in our algorithm. The following 
lemma is the first part of Theorem 2 and establishes 
the success guarantee of the algorithm for the value 
k à b1=(1� p)c.7

Lemma 1. The k-max algorithm chooses the element of the 
online set with maximum value with probability kpk(1� p). 
In particular, for k à b1=(1� p)c, its success guarantee is 
b1=(1� p)cpb1=(1�p)c(1� p).
Proof. The k-max algorithm succeeds in an instance if 
exactly one of the k largest values of the adversarial 
input ends up in the online set and the (k + 1)st largest 
ends up in the sample set. For the purpose of analysis, 
assume the elements are sequenced in nondecreasing 
order of their values. Thus, an instance in which the 
algorithm is successful is exactly a sequence ending in 
k sampled elements plus one online element that is 
somewhere in the last k entries of the sequence.
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The probability that this happens equals kpk(1� p)
because of the independent sampling. The second 
part of the lemma follows by substituting the value 
k à b1=(1� p)c. w

3.2. Negative Result
We now focus on the proof that no algorithm can 
achieve a better success guarantee for AOSp than the k- 
max algorithm. We prove this bound for another set-
ting, and then reduce this setting to AOSp in four steps. 
For the first step, we introduce a game called the last 
zero problem (Definition 4) in this section. We show 
that for pà 1/2 no deterministic ordinal size-oblivious 
(Definition 2) algorithm can have a success guarantee 
larger than what the k-max algorithm achieves for 
AOSp (Proposition 3). For the second step, in the Online 
Appendix companion we show how to generalize this 
to general values of p, randomized algorithms, and 
algorithms that are not size-oblivious. Therefore, this 
shows the bound for ordinal algorithms for the last 
zero problem. The third step is Proposition 1, which 
shows that this implies this negative result for ordinal 
algorithms for what we call the increasing case of 
AOSp, which is a special case of AOSp. This implies 
that the negative result also holds for ordinal algo-
rithms for AOSp. Finally, Theorem 1 completes the 
fourth step by showing that the bound must then also 
be true for cardinal algorithms for AOSp.

3.2.1. Last Zero Problem. We now focus on the proof 
for the negative result of Theorem 2. We will first prove 
it for the special case of pà 1/2 for deterministic size- 
oblivious algorithms. Size oblivious is a concept that 
intuitively entails that an algorithm “does not know n,” 
that is, is unaware of the size of the instance. Infor-
mally, this implies that an algorithm that is presented 
with a certain sequence of elements and then needs to 
make a decision needs to make the same decision that it 
would have taken in other instances that revealed the 
same elements in the same order up to that point. Con-
sider an algorithm and two instances I1 and I2 of differ-
ent sizes n1 and n2, respectively, but with the same 
value of p. Suppose that until a certain point in the pro-
cess of the revelation of the sequences, the algorithm 
happens to face the exact same set of samples and non-
sampled elements in both instances, and is currently 
facing an online element of the same value in both 
instances. Thus, up to this point, the algorithm has 
access to exactly the same information (and possible 
beliefs over the size of the instance). Therefore, the 
algorithm needs to make the exact same (possibly ran-
domized) decision in both situations, independent of n1 
or n2. We formalize this notation as follows.

Definition 2. An algorithm is size oblivious if for a fixed 
value p and any pair of input sequences s1 and s2 of 
unequal length that have the same prefix of length 
r  min{ |s1 | , |s2 | }, the algorithm will take the same 
decision after reading the prefix of length r in both 
sequences.

From now on, assume that any algorithm we con-
sider is size oblivious.

For our main steps, the analysis starts by introduc-
ing the last zero problem. It turns out that a negative 
result for the last zero problem implies a negative 
result for AOSp under certain additional assumptions. 
The proof continues by removing these assumptions 
one at a time, until we retrieve the proof of Theorem 2
for size-oblivious algorithms. Finally, we generalize 
the proof to algorithms that are not size-oblivious, by 
showing that an algorithm cannot achieve a higher 
success guarantee with knowledge of the size of the 
instance (in worst case terms).

To introduce the last zero problem, we start by 
introducing two notions defined on bit strings.

Definition 3. The norm of a string s of bits is ksk1, that 
is, the number of ones s contains. The total number of 
bits of such a string s is called its length and is denoted 
by |s | or simply n.

The numbering of the entries of a string is counted 
starting from one. We will consistently use length for 
a bit string and size for an instance of the last zero 
problem, which we can now formally define.

Definition 4. For a fixed value of p 2 [0, 1], the last zero 
problem is defined as follows. 

• Phase 1: An adversary picks a length n.
• Phase 2: A string of bits of length n is generated, 

where in each position independently the bit equals 
one with probability p and zero otherwise.

• Phase 3: The norm of the string is revealed to the 
player.

• Phase 4: The bits of the string are presented to the 
player one after the other. The player chooses at each 
step to continue or to stop the game. If the player con-
tinues, the next bit is presented to her.

The player wins if she stops on the last zero of the 
string.

Our restriction to only consider size-oblivious algo-
rithms at the moment extends to the last zero problem, 
where the algorithm intuitively does not know the 
length of the string. Observe that this is crucial, as the 
game becomes trivial if this is not the case. Thus, we 
need not analyze the success guarantee of an algo-
rithm for the last zero problem for a given size, 
but we need to prove that no algorithm can perform 
well on instances of any size. The success guarantee 
of an algorithm for the last zero problem is defined 
as follows.
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Definition 5. The success guarantee of a deterministic 
algorithm A for the last zero problem is

inf
| s |

Ps(A succeeds on s), 

where s denotes the random bit string.
Recall that the reason we introduced the last zero 

problem is because negative results for this problem 
imply negative results for AOSp under certain assump-
tions. The following proposition makes this formal. 
From now on, when we talk about the increasing case of 
AOSp, we refer to the special case of the AOSp problem 
in which the elements are revealed in nondecreasing 
order of their values.

Proposition 1. Suppose there exists an α 2 [0, 1] such that 
no algorithm can achieve a success guarantee of at least α�
for the last zero problem. Then no size-oblivious ordinal 
algorithm can achieve a success guarantee of at least α�for 
the increasing case of AOSp.

Proof. We prove the statement by contraposition. 
Suppose that there exists a size-oblivious ordinal algo-
rithm A that achieves a success guarantee of at least α�
for the increasing case of AOSp. We design an algo-
rithm B for the last zero problem with success guaran-
tee α.

At the start, B receives the number k of 1 s in the 
sequence. It builds an increasing sequence Seq of k + 2 
values: s0 < s1 < ⋯ < sk < sk+1. Then it feeds the sub-
sequence s1 < ⋯ < sk (i.e., Seq with both extreme 
values removed) to A as a sample set of size k. It also 
initializes a counter c to 0, and creates an empty list L. 
In the online part, the algorithm B will receive bits, 
add new values in L, and call A when needed. More 
precisely, for every bit arriving, B does the following: 

• If the bit is one, then it simply increments c, and 
continues.

• If the bit is zero, it adds a new element at the end 
of L, whose value is strictly between sc and sc+1, such 
that it is the largest value of L. Then it calls A with L as 
the list of online values seen so far (and sample set Seq), 
and B stops if and only if A stops.

Now consider an instance I 2 {0, 1}n of the last zero 
problem, and the following instance I0 for the increas-
ing case of AOSp: the full sequence is 1, 2, : : : , n, 
among which the samples are S à {i |si à 1}. Because 
A is an ordinal size-oblivious algorithm, B succeeds 
on I if and only if A succeeds on I0 with sample S. 
Hence,

Ps(B succeeds on s)
à PS(A succeeds on I0 with samples S):

Because we assumed that the success probability of A 
is at least α, it must also be the case for B, which 
proves the proposition. w

For the remainder of this section, we consider the last 
zero problem. We identify an instance of the last zero 
problem with its bit string. We introduce the shorthand 
notation 0ℓ�and 1ℓ�for the string of length ℓ�consisting of 
only zeros and ones, respectively.

3.2.2. Warm Up: Intuitive Proof for the Case p ! 1/2. As 
a warm up, we first present the negative result for 
deterministic size-oblivious algorithms for the special 
case of the last zero problem in which pà 1/2. For the 
sake of the proof, we also introduce the no-zero rule that 
specifies that if there are no online elements (i.e., all n 
elements are sampled), the algorithm fails. Indeed, at 
first sight this might contradict the assumption for 
AOSp that an algorithm succeeds in such an instance. 
However, as we will see, this rule actually becomes 
irrelevant for the generalization of the proof. Therefore, 
the use of this assumption in the analysis for the 
last zero problem does not pose a problem for the 
results for the AOSp problem, which uses the differ-
ent assumption.

The following proposition is the first of a series of 
propositions, each one a generalization of the previous, 
until the proof of Theorem 2 is complete. The goal of 
the discussion and the proof sketch presented here is to 
informally introduce the tools required for the full 
proof.
Proposition 2. For the last zero problem with pà 1/2 and 
the no-zero rule, no deterministic size-oblivious algorithm 
can achieve a better success guarantee than the k-max algo-
rithm for AOSp.

Proof. For pà 1/2, the k-max algorithm achieves a 
guarantee of 1/4. Therefore, for the sake of contradic-
tion, suppose that there exists an algorithm A for the 
last zero problem with pà 1/2 and the no-zero rule 
that achieves a guarantee strictly better than 1/4. As a 
start, consider the decision of A when the adversary 
chooses nà 1. Then, there are two instances after sam-
pling that both occur with probability 1=2. The first 
case is that the instance is zero. Then, as the norm of 
the instance is revealed to A upfront, it knows that 
there is no one in the instance and is first presented a 
zero. The second case is that the instance is one. Then 
A knows there is a one in the instance, and it is 
announced from the start that the game is finished.

Recall that the success guarantee of A is defined as 
the infimum over all possible string lengths (instance 
sizes). Now observe that A fails in the second case 
because of the no-zero rule. Thus, to achieve at least 
1/4 for every length, A needs to succeed in the first 
case (recall that we restrict ourselves to deterministic 
algorithms for now). Because A is size oblivious, this 
implies that it needs to stop on the single zero in that 
instance. In other words, when it is revealed to A that 
the norm of the string is zero, it stops on the first bit.
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Here comes the key observation. Suppose that the 
adversary chose nà 2 and the sampling resulted in the 
instance 00. Also in this instance A is presented with 
not a single one, and again observes a first zero. From 
earlier, we already deduced that A needs to stop at 
this first zero. Indeed, from the point of view of A, this 
is exactly the same situation as in the case where the 
instance was zero, because A is size oblivious. In other 
words, these two situations are indistinguishable for A, 
and it has to make the same decision. In the case of 00, 
this decision is wrong as the last zero is the second 
zero, hence A fails. We call such a situation a conflict 
between instances 0 and 00.

Conflict works in both directions. If an algorithm 
has a strategy that makes it succeed in 00, then after 
the first 0, it would wait, which would make it fail in 
the instance 0.

Another conflict occurs between the instances 01 
and 001. On instance 001 one 1 is revealed to A and 
then it observes a first 0. This is exactly the same infor-
mation as at the beginning of the instance 01. If A 
stops on this element then it succeeds in 01 but loses 
in 001. Conversely, if A waits and then stops on the 
next 0, it fails in 01 but wins in 001. Moreover, if A 
continues to wait it fails in both instances.

More generally, for every pair of instances there is a 
fairly simple criterion in each of the two directions to 
see if they are in conflict or not (Lemma 4). In particu-
lar, it turns out to be sufficient to decide the conflict 
between instances whose sizes differ only by one. In-
deed, two instances s and s0 of size n and n+q, respec-
tively, are in conflict if and only if there is a series of 
conflicts (s, s1), (s1, s2), … , (sq�1, s0), where si has size 
n+ i (Lemma 3). Then we can define the (infinite) con-
flict graph whose nodes represent all possible instances 
and the edges represent the conflict between nodes 
whose size differ by exactly one. From now on, we 
identify a node of the conflict graph with the corre-
sponding instance and bit string. The conflict graph 
for size nà1 to nà4 is represented in Figure 2. In this 
graph, we can represent an algorithm as a subset of 
instances in which it succeeds. Such selected instances 
cannot be in conflict. In other words, they cannot be 
connected by a monotone path, where monotone 
means that the path traverses at most one node of 
each instance size.

For nà 1, the cross denotes that A will never suc-
ceed in the instance that consists of one 1, because of 
the no-zero rule. We write zero in cursive to denote 
that A succeeds in this instance, as it decides to select 
the last (and only) zero.

Now consider all instances of size two. Given that 
the size is two, each of them is equally likely to be the 
outcome of the sampling process, hence, each occurs 
with probability 1/4. Both 00 and 11 cannot be selected 
(because of the conflict to the left and the no-zero rule, 

respectively). Thus, to achieve a success guarantee 
strictly more than 1/4, A needs to succeed in both 01 
and 10. Consequently, these instances need to be 
selected in the conflict graph.

Now, for nà 3, A fails in 000, 001, 010, and 100 
because of conflicts and on 111 because of the no-zero 
rule. Therefore, A must succeed in 011, 101, and 110, 
because each instance has a probability of occurrence 
equal to 1/8. Finally, for size 4, the same argument as 
before shows that A fails in all instances except 0111, 
1011, 1101, and 1110. However, these are only 4 of 16 
cases, and thus, A cannot achieve a success guarantee 
strictly larger than 1/4 if the adversary chose nà 4. 
This is a contradiction, and therefore Proposition 2 is 
true. w

Of course, there are several limitations to this first 
proof of the claim: 

• Our results should not rely on the arbitrary no-zero 
rule.

• The fact that the proof is only considering small 
sizes is a weakness, in the sense that it does not exclude 
the existence of algorithms that could possibly have a 
better success guarantee than the k-max algorithm, but 
only on instances of size at least some N0.

• The sampling probability is fixed to 1/2, we require 
a proof for general values of p.

• The bound only applies to deterministic algo-
rithms, not to randomized algorithms.

By addressing the second problem we resolve the first 
one automatically because for large enough instances, 
the probability of the case with no zero becomes negligi-
ble (for size n, this happens only with probability 1=2n).

The following sections show how we progressively 
bypass these issues, thereby generalizing Proposition 2

Figure 2. (Color online) Proof of Proposition 2, with the First 
Four Layers of the Conflict Graph 

Notes. The instances that have a ⇥ are the ones where the player can-
not win. The cursive instances are the ones used by the strategy 
explained in the proof.
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step by step. To do so, the next section first introduces 
the involved concepts formally.

3.2.3. Preliminaries: Conflict Graph. This section for-
malizes the intuition about the conflict graph used in 
the proof of Proposition 2. We first describe its generic 
structure and then show how to measure the perfor-
mance of a deterministic algorithm in this framework. 
We do so by a series of rather simple lemmata. For the 
sake of conciseness, we defer their proofs to the elec-
tronic companion. Generally speaking, they are the for-
malization and generalization of the ideas of the proof 
of Proposition 2.

Conflict Graph Structure. We first define what it 
means for two instances to be in conflict. To this end, 
we define the following notation for an instance I, 
which we identify by its bit string. We denote by I[a, b]
the instance I restricted to the positions a to b 
(both included).

Definition 6. Consider two instances I1 and I2 of size 
n1 and n2, respectively, with n1 < n2, both containing 
at least one zero. Let r be the position of the last zero 
in I1. The instances I1 and I2 are in conflict, denoted 
I1 ¿ I2, if kI1k1 à kI2k1 and I1[1, r] à I2[1, r].

The following lemma explains why this notion is 
useful.

Lemma 2. Let I1 ¿ I2 be two instances in conflict. No 
deterministic algorithm can succeed in both I1 and I2.

We now define the conflict graph, which is the for-
mal object of which Figure 2 depicts the start.
Definition 7. The conflict graph G à (V, E) is an infinite 
graph in which the set of nodes V à [1ià1 Vi, where 
Vi à {0, 1}i, corresponds to all finite strings of bits. In 
particular, every node v 2 V corresponds to a unique 
instance of the last zero problem that we identify with 
v. Then E is defined as the set {{v1, v2} |v1 ¿ v2 and |v2 |
à |v1 | + 1}. We call v1, v2 such that {v1, v2} 2 E neighbors.

Because every node of the conflict graph corresponds 
to a unique instance of the last zero problem, which cor-
responds to a unique bit string, we will use these terms 
interchangeably and use the same notation for the cor-
responding bit string, node, and instance. The length of 
a bit string corresponds with the size of the instance 
and node, so in particular, for a node v, |v | denotes the 
length of the corresponding bit string.

When we draw the conflict graph, we order the 
nodes by increasing size as in Figure 2. By doing so, a 
path in the conflict graph is monotone if it goes from 
left to right without zigzagging.
Definition 8. A path P à (v1, : : : , vk) in the conflict 
graph is called monotone if and only if |vi+1 | à |vi | + 1 
for all i 2 {1, : : : , k� 1}.

The next lemma formalizes why monotone paths 
are interesting to study.

Lemma 3. I1 ¿ I2 if and only if there exists a monotone 
path in the conflict graph connecting I1 and I2.

This lemma and its proof in the Online Appendix 
have several consequences for the structure of the con-
flict graph. The following lemma is immediate, formal-
izing when an instance I of size n is in conflict with an 
instance I0 of size n+1 or an instance I00 of size n�1. 
Intuitively, I ¿ I0 if I0 can be obtained by inserting a 
new zero anywhere after the last zero of the bit string 
of I. In the other direction, I ¿ I00 if I00 can be obtained 
from I by removing its last zero.

Lemma 4. Consider an instance I of size n whose corre-
sponding bit string contains at least one zero, and denote 
the position of the last zero by r. Then I is in conflict with 
exactly those instances I0 of size n + 1 for which there exists 
a position s> r such that I0[1, s� 1] à I[1, s� 1], I0[s] à 0 
and I0[s + 1, n + 1] à I[s, n]. In the other direction, I is in 
conflict with the single instance I00 of size n�1 with 
I00[1, r� 1] à I[1, r� 1] and I00[r, n� 1] à I[r + 1, n].

This lemma implies that every node of size n> 1 has 
at most one neighbor to its left, leading to the following 
definitions.

Definition 9. Let v be a node in the conflict graph. If it 
exists, its unique neighbor u with |u | à |v | � 1 is called 
its parent. All neighbors w of v such that |w | à |v | + 1 
are called its children. The degree deg(v) of v is defined 
as its number of children. All nodes x with |x | > |v | are 
called descendants of v if there exists a monotone path 
from v to x.

For a given size n there exist 2n nodes, each corre-
sponding to a different bit string of length n. In partic-
ular, we can now talk about the degree of instances. 
These adhere to the following structure.

Lemma 5. Consider all 2n nodes corresponding to instances 
of size n. For each i 2 {1, : : : , n� 1}, there are 2n�i nodes of 
degree i. Moreover, a node with degree k has exactly one child 
of degree i for every i 2 {1, : : : , k}.

The reader can check that Lemma 5 is satisfied in 
Figure 2.

Weights in the Conflict Graph. Up to this point, we 
considered only the case pà 1/2 in which every 
instance of size n has a probability of 1=2n of occurring 
as the result of the sampling process. However, when-
ever p ≠ 1=2, instances of the same size have different 
associated probabilities. To incorporate this, for a fixed 
value of p 2 [0, 1], we introduce weights of nodes and 
consider a weighted version of the conflict graph. We 
still only consider deterministic algorithms, and we 
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study probabilities on the sampling process only at 
this point.

Definition 10. Let p 2 [0, 1]. We define the weight w(v) 
of a bit string v of norm kvk1 àm and length |v | à n as 
the probability that this bit string was the result of the 
sampling process in the last zero problem for an 
instance of size n, that is, w(v) à pm(1� p)n�m. We 
define the weight w(v) of a node v in the conflict graph 
as the weight of the corresponding bit string.

For a fixed size n, the weights of the instances of size 
n sum to 1. These weights adhere to a very nice struc-
ture, which we will exploit to prove our results for 
p ≠ 1=2. We will need to know the combined weights 
of nodes of a given size and degree, as well as the com-
bined weight of their children of given degrees. To this 
end, we introduce some new notation.

Definition 11. Consider the conflict graph and let n be 
fixed. Define Vn, i à {v 2 V : |v | à n, deg(v) à i} as the set 
of nodes of size n with degree i. Define wi à

P
v2Vn, i

w(v)
as their combined weight (which, as the notation sug-
gests, turns out to be independent of n). Let Wijn à {v 2
V : |v | à n + 1, deg(v) à j,9u 2 Vn, i : u ¿ v} be the set of 
nodes of size n+1 and degree j that are in conflict with 
any node in Vn, i. Then define wij à

P
v2Wijn

w(v) (again, 
the next lemma shows its independence of n).

Note that wij is only positive for j  i because of 
Lemma 5. We can now prove the following weighted 
version of this lemma.
Lemma 6. For any size n, wi à pi�1(1� p) and wij à
(1� p)wi à pi�1(1� p)2 for all 1  j  i  n.

Algorithms in the Conflict Graph. We now turn to 
the connection between algorithms and the conflict 
graph. We start by linking the structure of the conflict 
graph to deterministic algorithms. We introduced the 
notions of instances in conflict to show that a deter-
ministic algorithm can only succeed in one of these 
instances (Lemma 2). By Lemma 3, instances are in 
conflict if and only if they are connected by a mono-
tone path. Hence, we can observe the follow-
ing lemma.
Lemma 7. Let P be a monotone path in the conflict graph. 
Any deterministic algorithm can succeed in at most one of 
the instances corresponding to the nodes of P.

Because every node of the conflict graph corresponds 
to an instance, we can identify an algorithm with a par-
tition of the nodes of the conflict graph: the nodes on 
which it succeeds and the nodes on which it fails. 
Lemma 7 constraints the structure of such a partition: 
Choosing a certain instance to succeed in prevents the 
algorithm from choosing other instances to succeed in. 
Let us introduce new terminology to simplify talking 
about this process.

Definition 12. We say that an algorithm selects a node v 
if it succeeds on the corresponding instance. A node 
that is in conflict with an instance of smaller size that 
the algorithm selected is said to be removed. For an 
algorithm A we denote its subset of selected nodes 
and removed nodes by AS and AR, respectively. For a 
given instance size n we denote by An

S and An
R the set 

of selected and removed nodes of size n, respectively, 
such that AS à [1nà1 An

S and AR à [1nà1 An
R.

Not all disjoint sets of selected and removed nodes 
correspond to a real algorithm (in the sense that there 
might be no finite description of a corresponding 
method), but this is not an issue as we look for results 
regarding the nonexistence of certain algorithms. We 
will abuse terminology and use the word “algorithm” 
nevertheless. As selecting a node implies the removal 
of nodes of larger size, we will consider the execution 
of an algorithm to be in increasing order of the size of 
instances.

Let us introduce concepts for the quality of an algo-
rithm for the last zero problem.
Definition 13. Let A be a deterministic algorithm for 
the last zero problem and let an instance size n be 
fixed. The performance of A for size n is the sum of the 
weights of the instances in which it succeeds, that is, 
perf(A, n) àPv2An

S
w(v). The success guarantee of A is 

the infimum of the performance of A over all instance 
sizes n, that is, infn perf(A, n).

Indeed, using Proposition 1, this corresponds to the 
definition of success guarantee for AOSp as in Defini-
tion 1. Recall that we aim for a bound on the success 
guarantee of any algorithm for AOSp, a goal we can 
achieve by proving a bound on the success guarantee 
of any algorithm for the last zero problem.

After introducing weights to generalize the conflict 
graph to generic values of p, let us make the final general-
ization by considering randomized algorithms. Where a 
deterministic algorithm either selects a node or not, a ran-
domized algorithm labels each instance with a selection 
probability q. Concretely, this means the following. Sup-
pose the algorithm faces the last 0 in this instance (but 
it is not aware of this). Then the algorithm stops with 
probability q (and succeeds in this instance). It continues 
the sequence with probability 1� q, meaning it fails in 
this instance, but it might still succeed in any of its 
descendants.

The following lemma generalizes Lemma 2 to a 
nonbinary version for randomized algorithms.
Lemma 8. Let I be an instance of the last zero problem. If 
any algorithm picks a selection probability q for I, its proba-
bility to succeed in any of the descendants of I is at most 
1� q.

Similar to Definition 12, when a randomized algo-
rithm selects an instance I with probability q, we say that 
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it removes a fraction q of the descendants of I. The proof of 
Lemma 8 also shows that these removed fractions adhere 
to the following additive property: If an algorithm 
selects an instance I with probability q, and one of its 
descendants I0 with probability r, then for any descen-
dant I00 of I0 its removed fraction is q+ r and the algo-
rithm can select it with probability at most 1� q� r.

Similarly, we define the performance of a random-
ized algorithm for a given size n as the product of the 
weight of a node multiplied by its selection probability, 
summed over all instances of size n. The worst case per-
formance is then the infimum over n of these perfor-
mances, corresponding to Definition 1.

Finally, the success guarantee of the k-max algo-
rithm, proved in Lemma 1, can also be proved now 
using the alternative perspective of the conflict graph. 
The k-max algorithm roughly selects low degree nodes 
in every size n of the conflict graph in order to remove 
as little weight as possible from instances of larger size. 
A careful analysis indeed gives the same success guar-
antee kpk(1� p). For details, see the Online Appendix.

3.2.4. Proof for the Case of p ! 1/2. To introduce the 
main techniques behind the general proof, this section 
proves the special case of the negative results of Theo-
rem 2 for deterministic size-oblivious algorithms for 
the case where n is larger than some constant N0, and 
pà 1/2. Indeed, Proposition 3 generalizes Proposition 2
by getting rid of the first two of its aforementioned lim-
itations: It does not rely on the no-zero rule or small 
instance sizes.

For pà 1/2, all nodes of size n have the same weight, 
namely 1=2n. Thus at any given size, the total fraction 
of selected nodes equals the total weight of the selected 
nodes.
Proposition 3. For the last zero problem with pà 1/2, no 
deterministic size-oblivious algorithm can have a better suc-
cess guarantee than the k-max algorithm, even if we con-
sider only instances of size larger than N0, for any N0.

To prove Proposition 3, we will bound the success 
guarantee of any deterministic algorithm by consider-
ing a special class of algorithms.

Canonical Algorithms. More precisely, we consider a 
deterministic algorithm A that starts by selecting some 
nodes in the conflict graph for a certain size N0. Conse-
quently, all descendants of the selected nodes will be 
removed. A will then continue to the nodes of size N0 +
1 and select a subset of the nodes of this size that have 
not been removed. Then it will continue to the next size 
and iterate this procedure. We will show that if the 
algorithm consistently selects at least a 1=4 + ε�fraction 
of the nodes for each size, this process cannot run for-
ever, reaching a contradiction similar to the proof of 
Proposition 2.

Before we proceed to the proof, we make a crucial 
observation based on Lemma 5.

Lemma 9. Consider two nodes v, w in the conflict graph 
with deg(v) à deg(w). Then the subtree T(v) consisting of 
v and its descendants is isomorphic to the subtree T(w) con-
sisting of w and its descendants.

Because of these isomorphisms, some choices an 
algorithm can make are essentially equivalent.

Lemma 10. Consider an algorithm A for the last zero prob-
lem with pà 1/2 such that there exists an instance I1 2 AS 
and an instance I2 ∉ {AS [ AR} with |I1 | à |I2 | . Then 
there exists another algorithm A0 with I2 2 A0S and I1 ∉ A0S 
with the same success guarantee as A.

With this important observation at hand, we can 
prove that it suffices to restrict our attention to algo-
rithms of a canonical form, in order to reduce the large 
variety of possible algorithms. We say that an algo-
rithm follows a small degrees first strategy if for any 
instance size the algorithm considers, among the nodes 
it did not previously remove, it selects the nodes with 
the smallest degrees. This strategy does not define a 
single algorithm as many nodes have the same degree. 
Indeed, the k-max algorithm for AOSp is closely related 
to these small degrees first strategies for the last 
zero problem: We will elaborate on this in the Online 
Appendix.
Lemma 11 (Small Degrees First Strategy). Consider the 
last zero problem for pà 1/2. For every size-oblivious algo-
rithm A there exists an algorithm that adheres to the small 
degrees first strategy that achieves the same performance as 
A for every n.

From now on, we restrict ourselves to considering 
algorithms that follow the small degrees first strategy.

Cover Ratio. Consider an algorithm A. It partitions the 
nodes of the conflict graph of any given size n in three 
partitions: the set AS of selected nodes, the set AR of 
removed nodes, and the set V \ (AS [ AR) of nodes that 
are neither selected nor removed (the algorithm suc-
ceeds in any node in the first set and fails in the latter 
two). It might be counter-intuitive at first that the third 
set is nonempty as selecting any such node can only 
improve perf(A, n). However, this would remove all of 
its descendants. Because the success guarantee is 
defined as infn perf(A, n), lowering perf(A, n0) for some 
size n0 > n could therefore decrease it. Based on this 
consideration we introduce the following definition.

Definition 14. Let A be an algorithm for the last zero 
problem that selects the set of nodes AS and removes 
the set of nodes AR. Fix a size n. The cover ratio for A 
and size n is ρn à

P
v2An

S[An
R
w(v), that is, the combined 

weight of the nodes A selects and removes.
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Observe that this expression with a sum over only 
AS instead of AS [ AR equals perf(A, n). In the special 
case that pà1/2, all instances of size n have equal 
weight and therefore ρn à ( |AS | + |AR | )=2n is just the 
fraction of the total number of instances of size n that 
are either selected or removed.

Armed with this definition, we can present the 
proof of Proposition 3. The proof sketch of Proposi-
tion 2 showed the intuition behind the proof, here we 
state the formal arguments. The idea behind the proof 
is to show that selecting strictly more than 1/4 of the 
instances for many successive sizes implies that the 
cover ratio increases with the instance size in such a 
way that for some instance size it is impossible to 
select that many instances. This shows by contradic-
tion that there is no deterministic algorithm that has a 
success guarantee of 1=4 + ε�for any ε > 0.

Lemma 11 implies that we can restrict ourselves 
to an algorithm A that for every instance size n selects 
a 1=4 + ε�fraction of the nonremoved instances in in-
creasing order of degrees (breaking ties arbitrarily 
between instances of the same degree as they consti-
tute isomorphic subtrees). Then A repeats this for the 
nonremoved instances of size n+1, which we refer to 
as the next step. Without loss of generality, we can 
assume that A starts at size N0 with no removed nodes.

We now analyze the dynamics of A and in particular 
the dynamics of the cover ratio. First, observe that at 
size N0, no nodes have been removed thus far. As A 
selects a 1=4 + ε�fraction of the nodes and half of all 
these nodes have a degree of one, the algorithm selects 
only nodes of degree 1. For a certain number of sizes, 
starting from N0, the algorithm can select only degree 
1 nodes. We call this the first phase of the algorithm.
Claim 1. Consider the last zero problem for pà 1/2 and 
an algorithm as described previously. After t steps in the first 
phase of the algorithm, the cover ratio ρN0+t equals (1=4 + ε) ·Pt

ià1 1=2i�1.

Note that (1=4 + ε) ·Pt
ià1 1=2i�1 tends asymptotically 

toward (1 + ε)=2 as k grows, for a given ε > 0. In partic-
ular, this means that there exists an instance size s such 
that ρs > 1=2, which is the total fraction of nodes with 
degree 1. This implies, in turn, that A cannot only select 
nodes of degree 1 from instance size s onwards and is 
forced to start selecting degree 2 nodes to achieve a per-
formance of 1=4 + ε�for these instance sizes. This is the 
start of a second phase in which A also selects degree 2 
nodes.
Claim 2. Consider the last zero problem for pà 1/2 and an 
algorithm as described previously. Let s be the instance size 
at which the second phase of the algorithm starts. Then 
ρi+1 � ρi + ε�for all i � s.

These two claims imply Proposition 3, and its proof 
can be found in the Online Appendix. Intuitively, if the 

cover ratio grows by the same additive factor in each 
step, at some point it will exceed the value 1, which 
completes the proof by contradiction.

3.2.5. Generalizing the Proof. The previous section 
proved the negative results of Theorem 2 for size- 
oblivious deterministic algorithms for pà 1/2. In this sec-
tion, we sketch the generalization for general values of p, 
for randomized algorithms, and for non–size-oblivious 
algorithms. All details are in the Online Appendix.

Generalization to Any Value of p. To generalize the 
previous results beyond the case of pà 1/2 is a bit more 
complicated, because when p ≠ 1=2 the instances of the 
same size do not have the same probability of occur-
ring. For example, for pà3/4, succeeding in the in-
stance 1k0 contributes more to its performance for that 
instance size than to succeed in the instance 0k+1, as the 
first has probability (3=4)k(1=4) to occur and the second 
has probability (1=4)k+1. Recall that we associated these 
probabilities as weights to the nodes in the conflict 
graph (Definition 10).

As such, the swapping argument of Lemma 10 no 
longer works. To overcome this issue, we introduce 
two local operators: One for high-degree nodes and one 
for low-degree nodes. The high-degree local operator 
removes a node of high degree and selects its children 
instead, and the low-degree local operator selects a 
node of low degree and removes its descendants in-
stead. We can show that both local operators improve 
the average performance of an algorithm, which is the 
average of perf(A, n), perf(A, n + 1), : : : , perf(A, n + t)
in a window [n, n + t].

To complete the proof, we introduce an algorithm 
that we call the fill-in strategy, which selects all nonre-
moved nodes of degree up to b1=(1� p)c and prove it 
has optimal average performance among all size- 
oblivious deterministic algorithms. Finally, we analyze 
the k-max algorithm in the conflict graph and note that 
it is very consistent in the sense that it selects the same 
total weight for every size. Therefore, its average per-
formance and worst case performance (i.e., success 
guarantee) are arbitrarily close, and they match the 
average performance of the optimal fill-in strategy.

Generalization to Randomized Algorithms. Not much 
is needed to extend the results to size-oblivious ran-
domized algorithms for general values of p. We define 
the randomized version of the two previously men-
tioned local operators and show that they improve the 
average performance as well. The rest of the proof fol-
lows immediately from all arguments for the previous 
generalization.

Generalization to Non–Size-Oblivious Algorithms. The 
generalization to algorithms that are not size oblivious 
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is very similar in spirit to all the previous arguments. 
The idea is to mimic the proof for size-oblivious algo-
rithms by drawing a parallel between a different set of 
instances of AOSp and the last zero problem. Recall 
that Proposition 1 used instances of AOSp where the 
elements are ordered in increasing value. To prove The-
orem 2 for algorithms that are not size oblivious, con-
sider a set of instances for AOSp generated by an 
adversary who chooses, next to the values and an 
instance size n, another integer m. Then, he first orders 
an increasing sequence of numbers until index m, fol-
lowed by very low values. Intuitively, such an instance 
is similar to the instances considered previously, as 
knowing the value of n does not provide much useful 
information. An algorithm succeeds if it stops on the 
last online value before m, whose value is unknown. 
The proof requires some additional arguments, as the 
algorithm knows an upper bound on m and can esti-
mate its value roughly based on the number of samples 
of very low value, but the proof technique is very simi-
lar to the proof shown in this section. The full details 
are in the Online Appendix.

4. Random Order
In this section, we study the second problem of this 
paper: the random order secretary problem with p- 
sampling ROSp. To analyze this case it is useful to have 
the following equivalent setting.

4.1. Continuous Time Arrival Model
We are given the values α1, : : : ,αn, and nature samples 
n uniformly random and independent arrival times 
(τi)n

ià1 in the interval [0, 1]. Now S contains all elements 
αi such that τi < p and V contains all other elements. 
We get to observe all elements in S beforehand. Then, 
we observe one by one the elements in V in the order 
given by the τis.

We show equivalence between ROSp and the contin-
uous time arrival model by showing that any algorithm 
A for the original setting can be applied to the continu-
ous time model, obtaining the same success guarantee, 
and vice versa. Consider an algorithm for ROSp. It is 
easy to see that in the continuous time model each ele-
ment is in S independently with probability p, and that 
the elements in V are revealed in uniformly random 
order, as in ROSp. Therefore, we can use the algorithm 
A and simply ignore the arrival times. Consider now an 
algorithm A0 for the continuous time model. There are 
no arrival times in ROSp, but we can simulate them: we 
can sample |S | uniform arrival times in the interval 
[0, p] and assign them to the elements of S in an arbi-
trary way, and sample |V | à n� |S | uniform arrival 
times in [p, 1] and assign them to each observed ele-
ment in V. Notice that since in ROSp each element is in 
S independently with probability p and the elements in 

V are revealed in uniformly random order, the simu-
lated arrival times distribute exactly as n uniform 
arrival times in [0, 1]. Thus, if the algorithm A0 requires 
observing the arrival times, we can simply pass it the 
simulated arrival times and we obtain a randomized 
algorithm for ROSp with the same success probability 
as if we were applying it to the continuous time model.

From now on, we consider the continuous time 
arrival model. Consider the family of algorithms ALGt, 
described in Algorithm 2. The algorithm is parameter-
ized by a sequence t à (ti)i2N such that 0  t1 < t2 <⋯ < 1, which it takes as input. The algorithm starts by 
setting a threshold equal to the largest sampled element 
and it accepts an online element revealed between time 
t1 and t2 if it exceeds this threshold and is the largest 
online element revealed thus far. Between time t2 and 
t3, it accepts an element if and only if it is larger 
than the second largest sampled element, and it is the 
largest online element revealed thus far, and so on. 
After every tk value, it decreases the threshold to the 
kth largest sampled element. In general, the algorithm 
ALGt accepts an element αi if it is the largest element of 
V seen thus far, and it is larger than the kth largest ele-
ment in S, where k is such that tk  τi < tk+1. In other 
words, between times tk and tk+1 the algorithm sets as 
threshold the kth largest element of S for each k. It only 
accepts elements larger than this threshold and larger 
than any online value seen thus far. We prove that the 
best possible success guarantee is attained in this family 
of decreasing threshold algorithms. Even though these 
algorithms are designed for the continuous time model, 
because of the aforementioned equivalence, they are 
also optimal in the original setting.

Algorithm 2 (Time-Threshold Algorithm ALGt for ROSp)
for i à 1, : : : , |S | do

si the i-th largest element in S.
end for
si �1 if i > |S | .
for j à 1, : : : , |V | do
σ(j) the index of the jth observed element of V.
if τσ(j) < t1 then

Discard the value
else
ℓ max{ℓ0 : tℓ0  τσ(j)}.
if ασ(j) > sℓ�and ασ(j) is the largest element of V 
seen so far then

Accept the value and stop the game
else

Discard the value
end if

end if
end for

Theorem 3. There exists a universal sequence t, indepen-
dent of p and n, such that ALGt obtains the best possible 
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success guarantee for ROSp. Furthermore, when pà 0, this 
guarantee is equal to 1=e, and when p tends to one, the 
guarantee tends to γ ⇡ 0:58, the optimal success guarantee 
in the full-information secretary problem.8

We prove this theorem in two main steps. First, we 
find the sequence t⇤ that maximizes the success guaran-
tee of ALGt. Then, we find an expression for the optimal 
success probability when p and n are given, and prove 
that for fixed p it converges to the success guarantee of 
ALGt⇤ when n tends to infinity. In this section, we state 
the lemmas and sketch the proofs. The full proofs can 
be found in the Online Appendix.

To find the optimal sequence t⇤, we start by studying 
the success probability of algorithm ALGt, for any 
sequence t, sample rate p and instance size n. We prove 
that in fact the worst case for this class of algorithms is 
when n is very large. The approach of approximating 
the problem when n is large by a continuous time prob-
lem was pioneered by Bruss (1984) and has been used 
for different optimal stopping problems (Immorlica 
et al. 2006, Chan et al. 2015).
Lemma 12. For any sequence t and sampling probability p, 
the success probability of ALGt in ROSp decreases with n.

To prove the lemma the idea is to inductively couple 
the realizations of the arrival times in instances of sizes 
n and n+ 1. We show that if ALGt fails for a given reali-
zation of the arrival times of the largest n values in the 
instance of size n, then ALGt also fails for any possible 
realization of the arrival time of the smallest (the n+ 1th 
largest) value, in the instance of size n+ 1. This implies 
that the probability of failure increases with n.

By Lemma 12, the success guarantee of ALGt is sim-
ply the limit of its success probability when n grows 
to infinity. We calculate these probabilities and 
obtain an explicit formula for the limit in the following 
lemma. Interestingly, the formula turns out to be fairly 
simple.
Lemma 13. Fix a sequence t and a sampling probability p. 
The success guarantee of ALGt in ROSp is given by

X1

ià1
pi�1 · 1� (p ∨ ti)�

Z 1

(p∨ti)

Xi

jà1

t� (p ∨ ti)
tj dt

0

@

1

A: (1) 

where p ∨ ti àmax {p, ti}.
We then focus our attention on optimizing this success 
guarantee. Surprisingly, it turns out the problem of 
maximizing Equation (1) is separable and concave, so 
we can simply impose the first-order conditions to 
obtain the optimum. Perhaps even more surprising is 
that these first-order conditions are independent of p, 
and therefore, the optimal sequence t⇤ is also indepen-
dent of p, as the following lemma shows.

Lemma 14. Fix a sampling probability p. The sequence t⇤
defined as the unique solution of the equations

ln 1
t⇤i

◆ 
+
Xi�1

jà1

(1=t⇤i )
j� 1

j à 1, for all i 2 N, (2) 

maximizes Equation (1). In particular, t⇤ does not depend 
on p.

Now that we have the best algorithm in the family, 
we prove that its success guarantee is actually the best 
possible. To do this, we first characterize the algorithm 
that achieves the highest success probability for fixed 
sampling probability p and instance size n.

For a nondecreasing function ℓ : [n]! [n], we define 
the sequential-ℓ-max algorithm in the following way.
Definition 15. Let ℓ : [n]! [n]. The sequential-ℓ-max 
algorithm accepts the ith observed value (considering 
the values from S and the ones that have been 
revealed from V) if it is the largest seen thus far from 
V, and it is larger that the ℓ(i)th largest value from S.

We prove that the optimal algorithm is in this class.
Lemma 15. Fix a sampling probability p and an instance 
size n. There is a function ℓ�such that the sequential-ℓ-max 
algorithm obtains the best possible success probability for 
instances of size n of ROSp.

To conclude the optimality of ALGt⇤ we show that 
the success probability of the best sequential-ℓ-max 
algorithm for each n converges to Equation (1) for some 
sequence t, when n grows to infinity. To this end, we 
first calculate the success probability of a sequential- 
ℓ-max algorithm.
Lemma 16. Fix n, p, and a nondecreasing function ℓ. Con-
sider an integer h such that 0  h < n, and define ℓ̂(i) à
min{ℓ(i), h + 1} for all i 2 [n]. The success probability of 
the sequential-ℓ-max algorithm, conditional on |S | à h, is 
given by

1
n� h

 

1�
Yℓ̂(h+1)�1

jà0

h� j
n� j

!

+
Xn�1

iàh+1

 
Xi

ràh+1

1
n� i

 
1

i� h
Yℓ̂(r)�1

jà0

h� j
i� j �

1
n� h

Yℓ̂(r)�1

jà0

h� j
n� j

!

� 1
n� h

Yℓ̂(i+1)�1

jà0

h� j
n� j

!

: (3) 

We then show that there is a limit for the optimal ℓ�in a 
continuous space and use a Riemann sum analysis to 
obtain Equation (1) in the limit, proving Theorem 3.

Lemma 17. Fix a sampling probability p. For each n 2 N, 
choose ℓp, n so that the sequential-ℓp, n-max algorithm achieves 
the best possible success probability for fixed p and n. There 
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exists a sequence t such that the success probability of the 
sequential-ℓp, n-max algorithm converges to Equation (1) 
when n grows to infinity.

Finally, we study the success guarantee of ALGt⇤ in 
the border values of p and show that it actually becomes 
equal to the best possible among all algorithms. It is easy 
to see that the success guarantee is 1=e when pà0. When 
pà0, Equation (1) simplifies to t1 ln(1=t1), and Equation 
(2) yields t⇤1 à 1=e. Substitution gives the success guaran-
tee of 1=e. The case when p tends to one is a bit more 
involved and requires some tedious calculations. We 
evaluate Equation (1) with the first-order approximation 
t⇤i ⇡ t0i :à 1� c=i, where c is a constant. To fix c we impose 
that (t0i ) satisfies Equation (2) in the limit when i!1. 
More precisely, we take c such that

1 à lim
i!1

ln 1
1� c=i

◆ 
+
Xi�1

jà1

(1� c=i)�j � 1
j

à
Z 1

0

ecx� 1
x dx:

With this in hand, we use a Riemann sum analysis to 
show the next lemma, which states that when p tends 
to one, this approximation converges to the explicit 
expression of Samuels (1982, 1991) for γ.
Lemma 18. Let t0i à 1� c=i, where c is the solution of R 1

0 (ecx� 1)=x dx à 1. When evaluated in t0, Equation (1) 
tends to

γ à e�c + (e�c� 1� c)
Z 1

1
x�1e�cx dx ⇡ 0:5801, (4) 

when p tends to one.

4.1. Computation of the Time Thresholds
In this section, we discuss how to compute the optimal 
time thresholds t⇤. By Lemma 14, t⇤ does not depend on 
p, nor in n, and therefore it is enough to compute them 
once. However, because t⇤ is an infinite sequence, a rea-
sonable question is how well we can do if we compute 
only finitely many of these thresholds.

Denote by γ(p) the optimal success guarantee for a 
given p 2 [0, 1). To achieve a success guarantee of γ(p)�
ε�for a given ε > 0, it is sufficient to compute O

�
[1=ε ·

(1� p)]
⇥

many thresholds within an O(ε2(1� p)2) mar-
gin of error each. The reason for this is that our algo-
rithm can fail (compared with ALGt⇤ ) if the best element 
of the interval [p, 1] falls too close to the thresholds 
(closer than the margin of error), or after the last thresh-
old we computed, which by the first-order approxima-
tion is 1� O(ε(1� p)). However, the best element of the 
interval [p, 1] falls in a set of measure ε(1� p) with prob-
ability ε, and therefore we can ignore this event while 
only losing ε�in the success probability.

Observe that for each i 2 N, Equation (2) gives a sepa-
rate equation on a single variable, whose unique solution 
is t⇤i . Also, the left-hand side is monotone and continuous. 
Therefore, we can approximate each threshold t⇤i inde-
pendently by doing a binary search on each of these 
equations.

If we assume that the left-hand side of Equation (2) 
can be computed in O(i) time for a given i (because it 
has i terms), we obtain the following.

Lemma 19. For any given p 2 [0, 1], instance size n, and 
ε > 0, we can compute thresholds t̃ that approximate t⇤ and 
such that ALGt̃ has a success probability of at least γ(p)�
ε�in time O

�
1=[ε2(1� p)2] · log

�
[1=ε(1� p)]

⇥⇥
.

Table 1 provides the first 10 optimal time thresholds.

5. Robustness with Respect to the 
Knowledge of the Parameters

In this section, we briefly discuss the impact of the 
knowledge of the parameters on the guarantees that 
can be obtained. There are two parameters for both 
AOSp and ROSp: the number of elements n and the 
sampling probability p. The performance of an algo-
rithm can vary a lot depending on its presumed knowl-
edge about these parameters.

For AOSp we already discussed that knowledge of n 
is irrelevant in worst case terms, and the next section 
gives some insights into its performance for given 
values of n. It also presents numerical results for sen-
sitivity analysis on the value of p. To complete the 
picture, we analyze the robustness with respect to esti-
mation errors in the parameter p theoretically in this 
section. First, if p is unknown but n is known, we show 
that the ratio of the number of samples to the total 
number of elements gives a good estimate of p and 
that using the k-max algorithm with this estimate is 
basically optimal. More specifically, assume we are 
given a set S of h samples, drawn independently from 
an initial set consisting of n values in total, using some 
(unknown) value of p. The remaining n� h samples 
form the online set V. In this setting we adapt the 
k-max algorithm simply by setting the threshold to the 
kth largest sample, where k à bn=(n� h)c, and accept-
ing the first value of the online set that is above the 
threshold. This variation of the k-max algorithm boils 
down to simply estimating p as p̂ à h=n and using p̂ 
to determine the desired value of k. By standard 

Table 1. Approximation of the First 10 Optimal Time 
Thresholds Within an Error of 10�7

t⇤1 ⇡ 0:3678794 t⇤6 ⇡ 0:8709762
t⇤2 ⇡ 0:6422006 t⇤7 ⇡ 0:8887973
t⇤3 ⇡ 0:7518116 t⇤8 ⇡ 0:9022956
t⇤4 ⇡ 0:8101810 t⇤9 ⇡ 0:9128731
t⇤5 ⇡ 0:8463645 t⇤10 ⇡ 0:9213851
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concentration arguments, we can prove that the esti-
mate p̂ is accurate with high probability, and thus we 
obtain the following theorem, whose proof can be 
found in the Online Appendix.
Theorem 4. Consider AOSp with unknown p, where h sam-
ples are drawn independently from a set of n elements. The 
k-max algorithm with p̂ à h=n achieves the best possible suc-
cess guarantee up to a factor 1� ε�with high probability.

Second, for AOSp where both p and n are unknown, 
we show that no nontrivial guarantee can be obtained. 
The intuition behind this strong negative result results 
from the situation in which the algorithm is given very 
few samples. In this case, it does not know whether the 
instance is very short (in which case it should stop 
early), or the sampling probability is very low (in which 
case it should wait longer).
Theorem 5. When both p and n are unknown, no algo-
rithm can get a positive success guarantee for AOSp.

For ROSp, we have shown that the optimal algorithm 
ALGt⇤ does not depend on p, and knowledge of the uni-
form random arrivals suffices to obtain the optimal 
guarantee. Therefore, ALGt⇤ achieves the best possible 
success guarantee, even when n is unknown. The next 
section provides more insights into its quality for finite 
n. Conversely, if p is unknown and n is known and 
large, then we can sample uniform random arrival 
times for each value and obtain with ALGt⇤ the best suc-
cess guarantee. Indeed, the sampled arrival times them-
selves will provide a sharp estimate of p.

On a more applied note, whenever it is reasonable 
to assume that the values come in random order, it is 
usually also safe to assume that this random order 
comes from random arrival times. In case the arrival 
times are random but not uniform, the time thresholds 
t⇤ can be transformed using the distribution function 
of the arrival times, and again, it is possible to obtain 
the optimal success guarantee.

6. Numerical Experiments
In this section, we implement our algorithms and eval-
uate them on the data set of Goldstein et al. (2020). In 
their paper, they design a large-scale online experiment 
in which people repeatedly play a secretary problem. 
The values each player faces are drawn i.i.d. from a dis-
tribution unknown to them and their total number is 
the same in every game. The main goal is to study 
experimentally the evolution of the players’ stopping 
behavior. In particular, the main research question 
posed is whether the players progressively learn a 
near-optimal stopping strategy as they gain more expe-
rience. Goldstein et al. (2020) use a Bayesian compari-
son framework to model the players’ behavior and 
conclude that the estimated thresholds are indeed very 

close to the ones of Gilbert and Mosteller (1966) (i.e., the 
optimal ones for i.i.d. values from a known distribu-
tion) after only a few games.

We start by observing that our independent sam-
pling model can be applied to their repeated secretary 
problem in a straightforward way; the first game is pre-
cisely the classic secretary problem or ROS0. Now, the 
second game closely corresponds to ROS1=2; we can 
imagine the values of the first game as our samples and 
the values of the second game as the online values. All 
values are i.i.d., and the two sets have equal sizes. Our 
independent sampling model with p à 1=2 and the 
values of both games as the n input values 
α1,α2, : : : ,αn, would also result in splitting them into 
two sets of roughly equal size. Applying the same rea-
soning, the third game closely corresponds to ROS2=3, 
and so on; the ith game corresponds to ROS(i� 1)=i. In 
general, our model and this repeated secretary problem 
would be equivalent in the limit as n!1, but for small 
values of n, we essentially ignore the variance of the 
independent sampling process. Because our algorithms 
are guaranteed to be optimal in a very similar model, 
they can serve as a meaningful benchmark for studying 
the players’ strategies across games. By doing so, we 
hope to provide new insights and strengthen the exist-
ing ones regarding the players’ behavior. In particular, 
and as mentioned in Section 1.3, our new comparison 
can help explain up to which extent players optimally 
use the information they have at each game and, as a 
result, resolve some behavioral issues raised by Gold-
stein et al. (2020). Because the values are i.i.d. (thus, 
closer to random order than adversarial) and players 
could choose the order of inspecting the elements (of 
course without knowing their values or the distribution 
over them), ALGt is the natural candidate to use as the 
main benchmark, especially because its guarantee con-
verges to the algorithm of Gilbert and Mosteller (1966).

First, we describe in more detail the behavioral exper-
iment, the methodology, and the results obtained in 
Goldstein et al. (2020). The participants of the online 
experiment were directed to a simple interface, in 
which they were presented with a number of boxes con-
taining money (i.e., hidden values). They could open 
the boxes in any order they wanted and decide when to 
stop. The interface would not let them terminate the 
game if the value with which they stopped was not a 
local maximum. After the end of each game, they were 
told if they won, how far away they were from the max-
imum value, and they would observe all the values 
of that game. They were also incentivized to play at 
least six games. The values for each player were drawn 
independently from an identical unknown distribution 
across all games. Each player was randomly assigned to 
one of three candidate distributions with the same sup-
port but with very different density functions; the first 
had high negative skew, the second was the uniform 
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distribution, and the third had high positive skew. Each 
player was also randomly assigned to play games of 7 
boxes or 15 boxes (recall that the game becomes harder 
as the number of boxes increases). In the end, 6,637 peo-
ple participated and were distributed across the afore-
mentioned random choices. They played a total of 
48,836 games, for an average of 7.39 games per player.

The data set of the experiments contains the follow-
ing information for each player: in which distribution 
and to which number of boxes they were assigned, 
how many games they played, the number of each 
game (if it was the first game, the second, and so on), 
the value and the rank of the box with which they 
stopped at each game, and the values of all opened 
boxes. What is not included in the data set of Goldstein 
et al. (2020), although the players observed them at the 
end of each game, are the values of the remaining closed 
boxes. Nevertheless, this is not a major issue; because we 
know the distribution from which the values were 
drawn, we can complement each instance with random 
values that would be very similar to the realized ones.

Their data show that the players rapidly improve 
their performance in early games, thus exhibiting sub-
stantial learning. The effects of learning are not as 
strong in later games, and the players eventually con-
verge to a probability of success that is 5–10 percentage 
points below the theoretical optima (that is, the guar-
antee given by the optimal algorithm of Gilbert and 
Mosteller (1966) with perfect knowledge of the distri-
bution). The authors focus on modeling the players’ 
strategies and attempt to fit several models they define 
to the data. In the first game, they observe that the 
thresholds belong to the class of what they call “value 
oblivious” strategies, which also contains the solution 
to the classical secretary problem. After the first game, 
the authors conclude that the players play according 
to a multithreshold strategy. Therefore, there is a 
switch in strategies from the first to the second game. 
The optimal algorithm of Gilbert and Mosteller (1966) 
and our optimal algorithm for ROSp also compute a 
series of (decreasing) thresholds. To investigate at 
which rate players learn to play optimally, Goldstein 
et al. (2020) compute the players’ estimated thresholds 
for the seven box games; they show that these con-
verge quickly to the optimal ones of Gilbert and Mos-
teller (1966) and are very close to them already in the 
fourth game. Finally, they give some potential expla-
nations for the strategy switch from the first game to 
the second (see also Section 1.3). One important take-
away from that work is that for such fundamental opti-
mal stopping problems, their results indicate that “the 
optimal procedure is likely to give a close approxima-
tion of human behavior. This is in contrast to many 
other areas of economics.” Our experimental results, 
which we present next, will provide strong further 
support to this insight.

6.1. Experimental Setup
For our experiments, the first thing to do is to complete 
the missing data of the real-world data set. Because for 
each game, the rank and the value of the box the player 
stopped with, the value distribution, and the values of 
the opened boxes are known, we generate the values 
of the unopened boxes using rejection sampling. This 
is a necessary step for ALGt because it uses the whole 
sample set to fix the thresholds. We generate 100 such 
complete instances by independently generating the 
missing data 100 times and take the average success 
rate of ALGt (i.e., the fraction of instances in which 
the algorithm stopped with the maximum value) for 
each game as our final result. For a fair comparison 
with the work of Goldstein et al. (2020), we also per-
form no cleaning on the data by excluding, for exam-
ple, players who did not put any effort into winning. 
After the end of each game, we add the values of the 
boxes to our sample set S. Thus, we know that, for 
example, in the third game, the samples are twice as 
many as the online values. In this case, as we explained 
before, we run our algorithm with p à 2=3. All our 
results are plotted for the first nine games. We made 
this choice so that, on the one hand, we are consistent 
with some of the important figures of Goldstein et al. 
(2020) (e.g., figures 8 and 9) and, on the other hand, 
because less than a quarter of the players played more 
than nine games.

6.2. Experimental Results for the Optimal 
ROSp Algorithm

We present in Figure 3 the results of evaluating ALGt 
on the data of Goldstein et al. (2020) complemented 
with the generated values of the unopened boxes. To 
calculate the series of decreasing thresholds of ALGt, 
we have to solve Equation (2); it is faster to search for 
the solution for each threshold using binary search and 
stop when we are ε-close to the solution of the equation 
(here, we set ε à 10�7).

As we observe from Figure 3, (a) and (b), the evolu-
tion of the success rates of the players and ALGt exhibit 
a very strong correlation, both for 7 and 15 boxes. This 
suggests that the players play according to some strat-
egy that is similar to ALGt all along (i.e., a series of 
decreasing thresholds), but (slightly) suboptimally. 
Moreover, the difference in the success rates is similar 
across games, and in particular, it slightly decreases in 
the first few games, and from game 4 onward it 
remains stable. These results strengthen the belief that 
for this type of simple online selection problems the 
optimal algorithm provides good insights into how 
players behave. Figure 3(c) provides additional sup-
porting evidence to the claim that the players quickly 
learn how to play strategies that are close to the opti-
mal. The figure shows the percentage of players that 
played close to optimal in the sense that the ranking of 
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the chosen value of a near-optimal player and that of 
ALGt differ by at most one. We observe that there is a 
strong learning effect in the first approximately four 
games. Starting at game 6, it remains relatively stable, 
and it even decreases slightly in the subsequent games. 
Nonetheless, around 80% of the players (and a bit less 
for the harder case of 15 boxes) learn how to play close 
to optimal after only a few games.

6.3. Experimental Results for the Optimal 
AOSp Algorithm

In this section, we evaluate the k-max algorithm on the 
same data set. We perform a sensitivity analysis for 
the k-max algorithm by allowing an estimation error 
in the value of p up to 0.1. Figure 4 shows the perfor-
mance of the algorithm again in the first nine games 
and the deviation in its guarantees by allowing p to 
vary. For reference, we plot again the success rate of 
ALGt. There are separate plots for the error resulting 

from an underestimation and an overestimation because 
they exhibit different types of deviation. The perfor-
mance of the k-max algorithm has a huge improvement 
between games 1 and 2, and after game 3, its perfor-
mance remains stable and only a few percentage points 
below that of ALGt.

As for the robustness of the k-max algorithm with 
respect to misspecification of the parameter p, Figure 4
shows what one might expect: Running the algorithm 
with slightly wrong p does not play a big role for the 
first few games because the same or a close (in ranking) 
sample will be selected as the threshold (recall, e.g., that 
AOSp takes the same threshold for all p 2 [0, 1=2)). Later 
on, however, we see that the deviation from the guaran-
tee of k-max starts increasing. Because the value of p is 
only slightly different for two consecutive games, using 
some p0 instead of p will likely result in very different 
threshold choices. For this reason, the deviation when p 
gets overestimated explodes (resulting in practically no 

Figure 3. (Color online) Comparison of the Players’ Behavior with the Optimal Algorithm for ROSp for 7 and 15 Boxes 

Notes. (a) The success rate of the players and ALGt for the first nine games and their difference for seven boxes. (b) The success rate of the players 
and ALGt for the first nine games and their difference for 15 boxes. (c) Percentage of players who picked a value with ranking at most one away 
from the value ALGt picks.
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guarantee by game 9), whereas in the case of underesti-
mation, the deviation increases smoothly with the num-
ber of games. Take as an example game 8: For this 
game, the correct p is 7/8 and the resulting k is 8; that is, 
the threshold is set to the eighth largest value from a 
previous game. If we were to underestimate p by 0.1, 
we would set k0 à 4. This misspecified k0 is different 
from the correct one, but not too far away, so we can 
still hope to catch the maximum in some instances, 
despite the threshold being higher than before. On the 
other hand, if we were to overestimate p by 0.1, we 
would set k00 à 40. This is way off the right value of k, 
resulting in setting a very low threshold (we would 
expect to accept an online value among the very first 
ones) and thus achieving a much lower guarantee.

Further Discussion and Insights. From Figures 3 and 
4, we get a good view of how our algorithms perform 
for finite, and in particular, small values of n. ALGt 
achieves guarantees that are slightly above its worst- 
case theoretical ones and, as p increases, it follows a 
similar trajectory to the worst case (which occurs when 
n!1). The case for the k-max algorithm is slightly 
different: on the one hand, it also follows a similar 

trajectory to the theoretical worst-case guarantee as p 
increases, but, on the other hand, it performs much bet-
ter than the worst-case bounds. Finally, recall that Sec-
tion 5 includes an analysis of the robustness of the 
k-max algorithm for each game separately, where we 
show how the deviation from the success rate changes 
as the estimation error of p varies.

7. Extensions
We expect that the ideas developed in this paper will 
prove useful in other contexts related to online decision 
making. To motivate further work, we discuss two rela-
tively straightforward extensions of our model and 
results. These extensions are concerned with the well- 
studied matroid secretary problem. Here, the decision 
maker faces a sequence of the elements of a given 
ground set and needs to select a subset, subject to the 
constraint that the selected set has to be an independent 
set of an underlying matroid.

7.1. Graphical Matroid Secretary Problem with 
Independent Sampling

First, consider the graphical matroid secretary problem, 
in which the underlying matroid is graphical (i.e., the 

Figure 4. (Color online) Evaluation of AOSp on the Data Set of Goldstein et al. (2020) 

Notes. The errors correspond to wrong estimation of p up to 0.1. For each of the cases of 7 and 15 boxes, the left plot corresponds to an underesti-
mation of the right value of p and the right plot to an overestimation.
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independent sets are forests of an undirected graph). For 
this problem, Korula and Pál (2009) gave a 1=(2e)-com-
petitive algorithm for the case in which the elements 
are presented to the decision maker in random order. 
In a nutshell, Korula and Pal fix an ordering of the verti-
ces and with probability 1/2 they orient all edges from 
the lower numbered vertex to the higher numbered 
vertex, and with probability 1/2 they orient all edges in 
the other direction. Then they run for each vertex inde-
pendently a standard secretary algorithm to find the 
maximum-weight edge leaving this vertex. It is not dif-
ficult to see that this gives a 1=(2e)-approximation.

Now consider the random order graphical matroid 
secretary problem with independent sampling, in which 
every edge is sampled independently a priori with a fixed 
probability p and the goal is to select the maximum- 
weight independent set of the nonsampled elements. Let 
α⇤R(p) be the success guarantee of ROSp obtained in this 
paper. The analysis of Korula and Pál (2009) immediately 
yields a success guarantee of α⇤R(p)=2 for this extension to 
graphical matroids.

7.2. Laminar Matroid Secretary Problem with 
Independent Sampling

Second, consider the laminar matroid secretary prob-
lem, in which underlying matroid is laminar.9 For this 
class, a sequence of papers have obtained constant fac-
tor guarantees (Jaillet et al. 2013, Ma et al. 2016) until 
the currently best-known factor of 5.16 (Soto et al. 
2021). All these papers rely on the idea of first (binomi-
ally) sampling a fraction of the elements of the matroid 
to guide the posterior decisions. However, the final 
goal is to compare against the optimal solution that 
includes even the sampled elements. An interesting 
direction will be to study the performance guarantees 
of these algorithms when the benchmark is the optimal 
solution of the online set as in this paper.

Moreover the technique of first using independent 
sampling is ubiquitous in secretary problems with 
combinatorial constraints. Therefore, we believe that 
understanding the performance guarantees when com-
pared with the optimum of the online set is interesting 
not only from a theoretical perspective but also from a 
practical viewpoint since these samples can be inter-
preted as historical data.
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Endnotes
1 Esfandiari et al. (2020) also obtained this result.
2 The classic prophet inequality asserts that when faced with a 
sequence of n independent random variables, X1, : : : , Xn, a decision 
maker who knows their distributions and is allowed to stop the 
sequence at any time, can obtain, in expectation, at least half the 
reward of a prophet who knows the values of each realization.
3 Interestingly, the model was proposed much earlier by Campbell 
and Samuels (1981) and recently rediscovered.
4 Our results, and in particular the upper bounds on the success 
probability, remain true if the adversary knows all values α1, : : : ,αn 
but not the result of the sampling process; that is, she does not 
know the random sets S and V.
5 We recently became aware of the work of Campbell and Samuels 
(1981) who obtain very similar results. Indeed, they consider the 
dependent sampling version described earlier and obtain that the 
optimal success guarantee converges to γ�as the fraction sampled 
grows to one. Their methods, however, are very different from ours 
and are significantly more complicated.
6 Recall that we define the kth largest element from a set of less than 
k elements as �1.
7 Observe that this lemma still holds in the setting where the order 
of the online elements is determined by the adversary after sam-
pling because our algorithm is order oblivious.
8 The optimal guarantee γ ⇡ 0:58 was first obtained numerically by 
Gilbert and Mosteller (1966). An explicit formula for γ�was later 
found by Samuels (1982, 1991).
9 A laminar family is a collection A of subsets of a ground set E 
such that, for any two intersecting sets, one is contained in the 
other. For a capacity function c on A, a laminar matroid is given by 
the family of independent sets {I : | I \A |  c(A), for all A 2A}.
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