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Abstract. We consider a dynamic pricing problem in which a firm sells one item to a sin-
gle buyer to maximize expected revenue. The firm commits to a price function over an infi-
nite horizon. The buyer arrives at some random time with a private value for the item. He 
is more impatient than the seller and strategizes over the timing of the purchase in order to 
maximize his expected utility, which implies either buying immediately, waiting to benefit 
from a lower price, or not buying. We study the value of the seller’s ability to observe the 
buyer’s arrival time in terms of her expected revenue. When the seller can observe the 
buyer’s arrival, she can make the price function contingent on the buyer’s arrival time. On 
the contrary, when the seller can’t, her price function is fixed at time zero for the whole 
horizon. The value of observability (VO) is defined as the worst-case ratio between the 
expected revenue of the seller when she observes the buyer’s arrival and that when she 
does not. First, we show that, for the particular case in which the buyer’s valuation follows 
a monotone hazard rate distribution, the upper bound of VO is exp(1). Next, we show our 
main result: in a setting very general on valuation and arrival time distributions: VO is at 
most 4.911. To obtain this bound, we fully characterize the solution to the observable 
arrival problem and use this solution to construct a random and periodic price function for 
the unobservable case. Finally, we show by solving a particular example to optimality that 
VO has a lower bound of 1.136.
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1. Introduction
The dynamic pricing practice has been around for 
decades in different industries, ranging from airlines and 
hotels to supermarkets and clothing retailers. Yet the rise 
of online business platforms since the early 2000 s has 
accelerated its presence. In particular, dynamic pricing 
has expanded from traditional domains to almost any 
business-to-consumer and consumer-to-consumer envi-
ronment with ride-sharing probably being one of the cur-
rent most prominent examples.

The widespread use of dynamic pricing has multiple 
drivers, including the need to liquidate excess invento-
ries within a limited time frame (e.g., apparel retailers), 
the varying opportunity cost of scarce capacity (e.g., car 
rental), the chance of gathering information about the 
underlying demand (e.g., learning about elasticity), and 

the possibility of extracting most of the surplus from a 
heterogeneous customer base via a form of intertem-
poral price discrimination. Its feasibility and successful 
implementation are rooted in the increasing availability 
of data from internal and external sources, sophisticated 
and rapid advances in machine learning and artificial 
intelligence, and tremendous progress in computational 
speed. In fact, digital technology has made it possible 
to continuously adjust prices to changing environments 
with minimal efforts and costs. On the downside, its 
extended use, concurrent with the price transparency 
occurring in online platforms, has raised some concerns, 
particularly among online retailers, because consumers 
have learned to strategize over the timing of their pur-
chases and wait to take advantage of a potential future 
lower price.
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The academic literature in operations management 
(OM)—and from a different perspective, also in econom-
ics and computer science—accounts for the rapid evolu-
tion of the dynamic pricing practice, acknowledging in 
several articles the threat represented by the forward- 
looking behavior of consumers. Our paper contributes to 
this stream by providing an assessment of the incremen-
tal revenue attainable by being able to observe consumer 
arrival time and adjust the pricing policy accordingly as 
opposed to the case in which this capability is absent. To 
our knowledge, this value of observability (VO) is over-
looked in the literature so far.

1.1. Problem Description
We consider a stylized yet fundamental model in which 
one seller interacts with one buyer. The seller holds a 
single item whose value is normalized to zero, whereas 
the buyer has a random private valuation for it. The 
buyer’s arrival time follows an arbitrary distribution 
over the nonnegative reals. Both the buyer and the 
seller discount the future, but they do it at different 
rates, the buyer being more impatient than the seller. 
The seller’s goal is to set up a price function to maxi-
mize her expected discounted revenue. On the buyer’s 
side, upon arrival, he observes the price function and 
decides to buy at the time that is most profitable for him 
or not buy at all.

The ability of the seller to observe the buyer’s arrival 
(or not) determines two scenarios. In one case, the seller 
sets the price curve from the very beginning of the time 
horizon regardless of the effective arrival time of the 
consumer. This could be simply a result of the seller 
ignoring the consumer arrival time or being unable to 
accurately register it. The latter may happen in online 
marketplaces, in which it may be challenging to distin-
guish interested buyers from other traffic on the website 
(e.g., robots searching competitors’ prices). Therefore, 
assuming that the seller can observe the arrival of the 
interested buyers may not be realistic. In the other sce-
nario, the seller is indeed able to track the arrival time of 
the interested customer and, therefore, may internalize 
this piece of information in the price curve she proposes 
to the buyer. The extent to which this observational abil-
ity produces an additional rent to the seller is the main 
subject of this paper.

In the observable case, the seller designs a menu of 
price functions indexed by time and shows the buyer 
the specific price curve tailored to his arrival time. In 
the unobservable case, this information is absent, and the 
seller has to set a price curve from the beginning of the 
selling horizon, only knowing the arrival distribution. 
These two scenarios naturally lead to define the value of 
observability of a given instance of the problem as the 
ratio between the revenue of the seller in the observable 
and unobservable cases. Here, an instance of the prob-
lem is defined by the buyer’s arrival time and valuation 

distributions and the discount rates for both the buyer 
and the seller. Then, the more general VO is defined as 
the supremum of the corresponding instance-specific 
value of observability taken over all possible distribu-
tions and discount rates. This VO corresponds to the 
worst-case ratio between the revenue of the seller in the 
observable and unobservable cases. The focus of our 
work is to bound this worst-case ratio.

There are two equivalent interpretations for our model 
that are worth highlighting. The first concerns the single 
buyer and single unit situation we describe. The model 
could be alternatively interpreted as having a contin-
uum of buyers with total mass normalized to one. In 
the observable case, the infinitesimal mass of each of 
these buyers is represented by the probability density 
function (pdf) of the buyer’s private valuation. This 
interpretation is extended by also accounting for the 
pdf of the buyers’ arrival distribution in the unobserva-
ble case and considering an infinitesimal mass of buyers 
described by the joint pdf between the valuation and 
the arrival time distributions. On the supply side, we 
assume a unit supply that is infinitesimally partitioned 
so that it can be assumed unlimited.

The second interpretation connects our VO results to 
the notion of price of discrimination. To see this, consider 
the continuum-of-buyers view of our model, in which the 
seller sets a customized price curve for each possible 
arrival time of buyers so that the total expected dis-
counted revenue she obtains is the same as that one 
achieved in the observable case. On the other hand, if the 
seller does not have this power, she should offer the same 
price curve to all customers since the beginning of the sell-
ing horizon. The latter problem is exactly the same as the 
unobservable case described earlier. Therefore, if we 
define the price of discrimination as the additional rent 
the seller can obtain by posting a customized price curve, 
it becomes equivalent to VO. In other words, we are also 
providing a bound for the price of discrimination.

Before proceeding, we point out here that our model, 
though stylized, captures some key features of several 
important business settings. For instance, in the video 
game industry, the connection between the producer or 
seller and the buyer can be modeled as a one-to-one rela-
tionship in which implementing personalized dynamic 
pricing is indeed feasible. For example, for purchasing 
a video game, some consumers with a high discount 
rate purchase the game immediately upon release. Some 
other consumers may anticipate an eventual price de-
crease and wait, whereas others may not have heard of 
the game for a while and, consequently, have later arrival 
times. These latter two types of consumers may or may 
not be distinguishable.

1.2. Our Results
Our main contribution is to establish that, for arbitrary 
arrival and valuation distributions of the buyer and 
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arbitrary discount rates of both the seller and the 
buyer, the value of observability is bounded above by 
a small constant. This result is somewhat surprising 
because of three key factors: (i) the setup of the model 
is very general; (ii) the bound is totally independent of 
the model primitives; and (iii) simple pricing strate-
gies, such as fixed pricing, fail to guarantee a constant 
bound.

En route to this result, we first analyze the observable 
arrival case. In this context, we take a pricing approach 
that, as usually different from the mechanism design 
approach, allows us to write the seller’s problem as an 
optimal control problem and fully characterize its solu-
tion. In particular, we can prove a key result (Lemma 
1), establishing that, under optimal pricing, the seller 
extracts a constant fraction of the total revenue within a 
short time period that solely depends on the seller’s dis-
count rate.

Then, we turn to study the unobservable case. Unfor-
tunately, this problem is much harder to analyze, and 
obtaining an explicit solution seems hopeless. How-
ever, to prove that the value of observability is bounded 
by a constant, it is enough to exhibit a feasible pricing 
policy that can recover a constant fraction of the reve-
nue of the optimal solution in the observable case. 
There are three main obstacles that we must circumvent 
to get our main result. First, we use part of the structure 
of the solution of the observable case and repeat it over 
time to construct a periodic price function. Because 
the solution of the observable case already takes an infi-
nite time to implement (which implies an arbitrarily 
long period when plugged in as a feasible solution to 
the unobservable arrival case), the aforementioned key 
lemma comes into play and allows us to implement this 
repeated pricing within small time windows. The sec-
ond obstacle is that we should be careful with the 
buyer’s forward-looking behavior. To account for this 
strategic wait, we simply introduce empty space, say, 
by using a very high price, before each application of 
the optimal observable pricing so as to make a buyer, 
arriving within this empty space, behave as in the 
observable case. Again, this comes at a loss of a constant 
fraction of the revenue. Finally, the third difficulty 
stems from some arrival distributions that might be 
biased toward regions in which the feasible pricing 
policy we consider is too low. To overcome this, we 
apply a random shift to our price curve, which allows 
us to treat the buyer’s arrival time as if it were uniform 
on a given interval. Ultimately, by carefully dealing 
with these three obstacles, we can state our main result 
(Theorem 1): the proposed pricing scheme for the 
unobservable case attains an expected revenue of at 
least a fraction 1=4:911 à 0:203 of the optimal revenue 
in the observable case. Along the way, we characterize 
an explicit pricing policy to approximately solve the 
hard unobservable case.

We show that the situation is much simpler for the 
special and relevant case of valuation distributions hav-
ing a monotone hazard rate (MHR), which includes sev-
eral standard distributions, such as the normal, uniform, 
logistic, exponential, and double exponential. Indeed, it 
is enough to consider a fixed price curve in the unobser-
vable arrival case (i.e., the price is constant over the 
whole period) to recover a fraction 1=e of the optimal 
revenue in the observable case. We further note that 
fixed pricing cannot guarantee a constant fraction in the 
general valuation distribution case.

Interestingly, we also observe that our results are 
robust to the distribution of arrivals. Even if the arrival 
time of the buyer was chosen by an adversary that 
knows the price function of the seller (but does not 
know the realization of the random shift) then our 
bound on the VO still applies.

Beyond the specific bound we are able to character-
ize, our result has important managerial implications. 
The seller may wonder how much she is leaving on the 
table by not being able to track the arrival time of the 
customers or, in other words, how much she is willing 
to pay for introducing this capability. Our conclusion is 
that this value could be significant from a business per-
spective, but it is not unbounded and does not depend 
on the problem parameters. It is not very significant 
when consumers’ valuation distribution has a mono-
tone hazard rate and even less important when the 
seller has a level of patience similar to the customer or is 
much more patient than him.

1.3. Road Map
The remainder of this paper is organized as follows: We 
start with a literature review in Section 2, followed by 
the precise model description in Section 3, spanning 
both the buyer’s (Section 3.1) and seller’s (Section 3.2) 
problems. The seller problem description includes the 
formulations of both the standard observable case and 
the more challenging unobservable case. Both cases are 
later analyzed in detail in Sections 4 and 5, respectively. 
Finally, the bounds for the VO are established in Section 
6. We close the paper with our concluding remarks in 
Section 7. The proofs of the results stated in the main 
body of the paper are relegated to Online Appendix A2.

2. Literature Review
The literature on intertemporal price discrimination 
under forward-looking consumers was pioneered by 
Stokey (1979), who considers a monopolist selling an 
unlimited inventory of a product by committing to a con-
tinuously declining price scheme over a finite horizon. 
All consumers are present at time zero and stay until 
either purchasing a unit or the end of the season, which-
ever occurs first. Stokey (1979) shows that price discrim-
ination is not profitable compared with a fixed-price 
strategy when the seller and the consumers discount the 
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future at the same rate. Landsberger and Meilijson (1985) 
study a particular case of Stokey (1979) in which consu-
mers have an exponentially discounted utility function 
and are more impatient than the seller (which has become 
a standard setup in the literature and which we also fol-
low in our model). The seller announces a price function 
that is continuous and differentiable. They show that, 
in this setup, intertemporal price discrimination strictly 
dominates the fixed-price policy.

Over the last four decades, there is a vast literature in 
economics and OM on the topic of dynamic pricing and 
strategic consumer behavior. More recently, the topic 
caught the interest of part of the computer science com-
munity. Although the borders are blurred, often, current 
research in OM deals with finding optimal or approxi-
mately optimal dynamic pricing mechanisms (e.g., Besbes 
and Lobel 2015, Caldentey et al. 2017, Gershkov et al. 
2018), whereas in economics, the central interest is to find 
optimal dynamic mechanisms that may imply departing 
from basic pricing schemes (e.g., Pavan et al. 2014, Board 
and Skrzypacz 2016), and in computer science, the inter-
est is in designing simple mechanisms that are approxi-
mately optimal (e.g., Blumrosen and Holenstein 2008, 
Chawla et al. 2010, Correa et al. 2019, Kessel et al. 2022). 
We refer the reader to the books by Talluri and van Ryzin 
(2004) and Gallego and Topaloglu (2019) for a detailed 
technical presentation of models on pricing. The book 
chapter by Aviv and Vulcano (2012) surveys the literature 
on dynamic list pricing until the 2000 s with emphasis on 
operational applications.

One of the early papers to address a dynamic pricing 
problem under strategic consumer behavior in opera-
tional contexts (although published in an economics 
journal) is Conlisk et al. (1984). The authors analyze the 
problem of a monopolist facing an arriving stream of 
customers over time who are, in turn, intertemporal util-
ity maximizers. They assume that consumer valuations 
could be either low or high and characterize optimal 
cyclic policies. Later, since the 2000 s, the OM commu-
nity has paid attention to the design of pricing mecha-
nisms to mitigate the adverse impact of strategic 
consumer behavior on firms’ revenues. These mecha-
nisms exceed traditional list pricing and include capacity 
rationing (e.g., Su 2007, Liu and Van Ryzin 2008), quick 
response production (e.g., Cachon and Swinney 2009), 
changing inventory display formats (e.g., Yin et al. 
2009), making price and capacity commitments (e.g., 
Aviv and Pazgal 2008, Su and Zhang 2008, Mersereau 
and Zhang 2012, Correa et al. 2016), internal price match-
ing (e.g., Lai et al. 2010), and binding reservations (e.g., 
Elmaghraby et al. 2009, Osadchiy and Vulcano 2010). 
A comprehensive reference on this topic is the book 
chapter by Aviv et al. (2009). Despite the common wis-
dom about the existence of such forward-looking con-
sumer behavior and the need to incorporate it in the 

decision-making process within operational applica-
tions, it was not until the mid 2010 s when Li et al. 
(2014) show that between 5.2% and 19.2% of the con-
sumer base they study within the air-travel industry 
strategized the timing of their bookings.

As mentioned, an important body of recent research 
on dynamic pricing with an algorithmic twist has 
emerged within the OM community. Borgs et al. (2014), 
motivated by the selling strategy of online services, 
analyze a multiperiod pricing problem of a firm with 
capacity levels that vary over time. Customers are het-
erogeneous in their arrival and departure periods as 
well as valuations and are fully strategic with respect to 
their purchasing decisions. The firm’s problem is to set 
a sequence of prices that maximizes its revenue and 
guarantees service to all paying customers. Besbes and 
Lobel (2015) study a fluid model in which customers 
arrive over time, are strategic in timing their purchases, 
and are heterogeneous in their valuation and willing-
ness to wait before purchasing or leaving. There is no 
inventory limitation. They show that the firm may 
restrict attention to cyclic pricing policies that have 
length, at most, twice the maximum willingness to wait 
of the customer population. Caldentey et al. (2017) take 
a robust approach for the intertemporal pricing prob-
lem based on the minimization of the seller’s worst case 
regret over a finite horizon. Customer types differ 
along willingness to pay and arrival time during the 
selling season, and the seller only knows the support of 
the customers’ valuations. They further assume that 
there is no inventory limitation and the seller and the 
consumers discount the future at the same rate. For 
markets with either myopic or strategic customers, 
they characterize optimal price paths. Chen and Farias 
(2018) study the typical dynamic pricing problem under 
forward-looking consumers with two particular features: 
(i) the private valuations of these customers decay over 
time, and (ii) the customers incur monitoring costs. Both 
the rates of decay and monitoring costs are private 
information. The authors propose a “robust pricing” 
mechanism that is guaranteed to achieve expected 
revenues that are at least within 29% of those under an 
optimal (not necessarily posted price) dynamic mech-
anism. In Chen et al. (2019), a paper with a focus on 
multiproduct, network revenue management (RM), 
the authors show for the single-product case that an 
optimally set fixed price guarantees the seller reven-
ues that are within at least 63.2% of that under an opti-
mal dynamic mechanism.

A different line of models in which customers are 
“patient” rather than “strategic” has recently caught the 
attention of the RM community. Liu and Cooper (2015) 
and Lobel (2020) belong to this stream and show the 
structural optimality of cyclic pricing policies. In Ara-
man and Fayad (2021), consumers are not only patient 

Correa, Pizarro, and Vulcano: The Value of Observability in Dynamic Pricing 
2110 Management Science, 2024, vol. 70, no. 4, pp. 2107–2121, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

86
.1

1.
41

.1
23

] o
n 

17
 Ju

ne
 2

02
4,

 a
t 1

2:
47

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



but also have time-varying stochastic valuations. The 
authors show that cyclic policies are near-optimal in 
this case.

We have discussed so far some of the most relevant 
papers belonging to the prolific literature on dynamic 
pricing under strategic consumer behavior. Different 
from the existing literature, the center of our analysis is 
the distinction between the consumers’ arrivals being 
observable or not. Regarding observable arrivals, the 
paper possibly closest to ours is Wang (2001), who also 
resorts to Euler–Lagrange optimality conditions to solve 
the pricing problem though his focus is related to the 
impact of different relative magnitudes between the 
discount rates of the seller and the infinitesimal buyers 
(adding up to a mass of one), all present at time zero. 
Although we consider a similar setting, his model im-
poses more technical structure, assuming that both the 
price and purchasing functions are monotone decreas-
ing. He also considers an extension with buyers arriving 
according to a Poisson process and in which the seller 
bargains with one buyer at a time upon the buyer’s 
arrival. In our model, we do not discuss bargaining, but 
allow a general arrival distribution. Wang (2001) also 
considers the nonobservable arrival case in his work. In 
particular, he considers buyers arriving according to a 
Poisson process facing a decreasing price function. The 
main modeling difference with our work is that we 
assume only one buyer with an arrival time following a 
general distribution and the price function may not be 
decreasing. More fundamentally, Wang (2001) did not 
address the VO bound.

As mentioned, our result can also be interpreted as 
the price of discrimination. A recent work by Elmach-
toub et al. (2021) studies when implementing price dis-
crimination is indeed convenient and when it is not. 
Specifically, they provide lower and upper bounds (that 
depend on some parameters of the model) on the ratio 
between the revenue achievable from charging each 
costumer the customer’s own valuation and the revenue 
obtainable through a fixed price policy. They also com-
pare the profit obtained when the seller observes some 
information (but not the buyer valuation) before setting 
the pricing policy, with the one earned by each of the 
two strategies described earlier. However, they do not 
consider a dynamic problem; only a static one, which is 
a substantial difference with our work.

3. Model Description
We study the problem faced by a firm (seller) endowed 
with a single unit for sale over an infinite time horizon. 
The value of the item for the seller is normalized to zero. 
We take an RM point of view and assume that the seller 
cannot replenish this unit throughout the selling hori-
zon. On the demand side, a single consumer arrives at 
a time that follows a cumulative distribution function 

(cdf) G : [0,1]! [0, 1] and density g. The consumer 
may never arrive, and we model this option by consid-
ering the arrival time t à1. The buyer has a private val-
uation v for the item with cdf F : [0, v]! [0, 1] and 
density f. We assume that the arrival time and the valua-
tion for the buyer are independent and both G and F are 
common knowledge.

The interaction between the seller and the buyer is 
formalized as a Stackelberg game in which the seller is 
the leader and precommits to a price function p(t) over 
time in order to maximize her expected revenue. The 
buyer is the follower and has to decide whether and 
when to purchase the item given the price function set 
up by the seller. The seller and the buyer discount the 
future at rates δ�and µ, respectively.

We discuss two possible variants of this problem. In 
the observable case, the seller is able to track the buyer’s 
arrival time τ, and from that moment onward, she com-
mits to a price function p : [τ,1]! [0, v]. In the unob-
servable case, the seller does not see the buyer’s arrival 
time (although she does know the arrival time distribu-
tion G), and since time 0, she commits to a price function 
p : [0,1]! [0, v]. Note that, given the bounded support 
of the valuation distribution, the price function is lower 
bounded by zero and upper bounded by v.

For technical reasons, in both cases, we impose the 
mild condition that the price function p is lower semi-
continuous and twice differentiable almost everywhere.1
In what follows, we introduce the buyer’s and seller’s 
problems as well as some preliminary definitions and 
results. The discussion of the model assumptions is 
deferred to Online Appendix A3.

3.1. The Buyer’s Problem
When the buyer arrives, he observes the price function 
for the rest of the horizon and decides whether and 
when to buy in order to maximize his utility. We 
assume that she is forward-looking and sensitive to 
delay, and denote by U(t, v) the quasilinear discounted 
utility function of a consumer with valuation v purchas-
ing at time t. When t à1, we interpret it as a nonpurch-
ase decision of the buyer, and we define U(1, v) à 0. In 
particular, we consider an exponentially discounted 
utility function: U(t, v) à e�µt(v� p(t)), where µ > 0 is 
the discount rate. This intertemporal utility function 
discounts the buyer’s payoff from time zero, and it is 
without loss of generality (w.l.o.g.) for the sake of char-
acterizing an optimal policy. That is, if the buyer pur-
chasing at time t only incurs the disutility for waiting 
from his own arrival time τ, then the utility function 
U(t,v) is only affected by a fixed multiplicative constant: 
U(τ, t, v) à e�µ(t�τ)(v� p(t)) à eµτU (t, v). Note that, in 
our definition, the discount rate affects both the valua-
tion and the price paid, which is a standard assumption 
in OM (see, e.g., Swinney 2011, Caldentey et al. 2017, 
Papanastasiou and Savva 2017, Golrezaei et al. 2021).
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Given a price function p(t), a forward-looking buyer 
arriving at time τ�with valuation v solves

[BP] max
τt1

U(t, v):

Note that the maximum in this problem can be attained 
at t à1, and then, we consider that the buyer has an 
outside option with utility equal to zero. That is, a buyer 
with valuation v who arrives at time τ�purchases (at a 
finite time) if and only if there exists τp 2 [τ,1) such 
that U(τp, v) � 0 and does not purchase (or purchases at 
time τp à1) otherwise, obtaining zero utility. We are 
then assuming, as is common in the mechanism design 
literature, individual rationality (or voluntary participa-
tion) of the buyer.

It may be possible that the buyer’s problem has multi-
ple solutions, and to avoid ambiguity, we further ass-
ume for convenience that the buyer purchases the item 
at the earliest time maximizing his utility. Next, we 
introduce an auxiliary function, namely, φ, which, for 
any given purchasing time t, returns the minimum val-
uation the buyer must have in order to buy at time t and 
no later. In other words, the function φ�defines a thresh-
old in the sense that, if a buyer with valuation v buys at 
time t, then a buyer with valuation v0 > v buys no later 
than time t.2 More formally, φ : [0,1)! [0, v] [ {1} is 
defined as

φ(t) à inf{v : U(t, v) �U(t0, v), ∀t0 � t}, 

and we set φ(t) à1 if there exists t0 > t such that U(t, v)
< U(t0, v) for all v 2 [0, v].

We also extend the domain of φ�by setting φ(1) as 
the minimum valuation the buyer must have to buy at 
some time t 2 [0,1) (or, equivalently, the maximum 
valuation he must have to not buy). That is,

φ(1) à inf{φ(t) : t 2 [0,1)}:

Based on φ, we are able to describe the equilibrium con-
ditions for the buyer’s purchasing behavior and use 
them to formulate the seller’s problem.

3.2. The Seller’s Problem
The seller’s problem is to post a price function to maxi-
mize her expected revenue, taking into account the 
forward-looking behavior of the buyer. Following 
a standard assumption in the OM literature (see, e.g., 
Cachon and Swinney 2011, Briceño-Arias et al. 2017, 
Aflaki et al. 2020, Golrezaei et al. 2021), particularly 
motivated by retail settings in which customers strate-
gize over the timing of their purchase, we assume here 
that the seller is more patient than the buyer, and 
hence, the seller’s discount rate δ�verifies δ < µ. This 
setup is also the interesting one to consider because 
the problem becomes easy when δ � µ (see Online 
Appendix A3).

The seller’s problem can be stated based on her ability 
to observe arrivals and flexibility to set prices. In the 
observable case, she can choose a menu of pricing func-
tions {pτ(t)}τ, indexed by τ�and defined over [τ,1), so 
that a buyer arriving at time τ�is shown the pricing func-
tion pτ. In the unobservable case, she can only choose 
p0(t), and the customer faces that price curve irrespec-
tive of his arrival time. Both cases are formally pre-
sented herein.

3.2.1. Observable Arrival Case. Even though the seller 
can design a menu of pricing functions {pτ(t)}τ�and pick 
the pricing function pτ(t) if the buyer arrives at time τ, 
for now, we pretend that the buyer arrives at time zero, 
that is, we initially assume τà0. To simplify notation, 
we drop the index from p0(t). Observe that we can 
assume that p(t) is nonincreasing. Otherwise, we could 
easily find an alternative nonincreasing pricing return-
ing the same revenue to the seller.3

Given the threshold function φ�induced by the price 
function p, a buyer with valuation v purchases at the 
first time t � 0 satisfying v � φ(t) and does not purchase 
if v < φ(1). The buyer’s purchasing behavior could be 
better represented by resorting to the auxiliary function 
ψ(t) defined as

ψ(t) àmin{φ(s) : s  t}:
In other words, a customer arriving at τà 0 with valua-
tion v buys at the first time t at which ψ�takes the value 
v (or buys immediately if v � ψ(0)). Because of the 
lower semicontinuity of p, we have that φ�is also lower 
semicontinuous, and therefore, ψ�is well-defined (see 
Proposition A1 in Online Appendix A1 for a proof). 
The purchasing function ψ(t) is the unique nonin-
creasing function that supports φ(t) from below (see 
Figure 1(a)). The instantaneous probability of selling 
at time t is given by d(1� F(ψ(t))). With this observa-
tion, we may write the seller’s problem conditioned on 
the event that the buyer arrives at time 0:

[SPO0] max
p,ψ p(0)(1�F(ψ(0))) +

Z1

0

e�δtp(t)d(1�F(ψ(t))):

s:t: t 2 argmax
s�0

U(s,ψ(t)) for all t� 0:

The first term in the objective function stands for the event 
when the customer buys immediately at time 0, and the 
second term accounts for the customer’s forward-looking 
behavior. The incentive-compatible constraint specifies 
that a consumer arriving at time zero with valuation ψ(t)
maximizes utility at time sà t. We remark here that the 
individual rationality constraint is implicitly included in 
the equilibrium constraints because of the argmax being 
taken over [0,1] and, by definition, U(1, v) à 0 for all 
valuation v.
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We now extend the seller’s revenue optimization 
problem to the case when the buyer arrives at time τ > 0. 
Let Rτ�be the seller’s maximum expected revenue condi-
tioned on the event that the buyer arrives at time τ. This 
corresponds to shifting the seller’s revenue from τà0 to 
τ > 0, that is, Rτ à e�δτR0, with R0 being the objective 
function value of problem [SPO0]. Finally, the maximum 
expected revenue of the seller can be written as R àR1

0 Rτg(τ)dτ à R0
R1

0 e�δτg(τ)dτ�so that our assumption 
on writing the seller’s problem when the customer 
arrives at time 0 is without loss of generality in terms of 
characterizing the structure of the optimal pricing policy.

The formulation [SPO0] and the related expected 
revenue R allow us to make a clear connection to the 
two alternative interpretations of our model discussed 
in Section 1: (i) infinite supply and demand setup, for 
which there is a continuum of buyers with mass d(1�
F(ψ(t))) who buy at time t, for a total mass of one over 
the infinite horizon, and (ii) price of discrimination, for 
which, here, the seller is indeed able to keep track of the 
arrival time τ�of each of these buyers and post a person-
alized price curve p upon each arrival.

3.2.2. Unobservable Arrival Case. When the seller does 
not observe the buyer’s arrival time, the price function 
p0(t) that she has to set from time 0 can only depend on 
the arrival time distribution G. To simplify notation, we 
also drop the index from p0.

Although it is possible to formulate the seller’s prob-
lem without any assumption over the threshold func-
tion φ, it is necessary to be careful on how to express the 
seller’s expected revenue when φ�is not continuous. 
Thus, just for simplicity and because it does not affect 
the analysis in what follows, we describe the seller’s 
problem under the assumption of p being continuous, 
which, in turn, implies φ�being continuous.

Defining the point of time st as the last time previous 
to t when φ�takes the same value as φ(t) (or stà0 if such 
time does not exist; see Figure 1(b)), that is,

st à sup{l < t : φ(l) à φ(t)} ∨ 0, 

the seller’s problem can be described as follows:

[SPN] max
p,φ

Z1

0

e�δtp(t)[(1� F(φ(t)))g(t)

+ 1{φ0(t)0}(G(t)�G(st))d(1� F(φ(t)))]dt:

s:t: t 2 arg max
s�t

U(s,φ(t)) for all t:

The term in brackets stands for the probability of pur-
chasing between times t and t + dt. Within it, the first 
term (1� F(φ(t)))g(t) represents the probability of arriv-
ing in that small time interval with valuation v � φ(t)
and, hence, of purchasing immediately. This corresponds 
to the points in the vertical line at t1 in Figure 1(b); that is, 
we account for a customer arriving at t1 with valuation 
v � v1. The second term, (G(t)�G(st))d(1� F(φ(t))), is 
the probability of arriving during the interval (st, t] with 
valuation between φ(t) and φ(t + dt). This is the probabil-
ity of being in the line connecting φ(st1) and φ(t1) for a 
valuation v1 in Figure 1(b). Note that, if the buyer has 
arrived before t and is still present at t, the buyer does not 
buy if φ�is increasing at t, and thus, this second term only 
holds at points at which φ�is decreasing, which is cap-
tured by the indicator function. In both arrival situations, 
the discounted revenue for the seller is e�δtp(t).

For future reference, we denote Ruo as the objective 
function value of [SPN].

The formulation [SPN] allows us to revisit the con-
nection with the two alternative model interpretations 
described in Section 1: (i) an infinite supply and demand 

Figure 1. (Color online) Consumer Purchasing Behavior 

(a) (b)

Notes. (a) Observable case: Definition of the function ψ(t). For a given function φ(t), a customer with valuation ψ(t) arriving at τ�à 0 buys at 
time t. (b) Unobservable case: Characterization of a buyer purchasing at time t1 including the one arriving exactly at t1 with valuation v � v1 and 
those arriving between st1 and t1 with valuation v1.
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setup, in which, here, there is a continuum of infinitesi-
mal buyers with point mass (1� F(φ(t)))g(t) + 1{φ0(t)0}
(G(t)�G(st))d(1� F(φ(t))) who buy at time t (and who 
arrive before or at t), and (ii) price of discrimination, for 
which, here, the model does not allow price discrimina-
tion because all buyers face the same price curve posted 
at time 0.

3.3. Value of Observability: Overview
We start this section with the formal definition of the 
value of observability, followed by an example of its cal-
culation that also illustrates the associated challenges.

3.3.1. Definition. After describing the seller’s problem 
in both the observable and unobservable cases, we can 
formally define the value of observability for a specific 
problem instance characterized by distributions F, G 
and discount rates δ�and µwith δ < µ. Recalling that, for 
a particular problem instance, R is the objective function 
value of problem [SPO0] and Ruo is the objective func-
tion value of problem [SPN], we define

VO(G, F,δ,µ) à R
Ruo :

Our objective is to provide a bound for the instance- 
independent value of observability, when δ < µ, which 
we denote by VO:

VO à sup
G,F,δ,µ

VO(G, F,δ,µ):

A key difficulty in evaluating the value of observability 
is that, as mentioned, the unobservable case is typically 
very hard to solve, and standard approaches based on 
optimal control to tackle dynamic pricing and mecha-
nism design problems fail.

3.3.2. Preview Example. To better grasp this difficulty 
and the difference between the observable and unobser-
vable cases, let us describe here a quick example. Take a 
buyer with valuation uniformly distributed in [0, 1] and 
arrival time distributed as an exponential with mean 
one. Also assume the seller discount rate is one, whereas 
that of the buyer is extremely large (so that, in fact, the 
buyer behaves myopically: she buys as soon as the price 
is below the buyer’s valuation).4 Then, if the seller can 
observe the buyer’s arrival, she starts pricing at one and 
then suddenly decreases the price in a continuous fash-
ion until hitting the customer valuation when the trans-
action is executed. In this way, the seller extracts all the 
consumer surplus with expected value 1/2. Thus, in 
expectation, the seller gets R à

R1
0 (e�t=2)e�tdt à 1=4. 

Here, the first e�t represents the discounting, and the 
second e�t represents the density of the exponential.

On the other hand, in the unobservable case, if we 
assume that the seller needs to set a nonincreasing price 
function, then the problem is relatively easy to solve. 

Indeed, the seller needs to maximize, over all nonin-
creasing functions p, the quantity Ruo à

R1
0 [e�t(1� p(t))

� (1� e�t)p0(t)] e�tp(t)dt. Note that, for a nonincreasing 
p(t), trade occurs between t and t+dt if either the buyer 
arrives in that interval and the buyer’s valuation is 
above p(t) (hence, the term e�t(1� p(t))) or the buyer 
arrives before t and the buyer’s valuation is between 
p(t) and p(t + dt) (hence, the term �(1� e�t)p0(t)). In 
both cases, the discounted revenue for the seller is 
e�tp(t). The solution of this problem turns out to be 
p(t) à e�t, which results in an expected revenue of 1/6. 
Overall, the ratio of the revenues between the observ-
able and unobservable cases in this example and when 
restricting the seller to use a nonincreasing price func-
tion for the unobservable case is 3/2.

One may think that the latter example implies that, in 
general, VO � 3=2. However, the seller’s strategy space 
is richer than that of nonincreasing price functions. 
Whereas we argue that, for the observable case, the opti-
mal price curve is nonincreasing, for the unobservable 
case, this characterization is unclear. Suppose that the 
seller now splits the time horizon into short intervals of 
length ✏ and posts a periodic price function that sets 
price 1 for the first ✏� ✏2 time units of each interval and 
a quickly decreasing price (from one to zero) in the last 
✏2 time units of each interval. As the buyer is myopic, he 
buys at the first point in time in which the price is below 
his valuation, and because ✏ is very small, the probabil-
ity that the buyer arrives when the price is p(t)à1 is close 
to one. Thus, even in the unobservable case, the seller is 
able to obtain a revenue arbitrarily close to 1/4—higher 
than the one under the decreasing pricing policy— 
bringing the value of observability down to one. This 
observation illustrates the difficulty of obtaining a gen-
eral upper bound for VO that is independent of the 
instance-specific parameters of the problem.

More generally, and beyond the uniform valuation 
distribution, it can easily be shown that the worst VO is 
not attained when the buyer’s discount rate µ is in an 
extreme. Indeed, when µ à δ�(or, even more generally, 
when µ  δ), the seller cannot extract extra revenue by 
using any type of dynamic screening, and the optimal 
pricing policy is simply to fix a constant price equal to 
the monopoly price. Therefore, the VO equals one. On 
the other side of the spectrum, when µ!1, the buyer 
essentially behaves myopically. Similar to the preceding 
example, the seller may split the time horizon into short 
intervals of length ✏. She then posts a periodic price func-
tion that sets a very high price (say, equal to v, the largest 
possible valuation) for the first ✏� ✏2 time units of each 
interval and a continuously (and quickly) decreasing to 
zero price function in the last ✏2 time units of each inter-
val. In the limit as ✏! 0, the buyer is myopic, so the 
buyer buys at the first point in time in which the price is 
below the buyer’s valuation. Because the probability 
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that the buyer arrives when the price is v is close to one, 
even in the unobservable case, the seller is able to obtain 
a revenue arbitrarily close to the buyer’s valuation. This 
implies that the value of observability approaches one 
when µ grows large, and therefore, the most interesting 
cases occur when µ is in the middle of the range. How-
ever, finding this worst possible µ in terms of VO seems 
to be a very challenging problem.

4. Analysis of the Model with an 
Observable Arrival

In this section, we study in detail the observable arrival 
case. We start by deriving some structural properties of 
the solution to this problem, spanning both the optimal 
price and purchasing functions. Then, we present a tech-
nical result that provides a guarantee for a fraction of the 
revenue to be attainable over a finite time window.

4.1. Structural Characterization of the 
Optimal Solution

Given the argument stated in Section 3.2.1, to analyze 
the observable case, it is sufficient to focus on the solu-
tion of [SPO0], in which the buyer arrives at time 0.

Problem [SPO0] is difficult to solve because of its 
equilibrium constraint. Our approach is to formulate a 
relaxed version of the problem by computing the first 
order condition of the equilibrium constraint. Then, by 
applying the Euler–Lagrange equation, we show that 
any solution of the relaxed problem also solves [SPO0]. 
Moreover, we provide a characterization of the optimal 
price function as a solution of an ordinary differential 
equation, which turns out to have a unique solution for 
a large set of valuation distributions, and furthermore, 
it can be solved explicitly at least for F being a uniform 
distribution.

To begin, consider the incentive-compatible constraint 
in problem [SPO0]. If the optimal solution to the optimi-
zation problem in the constraint of problem [SPO0], 
namely, t⇤, is in the interior of the feasible region, then 
it must satisfy the first order condition h(t)à0, where 
h(s) àUs(s,ψ(t)) or, equivalently, ψ(t) à p(t)� p0(t)

µ . Now, 
consider the relaxed formulation:

[SPOr
0] max

p,ψ

Z1

0

e�δtp(t)d(1�F(ψ(t))) + p(0)(1�F(ψ(0)))

s:t: ψ(t)à p(t)� p0(t)
µ

, ∀t� 0: (1) 

The feasible region of this constrained problem is larger 
than the one of [SPO0], and therefore, the objective 
function value of [SPOr

0] provides an upper bound of 
[SPO0].

Note that the problem [SPOr
0] can be written as the 

following unconstrained maximization problem on the 

price function p(t):

max
p

Z1

0

e�δtp(t) �p0(t) + p00(t)
µ

◆ 
f p(t)� p0(t)

µ

◆ 
dt

+ p(0) 1� F p(0)� p0(0)
µ

◆ ◆ 
: (2) 

Letting the integrand function be I(t, p(t), p0(t), p00(t))
and the expected revenue at time zero be r0, problem (2) 
is equivalent to

max
p

Z1

0

I(t, p(t), p0(t), p00(t))dt + r0:

Focusing on the first term, the associated Euler–Lagrange 
equation that must be satisfied by an optimal price func-
tion p(t) states that

d2

dt2
@I
@p00 �

d
dt

@I
@p0 +

@I
@p à 0:

Such function p(t) is a stationary point of the functional
Z1

0

I(t, p(t), p0(t), p00(t)) dt:

After some algebra (detailed in Proposition A2 in Online 
Appendix A1), the Euler–Lagrange equation becomes

f 0 p(t)� p0(t)
µ

◆ 
�p00(t)

µ
+ p0(t)

◆ 
(�δp(t) + p0(t))

+ f p(t)� p0(t)
µ

◆ 
[δ(δ�µ)p(t)� 2δp0(t) + 2p00(t)] à 0:

(3) 

This equation can be written as a system of two first 
order differential equations by defining the auxiliary 
variable u(t) à p0(t). Thus, by standard results on ordi-
nary differential equations (see, e.g., theorem 54.A in 
Simmons 2016) we can show that there exists one and 
only one solution to the initial value problem given p(0) 
and p0(0) under mild continuity and differentiability 
conditions, which are satisfied for a large set of valua-
tion distributions. To illustrate this, in Online Appendix 
A4, we solve the problem for the special case in which 
the valuation is uniformly distributed in [0, 1].

Let us highlight that, though we know ψ(t) is nonin-
creasing by construction—and, indeed, we use this fact 
to formulate the seller’s problem—[SPOr

0] could poten-
tially have an optimal solution with a generic function 
ψ(t) not meeting this monotonicity. However, the fol-
lowing result establishes that this does not happen. In 
other words, if ψ(t) corresponds to an optimal solution 
of the seller’s relaxed problem, then it must be a nonin-
creasing function.
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Proposition 1. Assume that the density function f is 
strictly positive. If the price function p(t) is a continuously 
differentiable optimal solution of the relaxed problem [SPOr

0], 
then the optimal purchasing function ψ(t) à p(t)� p0(t)

µ is 
nonincreasing.

The nonincreasing structure of the purchasing func-
tion ψ(t) for the relaxed problem along with the upper 
bound defined by the solution to [SPOr

0] allow us to 
show the following result:
Proposition 2. Any solution of the relaxed problem [SPOr

0]
such that p is differentiable with continuous derivative, also 
solves the seller’s problem [SPO0].

This result allows us to simplify the solution of the 
seller’s problem [SPO0]. Furthermore, we show that the 
solution of the relaxed problem is a solution of an 
autonomous system of ordinary differential equations.

Thus, to solve the seller’s problem [SPO0], we first 
formulate the Euler–Lagrange Equation (3) associated 
with the relaxed problem [SPOr

0] and solve it. Its solu-
tion depends on the initial values p(0) > 0 and p0(0) < 0. 
Then, we replace that solution form in problem (2) and 
solve it in terms of the scalar variables p(0) and p0(0). 
Finally, using these optimal initial values, we can re-
cover the optimal price function p(t) and purchasing 
function ψ(t), which are the optimal solutions of the 
original seller’s problem [SPO0].

4.2. Bounding a Fraction of Revenue over Time
In preparation to bound VO in Section 6, we present 
here the following technical result: for a given parame-
ter c 2 (0, 1), if we need to ensure that the seller earns a 
fraction (1� c) of the expected revenue in problem 
[SPO0], it is enough to look at the problem until time 
T à ln(1=c)=δ. For instance, if we want to reach at least 
half of R0 and we normalize the seller’s discount rate to 
one, we conclude that it is enough to consider the prob-
lem until time T à ln(2). This implies that the time 
needed to get a big fraction of R0 is relatively short, and 
moreover, it does not depend on the valuation distribu-
tion. The result is formally stated as follows.
Lemma 1. For a given parameter c 2 (0, 1), up to time T à
ln(1=c)=δ, the seller’s expected revenue R[0, T] in the observ-
able arrival case is at least (1� c)R0; that is,

R[0, T] à p(0)(1� F(ψ(0))) +
ZT

0

e�δtp(t)d(1� F(ψ(t)))

� (1� c)R0, 

where p(t) is the solution from (3) to the observable case 
problem.

This result is used to construct the feasible pricing pol-
icy for the unobservable case that we present in Section 5, 

becoming a key ingredient to bound the value of 
observability.

5. Analysis of the Model with an 
Unobservable Arrival

Consider now the problem stated in Section 3.2.2 in 
which the seller is not able to observe the arrival time of 
the buyer. Different from the previous observable case, 
in which the seller knows the arrival time τ�of the buyer 
and, resorting to the menu {pτ(t)}τ�of price curves, posts 
pτ(t) over the horizon [τ,1) (even though, as explained 
before, the analysis was conducted without loss of gen-
erality by assuming τà0), in this case, the seller com-
mits to a price function at time 0 without knowing the 
precise buyer’s arrival time.

This problem turns out to be notoriously hard in the 
general case, and obtaining an explicit solution seems 
hopeless. To partially overcome this, we focus on ana-
lyzing the seller’s problem under a feasible (and subop-
timal) pricing policy with the objective of bounding the 
value of observability later.

The feasible pricing policy p̂ we consider is periodic 
and depends on the policy p that solves the observable 
case formulation, [SPO0]. The length of the period is 2T, 
where T is such that, until time T, the seller’s expected 
revenue in the observable case when the buyer arrives 
at time 0 is of significant magnitude. In particular, the 
price function we use to bound from below the seller’s 
expected revenue in the unobservable case is defined by

p̂(t) à
p(0) if t 2 I2k�1, k 2 N
p(t� (2k� 1)T) if t 2 I2k, k 2 N,

�
(4) 

where I2k�1 à (2(k� 1)T, (2k� 1)T] and I2k à ((2k� 1)T, 
2kT] for k 2 N and the price function p comes from the 
solution of [SPO0]. Note that the function p̂ is continu-
ous at the points kT for odd values of k. Figure 2 shows 
the structure of the periodic pricing policy we consider 

Figure 2. Periodic Pricing Policy p̂ After Performing a Ran-
dom Shift and Setting the Origin at Time t0 
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along the rest of the section with its origin at a value 
t0 � 0.

We subsequently explain the reason for shifting the ori-
gin by t0 units of time. Here, we provide a discussion for 
the intuition behind this feasible pricing policy. In fact, its 
structure is motivated by several concurrent factors. First, 
in view of the definition of value of observability intro-
duced in Section 3.3, we are seeking an expected revenue 
Ruo for the unobservable case that is a constant fraction of 
the expected revenue R of the observable case. The opti-
mal pricing policy of the observable case is not periodic 
and spans the whole infinite horizon, but the result in 
Lemma 1 is helpful in providing a bound for the revenue 
over a limited interval of length T, where T is the thresh-
old defined therein that warrants a “big enough” reve-
nue. The pricing policy borrowed from the observable 
case is embedded in the even intervals of the proposed 
periodic policy.

The next question is why it would not be sufficient 
then to just replicate this policy with period T again and 
again. The answer is rooted in the buyer’s purchasing 
behavior: the buyer is strategic and would not face 
a similar curve as in the observable case; hence, the 
buyer’s behavior would be different. This argument sus-
tains the setting of the high price p(0) in the odd intervals 
of length T: it allows the accumulation of a mass of 
buyers before launching the observable case price policy. 
Even though some of the mass of these buyers could 
buy before time T (i.e., the ones with valuation higher 
than ψ(0)), we assume that they still wait until time T to 
execute the purchase. This extra delay further reduces 
the seller’s revenue, which is acceptable for the sake of 
computing a lower bound. Indeed, the buyers arriving 
during the odd intervals behave similarly to the buyers 
in the observable case except for the fact that they wait a 
bit extra.

In summary, within a period of length 2T, say, 
between t0 and t0 + 2T, the mass of buyers with valua-
tion below p(T) is priced out of the market, and for those 
with valuation above p(T), we only account for the ones 
arriving between t0 and t0 + T. Note that, in this sce-
nario, a buyer with valuation between p(T) and ψ(T)
who would buy after time T in the regular observable 
case, here would also buy at time T, pay p(T), and get a 
positive utility (higher than the zero utility of the no 
purchase). Those with valuation above ψ(T) are the 
ones playing the strategy of the observable case except 
for the small extra wait until t0 + T.

Coming back to the fact of having a time origin set at 
t0, it is justified as follows. One element that makes the 
unobservable arrival case particularly challenging to 
analyze from a revenue computation perspective is the 
presence of the density g(t) in the formulation of [SPN]. 
In order to perform the analysis independently of the 
specific function g, we use the next proposition, stating 

that, by doing a random shift on the price function p̂ 
defined in (4), we can assume without loss of generality 
that the buyer’s arrival time is uniformly distributed 
within a period of length 2T.
Proposition 3. Let us consider the function p̂t0 

obtained 
by performing a random shift over the function p̂ defined in 
(4), that is, for a random variable t0 ~ Unif[0, 2T], consider 
the function p̂t0

(t) à p̂(t + t0). It holds that the buyer’s 
arrival, conditional in the arrival interval, is Unif[0, 2T].

Therefore, by applying the preceding proposition, we 
can assume that the buyer’s arrival time, conditional on 
the fact that the arrival belongs to a specific interval, is 
Unif[0, 2T] and the function’s new origin is t0; that is, t0 
is the starting point of a period of length 2T.

Along the rest of the paper, we denote as p̂ the feasi-
ble pricing policy after performing the random shift. 
We also relabel the intervals of the function p̂ and 
denote by Ĩ2k�1 the range in which p̂ is constant and 
denote by Ĩ2k the range in which p̂ is the translation of 
the function p after performing the random shift.

For illustration purposes and as a supplement to this 
section, in Online Appendix A5, we compare the perfor-
mance of our heuristic policy to that of a fixed price, 
showing the advantage of the former when the buyer is 
moderately to significantly more impatient than the 
seller. Then, in Online Appendix A6, we characterize the 
optimal solution of a particular unobservable arrival 
problem instance with a two-point arrival time distribu-
tion and in which the valuation of the buyer is truncated 
Pareto. Despite the unobservable arrival case being hard 
to solve in general, we can fully solve this particular 
problem instance by simplifying its formulation to a 
sequence of observable arrival cases.

6. Bounding the Value of Observability
Recall that following the definition in Section 3.3, the 
value of observability VO(G, F,δ,µ) is the instance-specific 
ratio between the expected revenue in the corresponding 
observable and unobservable cases. Accordingly, the VO is 
defined as the supremum of instance-specific parameters: 
VO à supG, F,δ,µVO(G, F,δ,µ). In what follows, we first 
study VO under valuation distributions with MHR and 
show that it can be upper bounded by exp(1) and the 
bound is tight within the space of fixed price policies for 
the unobservable case. Next, we analyze the more chal-
lenging case beyond MHR valuations that may arise when 
fitting real data. For this very general case, we characterize 
the main result of our paper: the constant 4.911 as an upper 
bound for VO. In Online Appendix A7, we argue by 
resorting to an example that VO is lower bounded away 
from the trivial one, obtaining 1.136 based on a two-point 
distribution for the arrival and a truncated Pareto distribu-
tion for the valuations.
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6.1. An Upper Bound for an MHR Valuation 
Distribution

The case of MHR valuation distribution turns out to 
be relatively simple. For completeness, we review here 
some basic concepts on the theory of optimal auctions 
introduced in the seminal work of Myerson (1981). A 
key building block to state the seller’s optimal expected 
revenue in a general single unit auction is the so-called 
virtual value of the bidder, defined as

J(v) :à v� 1� F(v)
f (v) à v� 1

ρ(v) , 

where ρ(v) à f (v)=(1� F(v)) is the hazard rate function 
associated with the distribution F. The value J(v) repre-
sents the expected value of the revenue that the seller may 
intend to collect from a bidder with valuation v, which 
naturally verifies v > J(v). Alternatively, when consider-
ing the static price-optimization problem of a seller trying 
to maximize the revenue function r(p) à p(1� F(p)), the 
first order condition states that J(p)à0. In other words, J(p) 
stands for the marginal revenue function. As a conse-
quence, an optimal monopoly reserve price p⇤ is defined 
as p⇤ à J�1(0).5

A distribution F is said to be regular if the virtual value 
function J(v) is strictly increasing in v. This assumption is 
not overly restrictive and is satisfied by distributions with 
increasing hazard rate ρ(v), including standard ones, 
such as the normal, uniform, logistic, exponential, and 
extreme value distributions.

In what follows, we assume that the buyer’s valua-
tion is distributed according to a monotone (increasing) 
hazard rate distribution F and prove that the value of 
observability is upper bounded by e. Moreover, this 
bound is tight if we restrict the space of feasible policies 
to the set of fixed price policies for the unobservable 
case.

Indeed, we know from Section 3.2.1 that the optimal 
seller’s expected revenue in the observable case is given 
by R à R0

R1
0 e�δtg(t)dt, where R0 is the objective func-

tion value of problem [SPO0] and, therefore, verifies 
R0  E(v), the expected value of the valuation drawn 
from F. Hence, the seller’s expected revenue in the 
observable case verifies

R  E(v)
Z1

0

e�δtg(t)dt:

For the unobservable case, consider the feasible, fixed 
pricing policy p(t) à p⇤ for all t, where p⇤ à J�1(0) is the 
optimal monopoly price. Then, the seller’s expected rev-
enue verifies

Ruo �
Z1

0

e�δtp⇤(1�F(p⇤))g(t)dtà p⇤(1�F(p⇤))
Z1

0

e�δtg(t)dt:

From this lower bound, we can now establish an upper 
bound for the value of observability. By lemma 3.10 of 
Dhangwatnotai et al. (2015), it follows that p⇤(1� F(p⇤))
� 1

eE(v), and thus, VO(G, F,δ,µ)  e, when F is regular.
This upper bound is tight if, in the unobservable case, 

we restrict the feasible space of price functions to the set 
of fixed price strategies. To see this, consider a myopic 
buyer (i.e., a buyer with discount rate µ extremely large 
so that he buys as soon as the price drops below his val-
uation) arriving according to a general distribution G 
and with valuation distributed according to the trun-
cated exponential random variable with parameter one 
and support [0, M], that is, with cdf F(x) à (1� e�x)=
(1� e�M). Assume that the seller does not discount rev-
enues (i.e., δà0). In this setting, in the observable case, 
the seller announces a price curve for a consumer arriv-
ing at time τ�that spans all the valuation support (e.g., 
pτ(t) àMe�(t�τ)), and the consumer buys immediately 
when his valuation v verifies v à p(t) with expected rev-
enue for the seller R à E(v) à (1� (M� 1)e�M)=(1� e�M). 
In the unobservable case, if the seller offers the best pos-
sible fixed price, she sets a price p⇤ maximizing Ruo(p) à
p(1� F(p)). This function is maximized at p⇤ à 1�
W(e1�M), where W denotes the positive branch of the 
well-known Lambert function,6 obtaining a revenue 
Ruo given by

Ruo àW�1(e1�M) + W(e1�M)
(1� e�M)eM :

That leads to a gap between the observable and unob-
servable case that converges to e when M grows large, 
obtaining the tightness.

We highlight here that this argument does not imply 
that VO is lower bounded by e because, for the unobser-
vable case, we are considering a feasible but not neces-
sarily optimal strategy. What we prove is that, by 
considering a fixed price policy in the unobservable 
case, the upper bound of e can be attained.

6.2. An Upper Bound for a General Valuation 
Distribution

For a general valuation distribution (with a nonmonotone 
hazard rate), we start by noting that using a fixed price 
policy in the unobservable arrival case does not necessar-
ily lead to an upper bound defined by a constant. For 
instance, consider the game in which the buyer’s valua-
tion is distributed according to a truncated Pareto distri-
bution with parameter one and support [1, M], denoted 
by TruncPareto(1,1,M). That is, v ~ TruncPareto(1,1,M) has 
cdf

F(x) à 1� 1
x

◆ 
M

M� 1 , for x 2 [1, M]:

We further assume that µ is extremely large and δà 0. 
Following the earlier argument, in the observable case, 
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the seller announces a price curve that spans all the val-
uation support (e.g., p(t) à 1=t), and the consumer buys 
immediately when his valuation v verifies v à p(t), with 
expected revenue for the seller equal to R à E(v) à
M ln M=(M� 1). The revenue for the unobservable case 
under a fixed price p⇤ is Ruo à p⇤(1� F(p⇤)) < M=(M� 1), 
leading to the ratio VO(G, TruncPareto(1, 1, M), 0, µ) à
E(v)=(p⇤(1� F(p⇤))) > ln M, which grows with M un-
boundedly and independently of the arrival distribution.

Despite the difficulty imposed by the ineffectiveness of 
a fixed price policy, we are able to bound from above the 
value of observability by resorting to the particular pric-
ing policy p̂ introduced in Section 5 (and defined in (4)).

Before presenting our main result, we need to intro-
duce two preliminary lemmas. In the first one, we pro-
vide a simple lower bound for the seller’s revenue 
within a limited time frame in the unobservable arrival 
case. In the second one, we give a lower bound for Ruo

τ , 
which we define as the seller’s expected revenue in the 
unobservable case when the buyer’s arrival time is τ. To 
characterize this bound, we focus on arrivals during the 
odd intervals.
Lemma 2. If the buyer is present at time τ�being the begin-
ning of a period Ĩ2k for some k 2 N, and has valuation 
v � p(T), then the seller’s expected revenue by offering the 
price function p̂ in the unobservable case is at least the 
expected revenue earned up to time 2kT + t0 in the observ-
able case, with arrival time (2k� 1)T + t0.
Lemma 3. For a given parameter c 2 (0, 1), and denoting 
by Rτ�the expected revenue in the observable case when the 
buyer arrives at time τ, it holds that

Ruo
τ �

(1� c)2

2 ln(1=c)Rτ:

We are now ready to provide an upper bound for the 
value of observability that can be written as a function 
of W�1, the negative branch of the Lambert function.

Theorem 1. For any valuation distribution and arrival 
time distribution, the value of observability is at most 
� 2W�1(�1=(2

ÇÇ
e

p
))+1

(eW�1(�1=(2
Ç
e

p
))+1=2�1)2 ⇡ 4:911.

Proof. Recalling that Rτ�and Ruo
τ�are the expected values 

of the seller’s revenue in the observable and unobserva-
ble cases, respectively, when the buyer’s arrival time 
is τ, it follows that, for each arrival time τ, the ratio 
between them verifies

Rτ
Ruo
τ
 Rτ

(1�c)2

2 ln(1=c)Rτ
à 2 ln(1=c)

(1� c)2 :

This bound ratio holds for any constant c 2 (0, 1), and 
it is minimized at c à eW�1(�1=(2

ÇÇ
e

p
))+1=2 ⇡ 0:284, giving 

a minimum of � 2W�1(�1=(2
ÇÇ
e

p
))+1

(eW�1(�1=(2
Ç
e

p
))+1=2�1)2 , which is roughly 

4.911. w

It is worth noting that our result is robust to the speci-
fication of the arrival distribution. That is, even in the 
case in which the arrival time of the buyer is adversarial 
(i.e., the arrival distribution is chosen by an adversary 
that knows the price function of the seller but does not 
know the realization of the random shift), we prove that 
the seller’s expected revenue in the observable case is at 
most 4.911 times his expected revenue if she does not 
observe the buyer’s arrival.7

7. Conclusions
In this paper, we revisit a standard formulation for the 
dynamic pricing problem when a monopolistic seller 
faces the arrival of a single buyer over an infinite time 
horizon and precommits to a price curve with the objec-
tive of maximizing revenue. The buyer observes the 
price curve and strategically purchases at a time when 
his utility is maximized. Both players discount the 
future at different rates with the buyer being more 
impatient than the seller in the most realistic and techni-
cally challenging situation. The model feature that we 
analyze in this paper is the ability of the seller to observe 
(or not) the arrival time of the buyer.

We define the VO as the worst case ratio between the 
revenue attainable in the observable and unobservable 
cases taken over all model parameters, namely, the dis-
tribution of the arrival time of the buyer, the distribu-
tion of the buyer’s valuation, and the discount rates. 
Our main result is that VO can be upper bounded by 
the constant 4.911 irrespective of the model primitives. 
In the particular and relevant case of monotone hazard 
rate valuation distribution, the upper bound can be 
improved to e ⇡ 2:718. We also show by an example 
that a lower bound for VO can be set at 1.136.

It is worth pointing out again that VO can be inter-
preted as the price of discrimination, that is, the addi-
tional rent that the seller can obtain from being able to 
post a customized price curve for (infinitesimal) buyers 
as opposed to setting the same price curve for everyone.

We highlight that, because our upper bound of 4.911 
for the general valuation distribution setup relies on the 
implementation of a modified optimal policy for the 
observable case as a feasible policy for the unobservable 
case, and knowing that the upper bound for VO in the 
monotone hazard rate valuation distribution is 2.718, 
there is room for a potential improvement of the former 
bound. Closing the gap between them or showing that 
our bound is tight would be interesting venues for fur-
ther research.

Our analysis also carries important managerial insights 
by characterizing business contexts in which gathering 
information about the buyer arrival time is particularly 
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valuable. We observe that it is not very significant when 
the consumer’s valuation distribution has a monotone 
hazard rate, and it is even less important in the extreme 
cases in which the seller has a level of patience similar to 
the customer or is much more patient than the customer.

Finally, as future work, it would be interesting to con-
duct a case study (using synthetic or real data) demon-
strating the value of tracking customer arrivals in different 
contexts, for example, an online seller facing robots search-
ing for competitors’ prices.
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Endnotes
1 Because of this assumption, the seller could potentially lose at 
most negligible extra revenue, and therefore, it does not affect our 
results. Moreover, the lower semicontinuity is necessary to ensure 
that the buyer’s problem can always be solved.
2 To see this, knowing that v à φ(t), we have U(t, v) �U(t0, v), ∀t0 � t. 
Now, consider a buyer with valuation v0 à v + ✏,✏ > 0. By simple alge-
bra, we have U(t, v0) àU(t, v) + ✏e�µt >U(t0, v) + ✏e�µt0 àU(t0, v0), that 
is, U(t, v0) �U(t0, v0), ∀t0 � t. Thus, the purchasing time of buyer v0
cannot be later than t.
3 If p(t) is an arbitrary pricing function, we could consider p̃(t) the 
largest nonincreasing function that is below p. Because the buyer is 
forward-looking, the possible purchasing times coincide under p 
and p̃.
4 Readers should not confuse the notion of a myopic buyer with 
that of an impatient buyer in the sense of waiting only an infinitesi-
mal amount of time before purchasing. The notion of a myopic 
buyer we use throughout the paper is the one in which the con-
sumer buys as soon as the price is below the buyer’s valuation. It 
may then happen that the buyer waits a long time before buying or 
even does not buy at all.
5 More generally, the optimal reserve price is defined as p⇤ àmax{v :
J(v) à 0}, and by convention, p⇤ à 1 if J(v)<0 for all v.
6 The Lambert W function is defined as the multivalued function that 
satisfies z àW(z)exp(W(z)) for any complex number z. If x is real, then 
for �1=e  x < 0, there are two possible real values of W(x). We denote 
the branch satisfying �1 W(x) by W0(x)—namely, the principal 
branch—and the branch satisfying W(x) �1 by W�1(x), referred to 
as the negative branch.
7 Note that this notion of robustness is different from the common 
one in the pricing literature (e.g., Caldentey et al. 2017), in which it 
usually indicates that the price function does not depend on any of 
the parameters of the model. In our case, the feasible pricing policy 
we consider in the unobservable case depends on the optimal price 
function of the observable case, and therefore, it depends on the val-
uation distribution and discount rates. However, it does not depend 
on the arrival distribution.

References
Aflaki A, Feldman P, Swinney R (2020) Becoming strategic: Endoge-

nous consumer time preferences and multiperiod pricing. Oper. 
Res. 68(4):1116–1131.

Araman V, Fayad B (2021) Intertemporal price discrimination with 
time-varying valuations. Oper. Res. 69(1):245–265.

Aviv Y, Pazgal A (2008) Optimal pricing of seasonal products in the 
presence of forward-looking consumers. Manufacturing Service 
Oper. Management 10(3):339–359.

Aviv Y, Vulcano G (2012) Dynamic list pricing. Ozer O, Phillips R, 
eds. The Oxford Handbook of Pricing Management, Oxford Hand-
books (Oxford University Press, Oxford, UK), 522–584.

Aviv Y, Levin Y, Nediak M (2009) Counteracting strategic consumer 
behavior in dynamic pricing systems. Netessine S, Tang C, eds. 
Consumer-Driven Demand and Operations Management Models, Inter-
national Series in Operations Research & Management Science, 
vol. 131 (Springer, New York), 323–352.

Besbes O, Lobel I (2015) Intertemporal price discrimination: Structure 
and computation of optimal policies. Management Sci. 61(1):92–110.

Blumrosen L, Holenstein T (2008) Posted prices vs. negotiations: An 
asymptotic analysis. Proc. Ninth ACM Conf. Electronic Commerce 
(ACM, New York), 49.

Board S, Skrzypacz A (2016) Revenue management with forward- 
looking buyers. J. Political Econom. 124(4):1046–1087.

Borgs C, Candogan O, Chayes J, Lobel I, Nazerzadeh H (2014) Opti-
mal multiperiod pricing with service guarantees. Management 
Sci. 60(7):1792–1811.

Briceño-Arias L, Correa J, Perlroth A (2017) Optimal continuous pric-
ing with strategic consumers. Management Sci. 63(8):2741–2755.

Cachon GP, Swinney R (2009) Purchasing, pricing, and quick 
response in the presence of strategic consumers. Management 
Sci. 55(3):497–511.

Cachon GP, Swinney R (2011) The value of fast fashion: Quick response, 
enhanced design, and strategic consumer behavior. Management 
Sci. 57(4):778–795.

Caldentey R, Liu Y, Lobel I (2017) Intertemporal pricing under mini-
max regret. Oper. Res. 65(1):104–129.

Chawla S, Hartline JD, Malec DL, Sivan B (2010) Multi-parameter 
mechanism design and sequential posted pricing. Proc. 42nd ACM 
Sympos. Theory Comput. (ACM, New York), 311–320.

Chen Y, Farias V (2018) Robust dynamic pricing with strategic cus-
tomers. Math. Oper. Res. 43(4):1119–1142.

Chen Y, Farias V, Trichakis N (2019) On the efficacy of static prices for 
revenue management in the face of strategic customers. Manage-
ment Sci. 65(12):5535–5555.

Conlisk J, Gerstner E, Sobel J (1984) Cyclic pricing by a durable goods 
monopolist. Quart. J. Econom. 99(3):489–505.

Correa J, Montoya R, Thraves C (2016) Contingent preannounced pric-
ing policies with strategic consumers. Oper. Res. 64(1):251–272.

Correa J, Foncea P, Pizarro D, Verdugo V (2019) From pricing to 
prophets, and back! Oper. Res. Lett. 47(1):25–29.

Dhangwatnotai P, Roughgarden T, Yan Q (2015) Revenue maximi-
zation with a single sample. Games Econom. Behav. 91:318–333.

Elmachtoub AN, Gupta V, Hamilton ML (2021) The value of per-
sonalized pricing. Management Sci. 67(10):6055–6070.

Elmaghraby W, Lippman S, Tang C, Yin R (2009) Will more pur-
chasing options benefit customers? Production Oper. Management 
18(4):381–401.

Gallego G, Topaloglu H (2019) Revenue Management and Pricing Ana-
lytics, vol. 209 (Springer, New York).

Gershkov A, Moldovanu B, Strack P (2018) Revenue-maximizing 
mechanisms with strategic customers and unknown, Markov-
ian demand. Management Sci. 64(5):2031–2046.

Golrezaei N, Javanmard A, Mirrokni V (2021) Dynamic incentive- 
aware learning: Robust pricing in contextual auctions. Oper. Res. 
69(1):297–314.

Kessel K, Saberi A, Shameli A, Wajc D (2022) The stationary prophet 
inequality problem. Proc. 23rd ACM Conf. Electronic Commerce 
(ACM, New York), 243–244.

Lai G, Debo L, Sycara K (2010) Buy now and match later: Impact of 
posterior price matching on profit with strategic consumers. 
Manufacturing Service Oper. Management 12(1):33–55.

Correa, Pizarro, and Vulcano: The Value of Observability in Dynamic Pricing 
2120 Management Science, 2024, vol. 70, no. 4, pp. 2107–2121, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

86
.1

1.
41

.1
23

] o
n 

17
 Ju

ne
 2

02
4,

 a
t 1

2:
47

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Landsberger M, Meilijson I (1985) Intertemporal price discrimination 
and sales strategy under incomplete information. RAND J. Econom. 
16(3):424–430.

Li J, Granados N, Netessine S (2014) Are consumers strategic? Struc-
tural estimation from the air-travel industry. Management Sci. 
60(9):2114–2137.

Liu Q, Van Ryzin GJ (2008) Strategic capacity rationing to induce 
early purchases. Management Sci. 54(6):1115–1131.

Liu Y, Cooper W (2015) Optimal dynamic pricing with patient cus-
tomers. Oper. Res. 63(6):1307–1319.

Lobel I (2020) Dynamic pricing with heterogeneous patience levels. 
Oper. Res. 68(4):1038–1046.

Mersereau A, Zhang D (2012) Markdown pricing with unknown frac-
tion of strategic consumers. Manufacturing Service Oper. Manage-
ment 14(3):355–370.

Myerson RB (1981) Optimal auction design. Math. Oper. Res. 6(1):58–73.
Osadchiy N, Vulcano G (2010) Selling with binding reservations in the 

presence of strategic consumers. Management Sci. 56(12):2173–2190.
Papanastasiou Y, Savva N (2017) Dynamic pricing in the presence of 

social learning and strategic consumers. Management Sci. 63(4): 
919–939.

Pavan A, Segal I, Toikka J (2014) Dynamic mechanism design: A 
Myersonian approach. Econometrica 82(2):601–653.

Simmons GF (2016) Differential Equations with Applications and Histor-
ical Notes (CRC Press, Boca Raton, FL).

Stokey NL (1979) Intertemporal price discrimination. Quart. J. Econom. 
93(3):355–371.

Su X (2007) Intertemporal pricing with strategic customer behavior. 
Management Sci. 53(5):726–741.

Su X, Zhang F (2008) Strategic customer behavior, commitment and 
supply chain performance. Management Sci. 54(10):1759–1773.

Swinney R (2011) Selling to strategic consumers when product value 
is uncertain: The value of matching supply and demand. Man-
agement Sci. 57(10):1737–1751.

Talluri K, van Ryzin G (2004) The Theory and Practice of Revenue Man-
agement, International Series in Operations Research & Manage-
ment Science, Book 68 (Springer, New York).

Wang R (2001) Optimal pricing strategy for durable-goods monop-
oly. J. Econom. Dynamic Control 25(5):789–804.

Yin R, Aviv Y, Pazgal A, Tang C (2009) Optimal markdown pricing: 
Implications of inventory display formats in the presence of stra-
tegic consumers. Management Sci. 55(8):1391–1408.

Correa, Pizarro, and Vulcano: The Value of Observability in Dynamic Pricing 
Management Science, 2024, vol. 70, no. 4, pp. 2107–2121, © 2023 INFORMS 2121 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

86
.1

1.
41

.1
23

] o
n 

17
 Ju

ne
 2

02
4,

 a
t 1

2:
47

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 


	The Value of Observing the Buyers' Arrival Time in Dynamic Pricing
	Introduction
	Literature Review
	Model Description
	Analysis of the Model with an Observable Arrival
	Analysis of the Model with an Unobservable Arrival
	Bounding the Value of Observability
	Conclusions


