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Al. Complementary results
PROPOSITION Al. The function ¢(t) is lower semi-continuous.
Proof. We need to show that for all {5 > 0, it holds that

liminf ¢() > b(ty). (A1)

t—tg

First, note that from the definition of ¢(t), we are looking for a value v to set ¢(t) = v, i.e., v

must be the smallest valuation verifying: U(t,v) > U(t',v), for all # > t', or equivalently,
e (u—p(t) = e (v—p(t')),

where by isolating v we get ,
p(t) —e " Ip(t)

>
v= 1 — e‘M(t,_t)

Observe that due to the lower semi-continuity of p(t), the definition of the threshold function ¢

is equivalent to
p(t) —e " Ip(t)

o(t) =sup { T o= } . (A2)

t'>t
To prove that ¢ is lower semi-continuous we need the following auxiliary result, whose proof

follows from the definition of liminf for functions.

Auziliary lemma. If f and g are functions such that for all y > x it holds that f(z)> g(z,y), then

liminf,_,,, f(z) >liminf,_, g(z,y), for all y > .

! Note that the inequality holds for all v setting ¢’ =t and therefore we can restrict the condition for ¢’ strictly greater
than .

Al



From (A2) we have ¢(t) > 2= Caladll o for all ¢ > ¢, and using the auxiliary lemma it follows

1—e—n(t'—t)
that, for all ¢ > tg,

o h(t =) (4
liminf ¢(¢) > lim inf pt) —e p(t)

t—t t—to 1 —e—n-1)
Due to the lower semi-continuity of p(t) and the continuity of the exponential function, and in

)_e—u(t'—to)p(t/)

Py and therefore,

view of (A1), the right side of this inequality is at least 2 (to

lim 11'1f¢( ) p(tO) = e p(t )

!
>
t~>t0 1 e N(f, tO) Vt _tO.

)_e—u(t'—to)p(t/)
1—e—k(t'—tg)

Then, liminf,_;, ¢(t) is at least the maximum, over all ¢’ > ¢, of 2 (to , which is equal

to ¢(tg). Thus, ¢ is lower semi-continuous in R . O

PRroPOSITION A2. The FEuler-Lagrange equation associated to the problem

+oo

ma / I(t.p(t). o/ (1), " ()l

0

s given by

7 (o022 (-Z0 4y 0) oot + 00+ 1 (10~ 2 ) 566 - ) ~ 200+ 26 0] -
Proof. Recall that I(t,p(t),p'(t),p"(t)) = e °'p(t) < p'(t)+ ”—(> f (p(t) — #) We have to check

w
that
d? oI d oI 0OI

2oy diop " op

(A4)

is equivalent to equation (A3).

The first term of the RHS of (
d> o1 e (¢
<p (t)

f.

4) is given by

A
T = 1 ) (0~ 2650+ 8510 +

(t) (
p:t ( (t) - /S >> [Q(p’(t) — 5p(1)) <p’(t) - Y’T“)) () <p//(t) _ p";(w)] N
%&f” (p(t) - 2#) p(t) (p’(t) - pT(t)) B

On the other hand, computing the second term we obtain

dor _en 0w
Gy = ot (4020 ot -y 0+

0 ) (5 ) (B )2 -2
g (p( ) (p”,ff) )

i
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Finally, the partial derivative of I with respect to p is the following

g—; =e " (l%(t) —p'(t)) (f (p(t) - #) +p(t) [ (p(t) —_ #)) ,

Hence, equation (A3) comes from using the expressions above and equalizing the LHS of (A4)

to zero. 0

A2. Proofs of results in the main body
A2.1. Proof of Proposition 1

Let p(t) be an optimal solution of the relaxed problem [SPO}] and suppose that there exists ¢ such

that v (¢) is an inner local maximum. Then, it must hold that

2 t
v =pn-C =g (A5)
"
Recalling that the valuation density f is positive, observe that, at ¢, the Euler-Lagrange equation (3)

becomes
6(6 — p)p(t) — 20p'(t) +2p"(t) =0,
and therefore, together with (A5), p'(t) = %l, and thus, p'(t) —dp(t) < 0.

Let € >0 and p > 0 be such that t; =t — € and ty =t + p satisfying ¥ (t1) = ¢ (t2) and p'(¢;) —
op(t;) <0 for i = 1,2. Furthermore, since ¢ has a maximum at ¢, it must hold that ¢’(¢;) >0 and
' (tz) < 0.

Let us first suppose that f/'(1(t1)) = f'(¢(t2)) > 0. In this case, considering the first term in (3),

7 (e -2 ) (S22 ) ) )+ 1) 20

F'(4(t2)=0 P’ (t2)<0

<0

and therefore, since p(t) satisfies the Euler-Lagrange equation (3) for all ¢ —and, in particular,
for to—, we must have

8(6 — p)p(ta) — 20p' (t2) 4+ 2p" (t2) < 0. (A6)

Since by construction p’(t5) — dp(ty) < 0, we have @ < p(ty), and bounding from below the first
term in the LHS of (A6), we obtain

—(04 p)p'(t2) +2p" (t2) < 0. (A7)

Recalling that t, =t + p, taking the liminf in the LHS of (A7) when p — 0, by the lower semi-

continuity of the price function p(t), we obtain

—(6+p)p'(t) +2p"(1) <0,
A3



which is equivalent to 2p”(t) < (4 p)p'(t). But from (A5), up'(t) =p"(t), so 2up'(t) < (6 +p)p'(t)
and therefore 1 < 9§ (because p'(t) = 6”2& > 0), which is a contradiction.

Now, consider the case where f'(1)(t1)) = f'(1(t2)) <0. Then, it must hold that

7 (e =280 () (onte) + 000 >0

<0

J'(%(t1))<0 ¢’ (t1)>0
and now we can proceed analogously to the argument above.

Therefore 1 (¢) cannot have an inner local maximum, and with a similar argument, neither an
inner local minimum. Hence, 1)(¢) has to be monotone.

We are now left with showing that the function () is indeed non increasing. By contradiction,
suppose that v is increasing. We will see that if so we could improve the expected revenue, contra-
dicting that 1 corresponds to the optimal solution of the relaxed problem [SPO]. To this end, let
us consider the constant function f(t) = p(0) for all £. Then, ¢)(t) =p(0) and therefore the value of
the objective function of [SPOf| by considering the feasible pricing policy p is given by

oo

BH(0)(1 — F(4(0))) +/e‘Mﬁ(t)(—&'(t))f(iﬂ(t))dt =p(0)(1 = F(p(0))).

0

On the other hand, the expected revenue of the seller under the pricing policy p can be computed

as
)

p(O)(l—F(d)(O))H/e5tp(t)(—w'(t))f(¢(t)) dt.

Note that the second term is negative and therefore the expression above is upper bounded by
the expected revenue obtained by selling at time 0. That is,

oo

p(O)(l—F(¢(0)))+/e‘“p(t)(—i//(t))f(lﬁ(t)) dt <p(0)(1 = F(4(0)))-

0

Note that 1 — F(1(0)) > 1 — F(p(0)), and therefore the expected revenue under the price func-
tion p is greater than the expected revenue under the price function p, which contradicts the

optimality of p. Thus, we can conclude that 1 is a non increasing function.

A2.2. Proof of Proposition 2

Given a pair (p(t),1(t)) solution of [SPO{], with ¢ (t) =p(t) — # for all ¢, we must show that it

meets the equilibrium constraint of [SPO], that is:

te argmax e " (Y(t) —p(s)) Vt. (A8)
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Let h(s) =e " (¢(t) — p(s)), leading to

h'(s) = e " (—=p(¥(t) —p(s)) —p'(s)),
and
h'(s) = —pe™*(=pu(ip(t) = p(s)) = p'(s)) +e " (up'(s) = p"(s)).
Given an interior solution ¢ of (A8), it must verify A'(t) =0 and
MY — =it [ ol () ZL(t)
R'(t) = pe (p(t) B )SO.

Since (p(t),(t)) is solution of [SPOj], then from Proposition 1 we know that v’'(¢) <0, and
therefore, h”(t) < 0. Hence, t € argmax,>o e **(1)(t) — p(s)), for any pair of functions (p(t),1(t))
solution of [SPO{]. Recalling that the solution of [SPO] defines an upper bound of [SPO,], we
have that such pair (p(t),(t)) indeed defines a solution to [SPOy].

A2.3. Proof of Lemma 1

Note that an equivalent inequality would be

¢Ry > Ro— | p(0)(1— F((0))) + / e~otp(1)d(1 F<¢<t>>>]
- / eStp(t)d(1 - F((1))

By contradiction, suppose that for 7'=1n(1/c)/d, we have that:

[e.°]

/e“”p(t)d(l — F((t))) > ¢ [p(o)(l — F(¥(0))) +/6‘“p(t)d(1 - F(d)(t)))] - (A9)

T 0

Consider the price function p(t) = p(t+T') and its associated purchasing function . The seller’s
expected revenue can be computed as:

oo

Ry =p(0)(1 = F(4(0))) + / e "p(H)d(L = F((1))).

0
By the definition of p and doing the change of variable u =t +1T, it follows that the seller’s expected

revenue is given by:
Ry =p(T)(1 = F((T))) +e" / e~ "p(t)d(1 = F(4(1)))-
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Applying (A9), it follows that this expression verifies

oo

Ry >p(T)(L=F(¥(T))) +e""c |p(0)(1— F(4(0))) +/e“”p(t)d(1 — F(4(1)))

0
Note that p(T)(1— F(¢(T))) is non negative, and that 7' =1n(1/c)/§ implies e’Tc = 1. Thus, the
seller’s expected revenue for the pricing policy p is bigger than the seller’s expected revenue for

the pricing policy p, which contradicts the optimality of the price function p.

A2.4. Proof of Proposition 3

Suppose that we have the periodic function p with period 27" given by (4) and consider a random
shift, that is, for a random variable ¢, ~ Unif{0, 27, consider the function p,,(t) = p(t +1to). Then,
given that the buyer arrives in the interval I5, 1 U I of length 27, for some k € N, and denoting

by X the random variable arrival time, we have the following:

P(X <t|X € (Iop1UToy)) = P(X <t|X € (2(k — 1)T —to, 2kT — t,])
= P(X € (2(k — 1)T —to,1]).

Letting s be the length of the interval [2(k—1)T —t,t], i.e., s =t —(2(k—1)T' —t,), the expression

above verifies

P(X <t|X € (2(k—1)T —t0,2kT —to]) = P(X € (2(k —1)T — to,2(k — 1)T — to + s])
=PR2k-1)T-X<te<2(k—1)T-X+s5)
= % (because to ~ Unif]0, 277)
t—(2(k—=1)T —t)
2T ’

which proves that X is uniformly distributed in Iy, _; U Iy, and the proof is completed.

A2.5. Proof of Lemma 2

Without loss of generality let us suppose that k = 1, that is, the buyer arrives at time t,+t belonging
to I, with valuation v > p(T), and further assume that he will not purchase before time 7"+ t, so
that the seller is making less revenue than she could really make.

To prove the lemma we analyze the consumer behavior in the unobservable case under the pricing
policy p depending on his valuation. More specifically we will prove the followings three statements:

1. If ve [p(T),4(T)), then the buyer buys at time 27"+ ¢,.

2. If v e [¢(T),1(0)), then the buyer waits and buys at time 7 € (1" + to,27 + t] satisfying

b(r) =v.
A6



3. If v >1(0) the buyer purchases at time t,+ 1.

First, consider a buyer with valuation v € [p(7"),¢(7")). Knowing that he will purchase to gain
some positive utility (eventually at time 27" +t,), if he decides to buy at time 7 < 27"+ ¢¢, then by
the monotonicity of the purchasing function 1 in the observable case, we have that (7 — (T +t,)) >
V(2T +tog— (T +1t9)) =9(T") and it means that the buyer must have valuation greater than ¢ (7")
to be optimum to purchase at time 7, which is not the case. We then conclude that in this case he
will buy at time 27T + .

Secondly, if the buyer has valuation v € [1/(1"),1(0)), then by using the calculation of the pur-
chasing function for the observable arrival case —conducted under the assumption that the buyer

arrives at time 0—, we have that for some ¢ € [0,77], it holds that v =1(t), i.e.,
t € argmax U(s, (),

which means that
e M ((t) = p(t) = e (¥(t) —p(s)), Vs = 0.

This is equivalent to
e MO g (p(t) — p(t) 2 ¢ KT B (1 (1) —p(s), Vs 20.

Hence, the buyer will buy at time 7 =T 4+t + ¢ satisfying (t) = v.

Finally, the third statement follows directly from the definition of the threshold function .

The lemma follows by observing that if the buyer has valuation at least ¢(T"), the seller’s revenue
is the same as in the observable case with the buyer arriving at time 7'+ ¢35 and accumulating
revenue up to time 27" + ¢, (cases (2) and (3)). But if the buyer has valuation between p(T)
and (T (case (1)), then he will buy before time 27"+ ¢, in the unobservable setting under the
price function p, but he will buy after that time in the observable case with arrival time 7"+ ¢,.

Therefore, we conclude that, conditioned on the event that the buyer with valuation greater
than p(T) arrives at time 7'+ ¢, —which is equivalent to looking at the problem in the inter-
val [T'+to,2T +to] in the observable case—, the seller’s expected revenue under the policy p in the
unobservable case is at least the expected revenue earned up to time 27"+ ¢, in the observable case

with arrival time T + ;.

A2.6. Proof of Lemma 3

Consider the pricing policy p described in Figure 2 in Section 5 and fix the buyer arrival time 7.
Recall that tq is the uniform random variable involved in the random shift applied over the original
price function p to get p. Recall that these functions have period 27", where we are setting 1" =
In(1/c)/é.
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Suppose, without loss of generality, that the buyer arrives during the first cycle of the policy;
ie., T € [to,to + 2T). Thus, to ~ Unif[r — 27, 7]. In order to have intervals defined around ty, we
denote Z, := [r — T, 7] and T := [r — 2T, 7 — T]. With this definition, we have that 7 € I; if and only
if to e Z;, for i =1,2.

In our analysis we will only consider the buyer’s arrival if it belongs to the interval I, otherwise,
we simply bound the revenue by O.

Note that if 7 € I;, we can lower bound R by the expected revenue obtained by considering
that the buyer has valuation at least p(7") and that he purchases after time t,+ 7. This is because
the buyer does not purchase if v < p(7), and his wait until ¢, + 7" to buy when he could have
bought earlier would only hurt the seller’s revenue. Then, from Lemma 2, R¥® is at least the
expected revenue earned up to time 27+ ¢y in the observable case with arrival time T + ¢y, i.e.,
R > Rygirg+21)-

Let R, +r be the expected revenue in the observable case if the buyer arrives at time ¢, + 7',
for a given value to. After applying Lemma 1, we have Ry 474,421 > (1 — ¢)Ry 41, so that R*® >
(1—c¢)Ryt-

We now use the analysis above to compute a bound for the expected value of the seller’s revenue
in the unobservable case conditioned on the event that the buyer arrives at time 7. To this end,
we define the sample path-based revenue S*° for the unobservable case from time 7 onward, i.e.,

R =E(S*), and conditioning on the random, shifted origin time ¢o, we get:

E(S57°) = Ei (E(S7* [ t0))
== E(s;/,o | tO S :Z-l)]P)(to S j-l) _’_]E(ijo | to eig)P(tO Eig)

1 ~ 1 ~
— QE(S;:LO | t() S Zl) + §E(S;L_w | to S IQ)

1 N
> 5(1 — )y (Rigyr | to € Th),

where the last equality holds because ty ~ Unif[r — 27", 7], and the inequality follows from the
observation above.
Note that Ry 7 =e *@+T="R_=ce=to-T) R where the second equality holds from e=°7 =c.

Therefore, it is enough to compute E,, <e‘5(t0_7) [ to € f1> In fact, now for ¢ty ~ Unif[r — T, 7|, we

have
. T 1
B, (0 |tye ) = / =307 Z
=T T
efT —1
T T
By the definition of T, we know that 7'6 =In(1/c) and e°T =1/c, and therefore we have
~ 1—c
By (707 [tyedy) = ———.
o\ o€ cln(1/c)
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We then obtain the following lower bound for the expectation of the seller’s revenue in the unob-
servable case that depends on c:

w0 uo (1_6)2
R =E(81%) 2 gy a0 R

which completes the proof.

A3. Discussion of model assumptions

Our model is quite general and follows the standard setup of the OM literature. Yet, there a few
features that are worth discussing.

First, we consider a consumer’s utility function of the intertemporal type (e.g., see chapter 20 in
Mas-Colell et al. (1995)), where the buyer discounts the net payoff v — p(t) if he decides to buy at a
later time ¢, following the classic econ approach (e.g., see Landsberger and Meilijson (1985), Besanko
and Winston (1990)). It has also been the prevailing utility function within the OM literature on
strategic consumer behavior (Gonsch et al. (2013)). An alternative model would be one where only
the valuation of the buyer declines, obtaining the utility function U (t,v) = e *v —p(t) (e.g. Aviv
and Pazgal (2008), Cachon and Swinney (2009)). However, this model is equivalent to one where a
utility function like ours is considered and the seller is more impatient than the buyer. Indeed, by
considering the utility function U(¢,v) = e *v — p(t) and a seller discount rate ¢ > 0, the setup is
equivalent to defining the utility function U (¢,v) = e™#*(v — p(t)) and a seller’s discount rate p+d,
with p(t) = e#*p(t). In this case, U(t,v) = e *v —p(t) = e (v — etp(t)) = e " (v —p(t)) = U(t,v),
and in both cases the seller gets e %p(t) = e~ OTHj(¢).

Second, in our model we assume that the seller is more patient than the consumers, i.e., & < .
Otherwise, when § > i, the optimal pricing policy is to fix a constant price equal to the monopoly
price, obtaining that V'O is trivially 1. It is enough to prove it for the observable case because if
the optimal price function is constant (and independent of the parameters of the problem), then
the advantage of being able to observe the arrival vanishes and both problems are equivalent.

To see this, consider first the case where both discount rates are equal (§ = ). This is exactly
the setting considered by Stokey (1979) in which she proved that no price discrimination occurs
and the optimal pricing policy is to charge the monopoly price, namely p,,, during the whole selling
horizon. If the seller is more impatient than the buyer, i.e. i <4, it is enough to note that her
optimal expected revenue is upper bounded by the one in the case =0 since a bigger seller’s
discount rate can only lead to a worse revenue for her, which is achieved by taking p(t) = p. Vt.
At the same time, a fixed pricing policy is a feasible solution for the unobservable case, and the
revenue derived from it provides a lower bound for R*°. All in all, in this case VO is upper bounded
by 1, and hence it is exactly 1.
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A4. Solving the observable case

In the particular case when the buyer’s valuation has density function f(z) = kz®, for some integer
number « and positive number k, we can explicitly calculate the pricing function p(¢) and the
purchasing function 1 (t) for the observable case.

To start with, the problem [SPOj] becomes:

oo

max [ 1(t,p(0).0/(0).5" (1) +p(0)(1 - F((0), (A10)
0
where I(t,p(t), 7'(1).7" (1)) = e *'p(t)k (p(t) — Z22) " (= (1) + £22).
By formulating the Euler-Lagrange equation (3) in this case, we obtain the following ODE in
the function p(t) 2

o (70~ Z0) 60— an(e) + (w6)— 210 ) 606 - aple) - 260/C) + 2 (1) =
which is equivalent to

P'(t) a\  P)? 26\ p't)p"(t)1 p'(t) (ad
o= =Bgo (o143 ) + 5 (o ) - e+ B (S 42) - o)

Setting y(t) = (log(p(t)))’, we have that p'(£)/p(t) = y(t), p'(t)*/p(t)* = y*(t), p'(t)p" (1) /p(t)* =
y()(y'(t) +y2(t)), and p”(t)/p(t) = (y'(t) + y*(t)), which allows to rewrite equation (A11) as:

56— ) — (1) (a+1+g) L) (a+ 2/—5) ~ OV )+ (0)% 2+ )+ () +12(0) (/—5 +2) —0.

Rearranging terms, this equation can be written as

5(6—p) —y(t)d <a+1+%) +y*(t)(2+ ) (1+%>
3(4) 2 a) — b a)+y a9 =
P02+ a) (O (O 2+ >+y<t>(u +2) 0. (A12)

Note that (A12) is a separable first-order nonlinear ODE, that is, can be written as y' = H(y),
for some function H. Therefore it can be solved by integration. For our case the solution turns
out to be quite contrived (and obtainable only in impliocit form), but for two special cases we can
give clean closed form solutions. We thus show the optimal pricing policy for the cases where the

buyer’s valuation distribution is uniform and truncated Pareto.

2 We highlight here that the equation gives the optimal solution of (A10) for p(t) — p’(t)/u in the support of the
valuation distribution. Otherwise, the equation is reduced to 0 =0.
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Case ao=0. We first fix k=1 and o =0, i.e., we consider the buyer’s valuation Unif]0,1]. In
this case, we obtain a second order ODE in the function p(t) with constant coefficients, expressed

by
" N 52_5
P (t) = 3p'(t) + —5

p(t) =0.

Its solution is given by:
p(t) = 13OV | ¢ 3Uo+/ 5620

where ¢, cy are constants to be determined.

Note that § + \/m >0 and  — \/m < 0 due to p > §. Therefore, the optimal
pricing function is a sum of a negative exponential function and a positive exponential function
and p(t) could in principle go to infinity when ¢ goes to infinity. However, p(t) € [0, 1] for all ¢, and
then, it must be the case that c; = 0. Thus, the optimal price function is a negative exponential

function of the form:

p(t) = Cleét(é—\/ —5(5—2;0)’

with ¢; = p(0).
In order to simplify the notation, define the positive constant A = —0 4+ /—4d(6 —2u). We are
left with finding the value p(0). Replacing the function p(¢) in the unconstrained problem (A10),

we can rewrite it as a maximization problem over p(0) as follows:

p(0) 4p ﬂ

max < p*(0) /Ooe‘(‘s“‘)t (é + A—Q) dt + p(0) (1 —p(0) — p(0) 4 )

Solving this problem, we obtain p(0) = %. Noting that p'(t) = —%Ap(O)e‘%At, we also

obtain p’'(0) = —_Au(eta) Therefore, the pricing function that solves the seller’s problem is given

(A+2u)(A+26)°
by
2u(d+ A
p(t): :u’( + ) e—ét7
(A+20)(A +20)
with corresponding purchasing function (derived from (1))
0+ A _Ay
=Tt

Note that in this uniform valuation case, the purchasing function turns out to be a positive mul-
tiplicative scaling of the pricing function. The optimal expected revenue of the seller in this case
can be easily computed obtaining
__ MA+9)
(A+2u)(A+20)
All




(a) Very impatient buyer (u = 5). Expected rev- (b) Slightly impatient buyer (u = 1.5). Expected rev-

enue: 0.3125. enue: 0.2574.
Figure A1  Optimal purchasing and price functions for different levels of asymmetry in the patience of

the seller and the buyer. In both panels we normalize the discount rate of the seller at § =1.

In what follows, we analyze the optimal curves obtained for some specific values of the discount
rates 1 and §, corresponding to different levels of asymmetry in the patience of the seller and the
buyer. Without loss of generality, we normalize the discount rate of the seller by setting § =1.

In Figure A1, the left panel captures the case where the buyer is five times more impatient than
the seller, whereas the right panel illustrates the scenario where he is only 50% more impatient.
In panel (a), when the buyer is noticeably more impatient, we can observe that the optimal initial
values of p(0) and p’(0) are greater than in panel (b), and that both price and purchasing optimal
functions decrease faster. These curves reflect the fact that when facing a more impatient consumer
(panel (a)), the seller will price more aggressively early in the horizon but will also drop the price
relatively fast. Noting that the decreasing price pattern plays the role of a valuation discovery
mechanism, the wider span of the pricing in (a) attempts to keep in the market a low valuation
consumer by offering an attractive enough price relatively soon. On the contrary, when the buyer
is more patient (panel (b)), the seller can offer a slow decaying price curve so that a consumer
with mid to low valuation will buy later (compared to (a)) but at a higher price. The fact that the
seller takes advantage of the buyer’s impatience is confirmed when computing the ex-ante expected
revenue by solving [SPOy] in both cases, leading to values 0.3125 and 0.2574, respectively.

Figure A2 illustrates two limit scenarios for a normalized seller’s discount rate § = 1. In panel (a)
we consider the case in which the buyer is extremely impatient (with p = 1000). Here, the seller
drops the price very quickly from 1 to 0, charging almost instantaneously the valuation of the buyer
and extracting his whole surplus. In panel (b) we present the case in which the buyer’s discount rate
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0.9 |- - 0.9 |- -
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0.4 v(®) - 0.4 |- -
0.3 - 0.3 |- -
0.2 H p(¢) b 0.2 - —
0.1 - 0.1 -
0 | | | | | 0 | | | | |
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(a) Extremely impatient buyer (@ = 1000). Expected (b) Very patient buyer (u — §). Expected revenue: 0.25.

revenue: 0.4786.
Figure A2  Optimal purchasing and price functions for limiting asymmetries in the patience level of the

seller and the buyer for different levels of asymmetry in the patience of the seller and the

buyer. In both panels we normalize the discount rate of the seller at 6 =1.

tends to 1. The optimal price and purchasing functions are the same and equal to 0.5 throughout
the selling horizon. In this case, we recover the optimal auction of Myerson (1981), with reservation
price 0.5 and the buyer purchasing at time zero if and only if his valuation is at least 0.5. In this
case, he pays the reservation price for the item. The seller’s advantage revenue-wise is even more
emphasized, with values 0.4786 and 0.25, respectively.

Case o« =—2. We now take k= M /(M — 1) and o = —2, which corresponds to the truncated
Pareto distribution with parameter 1 and support [1, M].

After some algebra and taking § = 1, we obtain a second order ODE in the function p(t), expressed
by

2p" ()p(t) +p'(t)p(t) — pp(t)* —2p'(1)* =0,

whose solution is given by

p(t) = coehttere™?,

where ¢y, ¢, are constants to be determined.

Therefore, the optimal pricing policy is

p* (t) = C2eut+c1eft/2 if ¢ < 75
1 if +>7,

t

where ¢ is such that coertteie” ' Z= 1. On the other hand, it must hold that p*'(¢) =0, and from
both conditions we obtain ¢; = 2ue!/? and ¢y = e #(+2),
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Replacing the function p(¢) in the unconstrained problem (A10), we can rewrite it as a maxi-

mization problem over ¢ as follows:

1 - - - - - ~
max {jZiji-(Afe—w2(1—%(2u-1)@f¢ﬂ._1)4_uew?(1—-e—w)-—e—u@+m+mw“2>}. (A13)

We conclude that the optimal price function of the observable case when the buyer’s valuation

is TruncPareto(1,1,M) is given by

)—u(f+2—t)—2p,c if < 7?
* t g € 1 S = ,:,
Pt) {1 if 17,

t/2—t/2

where # is the optimal solution of problem A13.

A5. Performance of two heuristic solutions of the unobservable case

In this section we evaluate the performance of two heuristics that may be implemented in the
context of the difficult unobservable arrival case, for which an exact solution is hard to characterize:
the periodic pricing policy presented in Section 5, and the simple fixed price policy.

In particular, we will assume that the buyer arrives according to an exp(1) distribution, and
consider two valuation scenarios: Unif[0,1] and TruncPareto(1,1,100) —as defined in Section 6.2. We
normalize the seller’s discount rate to 1, and vary the buyer’s discount rate p starting from values
close to 1.

In Table A1 we present the results for the uniform valuation case. More specifically, for different
values of u listed in the first column, we use the analysis in Appendix A4 to compute the optimal
expected revenue of the seller in the observable case (second column). In the third column, we
present the expected revenue of our periodic pricing policy in the unobservable case. Finally, we
compute the ratio between the latter values and the expected revenue of the best fixed price policy,
0.125, and present this values in the fourth column of the table. 3

From the values in Table A1l we can see that, although our policy is better than fixed price, this
advantage is small when the valuation is uniformly distributed.

In Table A2 we present a similar analysis for the TruncPareto(1,1,100) distribution. We remark
here that this is possible because, in this particular case, we are able to explicitly solve the observ-
able case, as shown in Appendix A4. Here, in contrast to the uniform case, we report that our
policy performs significantly better than the fixed price policy, and the gap increases as the buyer’s

discount rate increases. Note that in this case the optimal fixed price policy gives revenue 0.5.4

3 Note that the best fixed price policy for the uniform valuation, unobservable case is given by the price p maximizing
p(1— F(p)) =p(1—p), which is p=1/2, and therefore the total expected revenue is % fooo e tetdt = %, where one of
the exponential factors in the integral comes from seller’s discount rate and the other one from the density function
of the exp(1) valuation distribution.

4 Note that the best fixed price policy for the unobservable case under TruncPareto(1,1,M) valuations is given by the

price p maximizing p(1 — F(p)) = Ml_l (M —p), which is p =1, and thus the total expected revenue is fooo eteTt =1,

2
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Discount | Revenue observable case | Revenue unobservable case | Revenue ratio periodic policy
I optimal policy periodic policy vs. fixed price
1.1 0.1257 0.1232 0.9859
1.5 0.1287 0.1252 1.0016
2.0 0.1340 0.1274 1.0192
5.0 0.1563 0.1398 1.1184
7.0 0.1650 0.1439 1.1512
10.0 0.1741 0.1477 1.1816
100.0 0.2191 0.1463 1.1704

Table A1l Comparison among expected revenues under different buyer’s discount rates u, for Unif[0, 1] valuation
distribution and exp(1) arrival distribution. Columns: Revenue from the optimal policy in the observable case
(column 2), revenue from the periodic policy in the unobservable case (column 3), and ratio between the latter and
that from the fixed price policy, i.e. 0.125, in the unobservable case (column 4). The seller discount rate is

normalized to § = 1.

Discount | Revenue observable case | Revenue unobservable case | Revenue ratio periodic policy
I optimal policy periodic policy vs. fixed price
1.1 0.5079 0.4669 0.9338
1.5 0.5669 0.4932 0.9864
2.0 0.6358 0.5352 1.0704
5.0 0.9017 0.7328 1.4656
7.0 1.0098 0.8048 1.6096
10.0 1.1265 0.8667 1.7334
100.0 1.7841 1.1488 2.2976

Table A2 Comparison among expected revenues under different buyer’s discount rates pu, for
TruncPareto(1,1,M) valuation distribution and exp(1) arrival distribution. Columns: Revenue from the optimal
policy in the observable case (column 2), revenue from the periodic policy in the unobservable case (column 3), and
ratio between the latter and that from the fixed price policy, i.e. 0.5, in the unobservable case (column 4). The seller

discount rate is normalized to § = 1.

A6. Unobservable case with truncated Pareto valuation and two possible
arrival times

With the objective of characterizing the optimal solution of an unobservable arrival problem

instance, suppose that the valuation of the buyer is distributed according to a TruncPareto(1,1,M),

and that he arrives at one of two possible times: either at time 0 with probability 3, or at time T’

with probability 1 — 8, for some predetermined value T" > 0.

We define the threshold valuation o as the value so that if the buyer arrives at time 0 with
valuation v > «, then he would buy before time 7. This implies that, at time 7', conditioned on
the event that the seller has not sold the item yet, the buyer’s valuation is the mixture of two
truncated Pareto distributions: (i) a truncated Pareto in [1,a] accounting for the mass of buyers
who arrived at 0 and decided to wait for a good price to be offered after T', with weight £, and
(ii) a truncated Pareto in [1, M] accounting for the buyer arriving at time 7', with weight 1 — §.
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Assume also that the seller’s discount rate is normalized to 0 = 1, and that the buyer discounts the
future at rate pu>1.

The general approach to compute the optimal expected revenue would be to decouple the prob-
lem in two independent subproblems that occur sequentially over time, by conditioning on the
purchasing time of the buyer: either before or after T'. Assume for now that the value of « is
given. We will argue that if the buyer arrives at time zero with valuation above «, he does not
have an incentive to delay his purchase beyond time T'. Otherwise (i.e., he arrives at time zero
with valuation below « or he arrives at time T'), he will buy after time 7. Hence, we can solve
these two subproblems separately and then link them through the threshold « occurring at time T'.
Furthermore, each subproblem, once we condition on the information available at times 0 and T,
corresponds to the observable case. In this regard, the threshold function ¢ of the unobservable
arrival case is defined by parts combining three different purchasing functions i for the observable
arrival case.

The first subproblem, defined over the time window [0,7"), is solved as in the observable case
with TruncPareto(1,1,M) valuation but in a finite horizon, by adding a terminal condition for the
purchasing function: ¢ (7') = a. For the second subproblem, defined over [T',00), we first guess the
time 7 by which the buyer arriving at 7" would have purchased the item if and only if his valu-
ation were above «, and then we solve two “observable arrival” problems assuming a truncated
Pareto valuation distribution for each of them. More specifically, the problem in [7,00) is solved
with valuations TruncPareto(1,1,«); whereas the problem in the interval [T, 7) is solved with valu-
ations TruncPareto(1,1,M) and with two terminal conditions: (i) the value of the purchasing time
function at the boundary has to verify: 1¥)(7) = a, and (ii) the price function has to be continuous
at 7.

This whole procedure gives a price function and a purchasing function that depend on a and 7
—see Figure A3, which are then optimized to maximize the seller’s revenue. Note that as we can
derive explicit solutions for the truncated Pareto valuation distribution in the observable arrival
case, the numerical part of the optimization to solve the unobservable case is only over these two
parameters.

We provide below more details of the subproblems we need to solve to obtain the optimal price
and threshold functions: one over the time interval [0,7), and other over the time interval [T, 00),
which in turn could be divided into two problems, with splitting time at 7, where in principle 7 is
assumed to be fixed. In particular, these three problems lead to three pricing policies, namely p1, p2
and p3, with corresponding purchasing functions v, and 13, as can be seen in Figure A3. After
that, we prove that the problem can indeed be decoupled into these sub-problems, by showing that
there are no purchasing deviations (see Propositions A3 and A4 below).
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Figure A3  Price and purchasing functions for the unobservable arrival case with TruncPareto(1,0,1) and
two possible arrival times: 0 and 7. The threshold function ¢ is defined by three parts through
respective definitions of the purchasing function i for the observable arrival case. In order
to compel with the requirement of ¢ being lower semicontinuous, the function v, is assumed
to be left continuous at some point 1" — €, for € > 0 arbitrarily small, and the function 1, is
extended to the left of T" so that it is continuous at T'. Note that this technical adjustment

implies a negligible revenue loss from the seller’s perspective.

The following steps are performed for solving a particular problem instance, defined over the
parameters 3, T', pu, and M. The procedure is described for fixed given values o and 7, leading to
a pricing policy p and a threshold function ¢ that depend on both values. Then, both o and 7 are
optimized to maximize the revenues of the specific problem instance.

Step 1. Compute the pricing policy p; to offer in the time interval [0,7") and its associated pur-
chasing function ;. To this end, we need to solve the problem [SPO}] affected by the probability

that the buyer indeed arrives at time 0, i.e.,

max Bpl(o)(l—F(¢1(0)))+ﬁ/e_tpl(t)f(wl(t))(—wi(t))dt,

where 1, (t) is defined in (1), and where we further impose the boundary condition ¢, (7") = a.
Step 2A. Compute the pricing policy ps to offer in the time interval [r,00) and its associated
purchasing function 3. To this end, we need to solve the problem [SPO}] but with origin at time 7,

with valuations at most «, i.e.,:

oo

ma [ ¢ pa(8)f(a(8) (~04(0) d -+ € () (Pla) = F(ua(r))

T
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where the second term represents the discounted expected revenue obtained at time 7 from the
mass of valuations between 13(7) and a who arrived at time 0 or at time 7',° and the term involving
the integral represents the discounted expected revenue obtained along the interval [7,00).

Step 2B. Compute the pricing policy p, to offer in the time interval [T,7) and its associated
purchasing function ). To this end, we need to solve the problem [SPOj] affected by the proba-
bility 1 — 8 that the buyer arrives at time T, i.e.,

T

max  (1- B)e™ pa(T)(1 = F((T))) + (1 B) / e ' pa(t) f (12 (1)) (=15 (1)) dt,

T
where 15(t) is defined in (1), and where we further impose two boundary conditions: ¥»(7) = a,

and po(7) =ps(7).°

With the solutions of the three steps above, we can define the pricing policy p and the threshold
function ¢ for the whole horizon. To ensure that these functions solve the unobservable case for
this particular instance, it only remains to prove that if the buyer arrives at time 0 with valuation
v > «, then he will indeed buy before time T'. To this end, we show a preliminary result stating
that if a buyer with valuation ¢ (n) for some n € [0,T") buys after T', then he will also buy after T’
if he has valuation belonging to the interval (o, v1(n)), where v represents the solution of the

problem described in Step 1.

PROPOSITION A3. If there ezists n € [0,T) and 7' >T such that U(n,11(n)) <U(n',11(n)), then
for all t belonging to the interval (n,T], there exists t' >T such that U(t,1(t)) <U(t',91(t)).

Proof. By contradiction, suppose that there exist t € (n,T] such that U(t,1(t)) > U(t,¢1(t)) for
all ¢’ > T In particular, the inequality holds for ¢’ =7/, and then we have U (t,¢1(t)) > U(n/,11(1)).
Define € = 1)1(n) — 11(t). Note that by hypothesis n < ¢, and thus, from the monotonicity of v,

(see Proposition 1 in Section 4), we obtain £ > 0, which implies

Ut h1(n) = e " (1() + = p(t) = U(t,31(8) +2e # 2 U/, 41 (1) +ee " = Ul (1)),

where the inequality holds due to the contradiction hypothesis for ¢ =n" and because 1’ > t, and
the last equality holds because ¢ (n) =1, (t) + . We conclude that U(t,¢1(n)) > U(n/,11(n)).

® This mass of valuations is composed of B(F(a)— F(13())) coming from time 0, and (1 — 8)(F(ca) — F(3(7)))
coming from time 7. Recall that no matter the arrival time, the buyer always discounts his utility since time 0.

5 Note that the price function has to be continuous at 7. Otherwise, knowing that p is non increasing (due to the
observation in Section 3.2.1 together with Proposition 2), if it were the case that lim,_, - p2(7) > p3(7), then a buyer
with valuation 12 (7 — €) > a would have an incentive to wait and buy at 7 and take advantage of a price decreased by
a non negligible amount, which would contradict the definition of « as the threshold valuation above which a buyer
would purchase before 7.
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On the other hand, by hypothesis we know that U(n’',¢1(n)) > U(n,¥1(n)), and putting all
together we conclude that U(t.v1(n)) > U(n,v1(n)) which contradicts the definition of the pur-

chasing function 1, completing the proof. U

Let us use this result to prove that if the buyer arrives at time 0 with valuation greater than a,
then he does not have an incentive to buy later than 7". This result justifies the decoupling of the

problem that occurs at time 1" and that separates Step 1 from Step 2.

ProOPOSITION A4. If the buyer arrives at time 0 with valuation v > «, then there exists an optimal

pricing policy under which he purchases at some time before T'.

Proof. By contradiction, suppose that there exist t € (n,T] such that U(t,1,(t)) > U(t',¢4(t)) for
all #' > T In particular, the inequality holds for ¢ =7/, and then we have U (t, ¢ (t)) > U(n/,11(t)).
Define € =11 (n) — ¢1(t). Note that by hypothesis n < ¢, and thus, from the monotonicity of v,

(see Proposition 1 in Section 4), we obtain £ > 0, which implies

Ut 41 (m) = e (¢ (1) + e = p(t)) = U(t, 41 () + e 2 U, () +ee " =T 4 (t),

where the inequality holds due to the contradiction hypothesis for ¢’ =’ and because 7’ > ¢, and
the last equality holds because 1 (n) =1 (t) + . We conclude that U(t,¢1(n)) > U(1',11(n)).

On the other hand, by hypothesis we know that U(n',41(n)) > U(n,¥1(n)), and putting all
together we conclude that U(t,1(n)) > U(n,¢1(n)) which contradicts the definition of the pur-
chasing function ;, completing the proof. O

In summary, even though the unobservable arrival case is hard to solve in general, in the partic-
ular scenario with truncated Pareto distribution and two possible arrival times, we could solve it
by simplifying its formulation to a sequence of observable arrival cases. We highlight here that the
same argument can be used to solve the unobservable case with two arrival times for any setting

for which the observable case can be solved, as it is the case of the uniform distribution.

A7. A lower bound for the value of observability

In order to get a lower bound for the value of observability it is enough to get the ratio for one
particular problem instance. The challenge here stems from the difficulty in solving the unobserv-
able case, even numerically. In order to partially overcome this difficulty, we consider the particular
problem instance introduced in Appendix A6: TruncPareto(1,1, M) valuations and two possible
arrival times: 0 and T, with probability 8 and 1 — 3, respectively. Remember that the policy is
further characterized by two additional parameters: (i) «, representing the value so that if the
buyer arrives at time 0 with valuation v > «, then he would buy before time 7', and (ii) 7, the time
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by which a buyer arriving at 1" would have purchased the item if and only if his valuation were
above .

Setting the parameters M = 100 and 7' =1, and normalizing the discount rate of the seller
at d = 1, we numerically compute the value of observability for different buyer’s discount rates p
and probabilities 8 of arriving at time 0. The results are exhibited in Table A3, from where we
note that the worst case over these instances is the one determined by p=4.5 and 5 = 0.4, leading

to a lower bound of 1.136 for the value of observability.

b 0.2 0.4 0.6 0.8
1

1.0 1 1 1 1

1.5 1.036 | 1.017 | 1.005 | 1.001
2.0 1.074 | 1.047 | 1.020 | 1.001
2.5 1.111 | 1.069 | 1.038 | 1.004
3.0 1.128 | 1.089 | 1.048 | 1.013
3.5 1.124 | 1.107 | 1.058 | 1.020
4.0 1.115 | 1.124 | 1.066 | 1.025
4.5 1.103 |1.136 | 1.074 | 1.029
5.0 1.091 | 1.121 | 1.094 | 1.064
5.5 1.078 | 1.103 | 1.075 | 1.044
6.0 1.065 | 1.084 | 1.054 | 1.022
Table A3 Value of Observability for a two-point arrival time distribution: 0 with probability 8, and T =1 with

probability 1 — 3, assuming TruncPareto(1,1,100) valuation and seller’s discount rate § = 1.
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