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Abstract

Segregation in schools is prevalent in cities around the world. We analyze the impact of affirma-

tive action policies commonly used in centralized school choice on segregation and efficiency. In a

large market model, we show that minority reserves–which guarantee a number of seats to minority

students–are an effective tool for reducing segregation in schools. Minority reserves also increase the

number of students assigned to their first preferences and improve efficiency. The cost of increasing

minority reserves is leaving more students assigned to unattractive schools. The theoretical predictions

are confirmed by simulations using data from school choice programs in Chile.

1 Introduction

Many school choice programs around the world use centralized procedures to assign students to schools.

Based on the Gale-Shapley deferred acceptance algorithm (Gale and Shapley 1962), these procedures

result in assignment processes that are considered successful by scholars and policymakers. Yet,

our understanding of the impact that affirmative action policies have on segregation and different

market outcomes is rather limited, despite the fact that segregation in schools is a key societal and

economic problem. Indeed, segregation in schools impacts both learning outcomes and social attitudes

(Karsten 2010, Rao 2019) and, as policy debates recognize, is in part determined by the algorithm
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used to admit students.1 This paper explores some of the tradeoffs policy makers face when reducing

segregation in school choice programs using affirmative action policies.

We focus on the impact of minority reserves on segregation and efficiency in school choice pro-

grams. Minority reserves guarantee a given number of seats to minority students and respect each

school ranking otherwise (Hafalir, Yenmez, and Yildirim 2013, Ehlers, Hafalir, Yenmez, and Yildirim

2014, Echenique and Yenmez 2015). These reserves are a simple and transparent way to include di-

versity considerations into centralized school choice programs. We use simulations from the Chilean

centralized school choice system and derive theoretical results to understand the impact that minority

reserves have on several market outcomes, including segregation, the number of students assigned to

their top schools, and efficiency.

Our analysis is motivated by data and simulations from the centralized school choice system used in

Chile. The Chilean system reserves 15% of the seats in each school to socially disadvantaged minority

students and assigns students to schools using the Gale-Shapley deferred acceptance algorithm. By

simulating the system for different minority reserves, we show that reserves can be an important

tool to reduce segregation in schools. More subtly, minority reserves increase the number of students

assigned to their top schools and also improve the overall efficiency of the final assignment. However,

the simulations reveal that the main cost of minority reserves is to leave more students assigned to

less attractive schools or unassigned.

To understand the impact of minority reserves on important market outcomes, we explore a large

market model in which a continuum of students apply to a finite number of schools (Abdulkadiroglu,

Che, and Yasuda 2015, Azevedo and Leshno 2016). A student is either regular or minority. Schools fall

under two tiers, 1 and 2. Each school ranks students randomly. Tier 1 schools are popular and over-

demanded, while tier 2 schools are unpopular and under-demanded. Our model assumes that regular

students apply more intensely to tier 1 schools than minority students. As we show, this assumption

is spported by data from the Chilean school choice system. It is also consistent with evidence from

school systems in Europe and the US (Hastings, Kane, and Staiger 2009, Laverde 2020, Oosterbeek,

Sóvágó, and van der Klaauw 2021).

We demonstrate that minority reserves benefit minority students and reduce segregation, unless

an excessive number of seats are reserved for minority students. An important insight from our

main comparative statics results is that the effect of minority reserves on efficiency measures depends

critically on market specifics. Our main result shows that in markets where popular schools have

1For example, segregation in the current New York City centralized school match is an issue of intense debate and
some proponents argue that the city should modify the algorithm used to assign students. See the New York Times story
at https://www.nytimes.com/2021/03/09/nyregion/nyc-schools-segregation-lawsuit.html. See also the discussion in Alvin
Roth’s blog at https://marketdesigner.blogspot.com/2019/04/should-nyc-school-choice-diversify.html.
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relatively few seats and minority students apply less frequently to these popular schools, increasing

minority reserves results in more students assigned to their top-choice schools. In contrast, in markets

with abundant capacity or where minority and regular students concentrate their applications on

different popular schools, increasing minority reserves decreases the number of students assigned to

their top-choice schools.

We also measure the inefficiency of the assignment by the number of students in Pareto improving

pairs. Two students form a Pareto improving pair if, by swapping schools, both are better off. We

show conditions under which increasing minority reserves improves the efficiency of the system by

reducing the number of students in Pareto improving pairs.

The theoretical analysis additionally exposes the costs of reducing segregation in schools by using

minority reserves. We show that increasing minority reserves leaves more students assigned to less

attractive schools. Formally, we prove that as minority reserves increase, the cumulative rank distri-

butions cross and, as a result, cannot be compared in the first order stochastic dominance sense. In

particular, increasing the total number of students assigned to unattractive schools is an important

consequence of a rise in minority reserves.

Our comparative statics results are the main theoretical contribution of the paper. Although

our model is stylized, each of our theoretical results links up with real-world data from the school

assignment processes in Chile. We use our theory and simulations to show that the design of minority

reserves is an important and distinctive policy decision.

Segregation in schools is pervasive in cities around the world. Centralized school choice programs

are often seen as providing equal access to schools. However, recent research shows that systematic

differences in the application patterns of different groups may limit the efficacy of centralized school

choice programs at reducing social, ethnic, or racial segregation in schools (Laverde 2020, Kutscher,

Nath, and Urzua 2020, Son 2020, Oosterbeek, Sóvágó, and van der Klaauw 2021).2 We build from

the premise that centralized school choice alone may not be enough to integrate schools and explore

the trade-offs faced when designing minority reserves.

Our analysis has important practical implications. The number of students assigned to their top

schools is typically reported by districts implementing centralized school choice platforms (Featherstone

2020). Moreover, authorities in New York and Boston have made explicit algorithmic decisions to max-

imize the number of students in their top schools (Abdulkadiroğlu, Pathak, and Roth 2009, Abdulka-

2Laverde (2020) shows that in some dimensions the outcome of the centralized school choice program in Boston is similar
to the outcome generated by an assignment based on proximity between residences and schools. Kutscher, Nath, and Urzua
(2020) show that the introduction of the centralized school choice program in Chile has had a limited impact on segregation
in schools. Oosterbeek, Sóvágó, and van der Klaauw (2021) show that differences in application patterns explain a substantial
fraction of segregation in secondary schools in Amsterdam.
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diroglu, Pathak, Roth, and Sönmez 2006).3 The number of Pareto improving pairs in the assignment

is an inefficiency measure authorities in Amsterdam have also looked at (Ashlagi and Nikzad 2020).

Thus our results are of interest to policymakers who may combat segregation in schools, increase the

number of families obtaining their top choices, reduce the number of applicants in Pareto improving

pairs, but incur the costs of leaving more students assigned to unattractive schools.

Abdulkadiroğlu and Sönmez (2003) apply matching theory to school choice problems. The school

choice literature has shown that the design of matching mechanisms involves complex tradeoffs (Gale

and Shapley 1962, Roth and Sotomayor 1990, Che and Tercieux 2019, Leshno and Lo 2021). Reducing

segregation in schools is another important desideratum and our results expose new forces that seem

important for practical implementations of matching algorithms.

Our paper contributes to the extensive literature on matching problems with diversity considera-

tions, including work by Abdulkadiroğlu (2005), Kojima (2012), Westkamp (2013), Hafalir, Yenmez,

and Yildirim (2013), Ehlers, Hafalir, Yenmez, and Yildirim (2014), Echenique and Yenmez (2015),

Kominers and Sönmez (2016), Fragiadakis and Troyan (2017), Dur, Kominers, Pathak, and Sönmez

(2018), Nguyen and Vohra (2019), Dur, Pathak, and Sönmez (2020), Aygün and Turhan (2020),

Pathak, Sönmez, Ünver, and Yenmez (2020), Rios, Larroucau, Parra, and Cominetti (2021), Sönmez

and Yenmez (2022), and Aygun and Bó (2021). Throughout the paper, we borrow some definitions

and concepts from these works. In particular, our formulation of minority reserves and soft bounds

follow Hafalir, Yenmez, and Yildirim (2013). Hafalir, Yenmez, and Yildirim (2013) also show that the

introduction of minority reserves favors at least one minority student and, under strong restrictions

on priorities and preferences, that all minority students are better off when reserves are introduced.

An important difference between the work by Hafalir, Yenmez, and Yildirim (2013) and ours is that

we explore the impact of minority reserves on outcomes that are key for policy design but have been

neglected by previous research, such as segregation, the rank distributions of assignments, and the

number of applicants in Pareto improving pairs.

We obtain comparative statics results in a large market model to provide guidance on market design

questions. This paper is thus related to the growing literature using tractable large market models to

shed light on new market design issues; see Abdulkadiroglu, Che, and Yasuda (2015), Azevedo and

Leshno (2016), Ashlagi and Nikzad (2020), Che and Tercieux (2019), Leshno and Lo (2021).

The rest of the paper is organized as follows. Section 2 describes the Chilean setting and shows

3As Abdulkadiroğlu, Pathak, and Roth (2009) observe: “The greater number of students obtaining one of their top
choices in a similar simulation and in the first year of submitted preference data convinced New York City to employ a single
tiebreaker in their assignment system.” When discussing the Boston school choice experience, Abdulkadiroglu, Pathak, Roth,
and Sönmez (2006) argue that “the ability to tell the public that a high proportion of students receive their top choices may
be a reason for the widespread popularity of the Boston mechanism.”
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some motivating simulations. Section 3 presents our model. Section 4 introduces minority reserves

and provides our main comparative statics results. Section 4 also presents variations of our model.

Section 5 discusses our findings. Section 6 concludes. The Appendix contains supporting material.

2 Motivation

Chile initiated a gradual transition from its decentralized voucher-based school choice system to a

centralized model in 2016. Before 2016, the system worked as a decentralized voucher market in

which schools selected applicants based on non-transparent criteria. According to policymakers and

politicians that pushed for reform, the decentralized nature of the system was the culprit for the high

levels of segregation in Chilean schools. As noted by Kutscher, Nath, and Urzua (2020) and Honey

and Carrasco (2022), the new centralized system has had a modest impact on segregation in Chilean

schools. Naturally, this situation raises significant questions about the design of algorithms and policy

tools, and the trade-offs policymakers must solve, to address school segregation.

2.1 Centralized school choice in Chilean cities

To get admission to schools, students access a platform and fill a rank order list. The law regulating

admission reserves 15% of seats in each school to socially disadvantaged minority students.4 The

minority reserve policy is a soft target that the design tries to achieve but may fail if the target is

too high (Hafalir, Yenmez, and Yildirim 2013). The reserve policy is an explicit attempt to promote

social inclusion in schools.

Schools rank students using a variety of criteria, but many of them are relevant for a small fraction

of the applicants. Many students cannot be ranked by schools simply using any of the priority criteria.5

In those cases, each school runs a lottery over its whole set of applicants. Students are then assigned

to schools by running a Gale-Shapley deferred acceptance algorithm with minority reserves (Gale and

Shapley 1962, Hafalir, Yenmez, and Yildirim 2013). The assignment algorithm runs as follows:

Step 1: Each student proposes to her first choice. Each school tentatively assigns seats to its proposers,

following the priority and lottery orders, and reserving 15% of its seats to minority students.

Remaining proposers are rejected.

Step k: Each student rejected in the previous step proposes to her next best choice. Each school considers

4A student is considered minority if her social background impairs her learning process and educational outcomes. See
https://sep.mineduc.cl/alumnos-prioritarios-preferente/ for details.

5For details on the Chilean system, see Correa, Epstein, Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo,
and Cristi (2022).
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the students it has been holding together with its new proposers and tentatively assigns its seats

following the priority and lottery orders and the minority reserves. Any remaining proposers are

rejected. Go to Step k + 1.

The algorithm terminates either when there are no new proposals or when all rejected students

have exhausted their preference lists.

We focus on the admission process for Pre-Kindergarten during 2019 in the main urban centers

in Chile: Valparáıso, Concepción, Santiago.6 Appendix B provides details about the data. Table 7

presents summary statistics for each market. Note that in each of the cities, the percentage of minority

students far exceeds the current minority reserve of 15%.7

Table 1: Valparaiso, Concepcion and Santiago markets

Valparáıso Concepción Santiago

Number of schools 275 250 1,214

Total capacity (seats) 8,754 9,199 56,331

Number of students 6,819 7,523 49,108

Minority students 2,994 (43.91%) 3,233 (42.97%) 18,399 (37.47%)

2.2 Minority reserves and market outcomes

We now present simulation results for Valparáıso, Concepción and Santiago. For each market, we run

the algorithm used by the Ministry of Education for different minority reserves.8 Concretely, for each

market and for each f ∈ {0, . . . , 100}, we run independent simulations of the algorithm where the

minority reserve in each school equals f% of its seats. Since reserves are soft, when minorities demand

for a popular school is below the target, those seats are open to other students. For example, suppose

that f = 70%, a school has 100 seats, but only 10 minority students list that school. In this case, at

least 90 seats will be available to regular students.

We assume that variations in the algorithm do not change applications. This assumption is justified

since in Chile applicants are allowed to submit rank order lists of arbitrary length and the deferred

acceptance algorithm with minority reserves is strategy-proof (Hafalir, Yenmez, and Yildirim 2013).

6In Appendix D.2, we also run simulations for 9th grade and obtain similar results. We have also obtained similar results
in simulations using data from smaller Chilean cities.

7Each of our markets include some rural areas in which the supply of schools is limited and therefore naturally families
apply to one or two schools. However, virtually all students in our sample live in urban centers.

8In particular, our simulation considers all the criteria used by the Ministry of Education to rank students in each school,
including special needs and sibling priority.
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To measure segregation, we compute the Duncan segregation index (Duncan and Duncan 1955):

D =
1

2

∑
c∈C

| Regular students in c

Total number regular students
− Minority students in c

Total number minority students
|

The Duncan index measures the fraction of minority students that need to be reassigned so that

every school has the same ratio of students of each group. The Duncan index equals 0 under perfect

integration, and 1 under perfect segregation.

For each allocation, we compute the Duncan segregation index, the fraction of students assigned

to their top schools, and the fraction of students assigned to their top three choices. Figures 1 and 2

illustrate our simulations.

The simulations show three important results. First, schools are segregated. School choice alone

is not enough to eliminate segregation in Chilean schools, even when schools rank the majority of

their students by running independent lotteries. We have also simulated the system by generating

random priorities (rather than the actual, almost-random, priorities used by schools in Chile), and

have obtained approximately the same results.9 Systematic differences in application patterns of

regular and minority students are the key drivers of segregation in schools.

Second, segregation is U-shaped. As Figure 1 shows, the Duncan index is minimized close to the

fraction of minority students in each city.10

Third, as the minority reserve increases, more students are assigned to their top schools. Yet,

increasing reserves also leaves fewer students assigned to their top three schools (and thus more

students assigned to schools ranked 4 or worse).

9In our simulations with random priorities and a reserve of 15%, the Duncan index in Santiago equals 0.304 (0.002). As
shown in Table 3, when using actual priorities, the Duncan index in Santiago equals 0.303 (0.002).

10Our theoretical results show that segregation is minimized at a reserve that equals the fraction of minority students in
the market. In our simulations, in contrast, segregation is minimized slightly to the right of our theoretical prediction. Two
reasons explain this. First, around 2% of seats in each market are reserved for students with special needs. The fraction
of seats reserved for minorities is computed excluding the special needs seats and minorities are underrepresented among
students with special needs. Second, to compute the Duncan index we are ignoring unassigned students. Minorities are
underrepresented among unassigned students.
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Figure 2: Students assigned to their top choices and top three choices.

2.3 Schools and application patterns

In this Subsection, we describe the differences in application patterns between minority and non-

minority students.

2.3.1 Popular schools

Schools face different demand levels. Given students’ preferences, we measure the popularity of each

school c as the ratio between the number of students for whom school c is their top choice and the

capacity of school c. More formally, let p(c) be the number of students that list school c as their

top choice and let qc be the number of seats that school c has. The popularity of school c is given

by pop(c) = p(c)
qc

. Table 2 shows the popularity of schools in our markets. We say that school c is

popular if pop(c) ≥ 1. A popular school will fill its seats under different variations of the deferred

acceptance algorithm. As shown in Table 2, close to 1/4 of schools in Santiago and Valparáıso are

popular schools.
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Valparáıso Concepción Santiago

Median 0.53 0.44 0.60

Mean 0.74 0.67 0.80

Third quartile 0.96 0.86 1.03

Table 2: Popularity of schools

In Appendix B.2, we show that all results in this Section (including Figures 3 and 4 below) extend

to alternative definitions of popular schools.

2.3.2 Differences in application patterns

For each student s in our database, we define her application intensity as the number of popular

schools in the top of her application. Formally, letting (c1, c2, . . . , cL) be the rank order list of student

s, we define her application intensity as

l(s) =

max{i | c1, . . . , ci−1, ci are all popular schools.} if c1 is popular

0 if not.

The application intensity l(s) of student s is the number of popular schools student s competes for.

Since school cl(s)+1 is not popular, if student s is rejected from all her top l(s) schools then she will

likely get accepted to school l(s) + 1 in her list. In particular, whether student s ranks other popular

schools below cl(s)+1 is likely to be irrelevant for the assignment.

For each group of students t ∈ {r,m} (r for regular and m for minority) and l ∈ N, we compute

the empirical distribution function of application intensities as

Π̂t(l) =
|{s is in group t | l(s) ≤ l}|

|{s is in group t}|
. (2.1)

In each city, Π̂t(l) is the fraction of group t students with application intensities weakly less than l.

Figure 3 shows the distributions of application intensities. Notably, in each city, Π̂r is larger than Π̂m

in the first order stochastic dominance sense. Thus minority students apply with lower intensity to

popular schools than regular students.11 We also compute the distributions of application intensities

11We are agnostic about why minority students apply less to popular schools. Online Appendix F shows that minority
students tend to live farther away from popular schools. We also show that students attending schools with higher popularity
tend to perform better in standarized tests.
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conditional on l ≥ 1 as

Π̂t(l | l ≥ 1) =
|{s is in group t | 1 ≤ l(s) ≤ l}|
|{s is in group t and l(s) ≥ 1}|

.

As shown in Figure 4, Π̂r(· | l ≥ 1) dominates Π̂m(· | l ≥ 1). Even restricting attention to students

that apply first to popular schools, regular students apply more to popular schools.12

Valparaíso Concepción Santiago
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t(l
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Figure 3: Empirical distributions of application intensities Π̂t(·) for each group t.
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Figure 4: Empirical distributions of application intensities Π̂t(· | l ≥ 1) conditional on l ≥ 1.

12Appendix C shows that the higher the popularity of a school, the higher the fraction of regular students that demand
that school.
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3 Model

In this Section, we introduce a tractable large market model. Our goal is to better understand the

impact of minority reserves on several market outcomes. In markets in which the final allocation is

the result of the deferred acceptance algorithm, raising reserves causes rejections that, by triggering

new applications and chains of rejections, make it difficult to derive comparative statics results. Our

large market model is particularly suitable to deal with these difficulties.

3.1 Environment

We consider a school choice problem with a continuum of students and a finite number of schools

(Abdulkadiroglu, Che, and Yasuda 2015, Azevedo and Leshno 2016). There is a measure 1 of regular

students (r), and a measure β > 0 of minority students (m).13 A student is characterized by s =

(t, x) ∈ ({r} × [0, 1]) ∪ ({m} × [0, β]). The set of all students is denoted S.

The set of schools is C = {1, . . . , n, n + 1, . . . , n + N}. Schools c ∈ C1 = {1, . . . , n} are tier 1 ,

while schools c ∈ C2 = {n+ 1, . . . , n+N} are tier 2. Tier i schools have capacity ki.

For l ∈ {0, 1, . . . , n}, we define the set Z(l) of complete and transitive preferences over schools

such that the l-most prefered schools are all tier 1 schools, but the school ranked l+ 1 is tier 2. 14 In

particular, Z(n) is the set of all preferences ≻ such that for all c1 ∈ C1 and all c2 ∈ C2, c1 ≻ c2.

We have specified preferences that rank all schools. In practice, families do not rank all schools.

We could specify the set Z(l) as the set of all preferences ranking only l + 1 schools, such that the

l-most prefered schools are all tier 1, but the school ranked l+1 is tier 2. All our results hold for this

alternative model.

For t ∈ {r,m} and l ∈ {0, . . . , n}, a fraction πt(l) ∈ [0, 1] of group t students have preferences

uniformly distributed over Z(l), with
∑n

l=0 π(l) = 1. In particular, a fraction πt(0) of type t students

list a tier 2 school as first choice. We denote by Πt(l) the fraction of type t students that list l or less

tier 1 schools:

Πt(l) =
∑
l′≤l

πt(l
′).

We call Πt the distribution of application intensities for type t. The distribution Πt is the theoretical

analog of the empirical distribution Π̂t constructed in (2.1). For both types, the preference profile of

a student (t, x) is entirely determined by (t, x).15

13Strictly speaking, the total number of minority students could exceed regular students. As will be clear later, all what
matters for our results is that minority students are under-represented in over-demanded schools.

14In particular, for a preference that belongs to Z(l), with l ≤ n− 1, the school ranked l + 2 could be tier 1 or tier 2.
15For example, for each t ∈ {r,m}, we can divide the interval [0, 1] in a finite number of disjoint intervals, each of them

corresponding to a preference profile in ∪Lt

l=0Z(l).
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Tier 1 schools are over demanded, but the total capacity of the market exceeds total demand. We

thus assume that nk1 ≤ (1−Πr(0)) + β(1−Πm(0)) and nk1 +Nk2 > 1 + β.

We assume that Πr first order stochastically dominates Πm. In other words, for all l ∈ {0, 1, . . . , n},

Πr(l) ≤ Πm(l). (3.1)

This assumption is motivated by Figure 3. Condition (3.1) captures the idea that minority students

are less likely to apply to popular and high-demand schools (Hastings, Kane, and Staiger 2009). This

assumption is relevant in centralized school choice programs in cities in Europe and the US. For

example, Laverde (2020) shows that white families are more likely than Black and Hispanic families

to rank high-achievement schools in Boston Public Schools choice system. Oosterbeek, Sóvágó, and

van der Klaauw (2021) also provide evidence of heterogeneity in school preferences between students

from different backgrounds in the Amsterdam centralized system. Letting Lt = min{L | Πt(L) = 1}

and noting that Πr dominates Πm, we deduce that Lm ≤ Lr.

An implicit assumption in our model is that all popular schools tend to be more demanded by

regular students. In practice, some popular schools are particularly attractive for minority students.

However, Figure 9 in Appendix C shows a significant correlation between the popularity of a school and

the fraction of regular students that demand that school. So, our assumption is a good approximation

at least for the Chilean system. Moreover, Section 4.4.1 shows that when some popular schools

are attractive for minority students (so that the popularity of a school does not correlate with the

fraction of regular students that find the school more attractive), our comparative statics results

change radically and cannot explain the patterns exposited in Figure 2.

In many school choice systems, schools rank students independently and uniformly. We allow

some more generality and assume that ranks are not necessarily uniform. A student s = (t, x) at each

school c draws ωs
c ∈ [0, 1] independently from the cumulative distribution Gt on [0, 1], with derivative

G′
t = gt > 0. A higher number ωs

c implies that the student has higher priority in school c. We will

refer to ωs
c as the score that student s has in school c. We assume that regular students tend to

have higher scores than minority students so that Gr dominates Gm in the first order stochastic sense:

Gr(ω) ≤ Gm(ω) for all ω ∈ [0, 1]. The assumption that Gr(ω) ≤ Gm(ω) is appropriate in school choice

programs in which schools rank students according to academic performance, or in school systems in

which siblings or children whose parents work in the school have higher priority. Under all these

criteria, a minority student is weakly less likely to be highly ranked in a school than a regular student.

In many school choice programs in the world (including the Chilean system), schools rank all students

uniformly. Obviously, the case of random priorities in school choice is a special case of our model

12



which is obtained by setting Gr = Gm equals the uniform distribution on [0, 1].

Our two-tier model is natural in school choice applications, in which a tier 1 school tends to be

more attractive than a tier 2 school for all students. However, a given minority student is less likely

than a regular student to apply to a tier 1 school. When β = 0 and Πr is uniformly distributed in

{1, . . . , n}, our model has only one group and all students in the group prefer all tier 1 schools over

any tier 2 school. In this case, our model is analogous to the limit models in Che and Tercieux (2019)

and Ashlagi and Nikzad (2020). We extend these models to accomodate different groups of students

in the market and distinct application patterns.

3.2 Matchings and cutoffs

A matching is a function µ : S ∪ C → C ∪ 2S such

i. For all s ∈ S, µ(s) ∈ C;

ii. For all c ∈ Ci, µ(c) ⊆ S with |{s | µ(s) = c}| ≤ ki;

iii. For all c ∈ C and all s ∈ S, µ(s) = c iff s ∈ µ(c).

The first condition says that each student is assigned to a school, the second condition says that each

school is assigned to a measure of students that does not exceed its capacity, the third condition says

that a student is assigned to a school iff the school is assigned to that student. A matching µ is

stable if for all c ∈ Ci and all s = (t, x) ∈ S with c ≻s µ(s), the following two conditions hold: (i)

|{s | µ(s) = c}| = ki; and (ii) ωs
c < ωs′

c for all s′ = (t′, x′) with µ(s′) = c. Intuitively, a matching is

stable if there is no pair (s, c) that can block the matching.16

Following Abdulkadiroglu, Che, and Yasuda (2015) and Azevedo and Leshno (2016), we can char-

acterize a stable matching by means of admission cutoffs pc ∈ [0, 1], for all c ∈ C. A cutoff pc

determines the lowest lottery number ωc that a student can have to be admitted to school c. The

highest the cutoff pc, the harder it is to get to school c. Two observations simplify the characterization

of cutoffs. First, schools within the same tier are symmetric and therefore pc = pc′ for all c, c
′ ∈ Ci.

17

Second, in any stable matching a tier two school will have excess capacity and therefore its cutoff will

equal 0. We can therefore characterize a stable matching by means of a single cutoff p that clears the

16This notion defines a stable matching up to a measure 0 set of students. The market outcomes we analyze are not altered
by this ambiguity. See Azevedo and Leshno (2016) for discussion.

17If two tier 1 schools had different cutoffs, one of them would have excess demand or excess capacity. If the market clearing
condition is satisfied in the school with the highest (resp. lowest) cutoff, then the school with the smallest (resp. highest)
cutoff has excess demand (resp. capacity). As a result, the matching would not be stable. This observation also applies to
the model with minority reserves studied in Section 4.
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market for tier 1 schools:

Lr∑
l=1

πr(l)
l∑

q=1

1

n
Gr(p)

q−1(1−Gr(p)) + β

Lm∑
l=1

πm(l)
l∑

q=1

1

n
Gm(p)q−1(1−Gm(p)) = k1. (3.2)

The left hand side in equation (3.2) is the demand for a school c ∈ C1 when the admission cutoff in all

schools is p. The first term on the left hand side of (3.2) is the demand for school c of regular students.

For each school c ∈ C1 and l ∈ {1, . . . , Lr}, a fraction πr(l) of regular students will rank l schools. A

regular student ranking l tier 1 schools will rank school c in the q-th position with probability 1/n, for

q ∈ {1, . . . , l}. A student that ranks school c in the q-th position will demand school c if her scores in

schools ranked above c are below the cutoffs (which happens with probability Gr(p)
q−1) but her score

in school c is above the cutoff (which happens with probability 1 − Gr(p)). The second term on the

left of (3.2) is the demand for school c from minority students and is analogously computed.

For each t ∈ {r,m} and function f : {0, . . . , Lt}, we write Et[f(lt)] =
∑Lt

lt=0 πt(lt)f(lt). A solution

p̄ ∈ [0, 1] to equation (3.2) also solves:

1

n
Er[1− (Gr(p̄))

lr ] +
β

n
Em[1− (Gm(p̄))lm ] = k1 (3.3)

It is relatively simple to show that equation (3.3) has a unique solution p̄ ∈]0, 1[ (for which in general

there is no closed form solution). Naturally, p̄ increases when the supply of tier 1 schools, nk1,

decreases. The market clearing cutoff also increases when the distribution Πt increases in the first

order stochastic dominance sense.

In the unique stable matching, minority students are underrepresented in tier 1 schools. Indeed,

the ratio of minority to regular students in the whole population equals β, while the ratio of minority

to regular students assigned to a tier 1 school is

βEm[1− (Gm(p̄))lm ]

Er[1− (Gr(p̄))lr ]
< β.

To see this, note that Em[1 − Gm(p̄)lm ] ≤ Em[1 − Gr(p̄)
lm ] < Er[1 − Gr(p̄)

lr ]. The first inequality

follows since a minority student tends to have lower scores so Gm(p̄) ≥ Gr(p̄). The second inequality

follows since Πm is dominated by Πr and 1− (Gr(p̄))
l is increasing in l. These forces combine to result

in school segregation.

4 Minority reserves, segregation and efficiency

We now introduce minority reserves and present our main results. Our main results show that the

14



application patterns exposited in Figures 3 and 4 are a key driver behind the simulations illustrated

in Figures 1 and 2. Subsection 4.1 introduces and characterizes stable matchings under minority

reserves. Subsections 4.2 and 4.3 state and discuss our comparative statics propositions. Subsection

4.4 presents some variations of our results.

4.1 Stable matching under minority reserves

A minority reserve ensures that whenever the number of minority students in a school c is below the

reserve, all other minority students must be assigned to schools that they strictly prefer to c. We

adapt Hafalir, Yenmez, and Yildirim (2013) to model minority reserves as follows. Let ρ = (ρ1, ρ2) be

a vector of minority reserves in tier 1 and tier 2 schools. A matching µ is stable under reserves ρ if

for all c ∈ Ci and all s = (t, x) ∈ S with c ≻s µ(s), the following three conditions hold:

i. |{s | µ(s) = c}| = ki;

ii. if |{s′ = (t′, x′) | µ(s′) = c, t′ = m}| ≥ ρi, then ωs
c < ωs′

c for all s′ = (t′, x′) with µ(s′) = c; and

iii. if |{s′ = (t′, x′) | µ(s′) = c, t′ = m}| < ρi, then t = r and ωs
c < ωs′′

c for all s′′ = (r, x′′) ∈ µ(c).

A matching is stable under reserves ρ if whenever a student s would like to move to another school

c, that school is filling its seats, it is admitting students having higher priority and exceeding the

minority reserves, and if it is not exceeding the minority reserves then s is a regular student having a

score below the lowest score of regular students assigned to c. Note that when ρ ≡ 0, a matching is

stable under reserves ρ iff it is stable.

A matching µ that is stable under reserves ρ always exists. It can be computed by the deferred

acceptance algorithm by either properly defining a choice function or by making a copy of each school

that targets minority students (Hafalir, Yenmez, and Yildirim 2013). Note that since our model

has a continumm of students, the deferred acceptance algorithm need not converge in finite time

(Abdulkadiroglu, Che, and Yasuda 2015).

We now characterize the unique stable matching under reserves ρ. First note that if ρ1 <
1
nEm[1−

Gm(p̄)lm ], then the stable matching characterized by cutoffs p̄ is stable under reserves ρ. This simply

follows from the observation that the minority reserve ρ1 is already filled in tier 1 schools and therefore

Conditions ii. and iii. in the definition of stability under reserves are equivalent to Condition ii in

the definition of stability. Second, note that when ρ1 > min{β
n(1 − πm(0)), k1}, the reserve either

is above the number of minority students that demand the school, or exceeds the capacity of the

school. We thus define the set where reserves have a nontrivial impact on the final assignment:

R = [ 1nEm[1−Gm(p̄)lm ],min{β
n(1− πm(0)), k1}].
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Take a reserve ρ1 ∈ R. We can characterize stability under reserves by means of cutoffs ptc that

depend on the school c and the types t ∈ {r,m} of the applying students. Similar to the analysis in

Subsection 3.2, we can restrict attention to cutoffs such that ptc = ptc′ for all c, c′ ∈ C1 and ptc ≡ 0

for all c ∈ C2 and all t. It is therefore enough to characterize the cutoffs pm and pr, with pm ≤ pr,

that minority and regular students face in tier 1 schools. First, the market clearing condition can be

written as:
1

n
Er[1− (Gr(pr))

lr ] +
β

n
Em[1− (Gm(pm))lm ] = k1. (4.1)

This is similar to equation (3.2), but in this market clearing condition different groups face different

cutoffs. Second, the minority reserve condition must hold. Since ρ1 ≥ 1
nEm[1−Gm(p̄)lm ], the reserve

must bind and therefore the number of minority students in a tier 1 school equals the reserve:

β

n
Em[1−Gm(pm)lm ] = ρ1. (4.2)

These two conditions have a unique solution pm and pr. Figure 5 illustrates how these cutoffs are

determined. Note that increasing ρ1 moves the minority reserve condition (4.2) to the left in Figure

5. So, after an increase in minority reserves, pm decreases and pr increases. Increasing ρ1 makes the

access to tier 1 schools easier for minority students and harder for regular students.18 We denote by

µρ the stable matching under reserves ρ.

The main focus of the paper is the impact of reserves ρ on several market outcomes. Note that

since tier 2 schools have excess capacity, ρ2 is irrelevant for the allocation. We explore the role of

reserves by stating several comparative statics results with respect to ρ1.

4.2 Segregation

There are several ways to measure segregation in schools, but one of the the most common ones is the

Duncan index (Duncan and Duncan 1955). Given a matching µ, the Duncan index Dµ is defined by

Dµ =
1

2

n+N∑
c=1

∣∣∣∣ηrµ(c)− ηmµ (c)

β

∣∣∣∣ ∈ [0, 1]

where ηtµ(c) is the mass of students of type t assigned to school c in the matching µ. The index equals

0 under perfect integration, where each school is filled by exactly the same number of students of each

type. More generally, the Duncan index can be interpreted as the mass of regular students that would

need to be moved to different schools so that every school had the same proportions of students of

18This means that for each tier 1 school, there are some regular students that would like to be assigned to that school, will
be rejected but have higher scores than some minority students that have been accepted in the school.
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pm

Market clearing (4.1)

Minority reserve (4.2)

pr

(pm, pr)

(p̄, p̄)

Figure 5: The market clearing condition and the minority reserve condition determine cutoffs pr and pm.
The cutoff p̄ is in the intersection of the market clearing condition and the 45 degree line.

each group.

Given a reserve ρ ∈ R, we denote D(ρ) = Dµρ .

Proposition 1. D(ρ1) is nonincreasing over ρ1 <
β

1+βk1 and is non-decreasing over ρ1 >
β

1+βk1.

This result shows that reserves have an impact on segregation in schools. The Duncan segregation

index is minimized when the fraction of seats reserved to minority students, ρ1/k1, equals the share

of minority students in the population, β/(1 + β). Actually, in the proof we show a slightly stronger

result: Segregation in each school c,

∣∣∣∣ηrµρ1
(c)−

ηmµρ1
(c)

β

∣∣∣∣, is non-increasing over ρ1 < k1
β

1+β and non-

decreasing over ρ1 > k1
β

1+β . Intuitively, when ρ1 < k1
β

1+β , minority students are underrepresented in

tier 1 schools and overrepresented in tier 2 schools, and increasing ρ1 moves minority students from

tier 2 to tier 1 schools. This stronger property also implies that the index we actually use to measure

segregation in our model is rather irrelevant for the Proposition.19

4.3 Rank distribution and efficiency

We now explore how ρ1 impacts the efficiency of the assignment. Obviously, changing ρ1 does not

Pareto improve the assignment for students. Therefore, we evaluate changes to the assignment using

two efficiency measures.

19Proposition 1 and our field evidence also apply to alternative segregation indexes, such as the ones discussed by Hutchens
(2004) or Frankel and Volij (2011). See Online Appendix E.
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The first measure is the rank distribution of students, which is a function that, for each q ∈

{1, . . . , Lr + 1}, yields the fraction of students assigned to one of their q most preferred schools. Our

second measure is the number of students that belong to a Pareto improvement pair. As we discuss

in the Introduction, both of these measures are important in practical implementations of centralized

school choice algorithms.20 The main results in this Subsection characterize how ρ1 changes the rank

distribution of students and the fraction of students in Pareto improving pairs.

Rank distribution. A type t student ranks at most Lt tier 1 shools and, since tier 2 schools

always have free slots, type t students are assigned to one of their (Lt + 1)-most preferred schools.

The share of type t students assigned to their q-th preference is

ft(q) =

Lt∑
l=q

πt(l)Gt(pt)
q−1(1−Gt(pt)) + πt(q − 1)Gt(pt)

q−1

for q ∈ {1, . . . , Lt}. The first term represents all type t students that applying to q or more tier 1 schools

get accepted in their q-th preference. The second term represents type t students that applying to

q−1 tier 1 schools are assigned to a tier 2 school. Note that for q = Lt+1, ft(Lt+1) = πt(Lt)Gt(pt)
Lt .

The cumulative rank distribution for type t students is thus

Ft(q) =
∑
q′≤q

ft(q
′) =

1−Gt(pt)
q(1−Πt(q − 1)) if q ≤ Lt,

1 if q = Lt + 1.
.

To understand this formula intuitively, note that the mass of students assigned to schools ranked

q+1, q+2 . . . is the fractions of students applying to q or more schools (which happens with probability

1−Πt(q − 1)) and rejected in q of them (which happens with probability Gt(pt)
q). Thus, for q ≤ Lt,

Ft(q) = 1−Gt(pt)
q(1−Πt(q−1)). We will sometimes emphasize the dependence of these distributions

on ρ1 by writing Ft(q, ρ1).

Lemma 1. Take ρ1 ∈ R. Then, ∂
∂ρ1

Fm(q, ρ1) > 0 for all q ≤ Lm and ∂
∂ρ1

Fr(q, ρ1) < 0 for all q ≤ Lr.

This lemma says that increasing ρ1 reduces (in the first order stochastic dominance sense) the

cumulative rank distribution for minority students and increases the rank distribution of regular

students. In other words (and not surprisingly), increasing reserves improves outcomes for minorities,

at the expense of non-minorities.

20Obviously, both measures are imperfect. For example, it is entirely possible that under some matching very few students
belong to Pareto improving pairs, but those improvements are very significant. To analyze this possibility, one would need to
make additional assumptions to estimate utility functions. In contrast, our efficiency measures are based only on observable
data. The two approaches are complementary.
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Hafalir, Yenmez, and Yildirim (2013) derive comparative statics results with respect to minority

reserves. Their Theorem 2 shows, in a general matching model, that the introduction of minority

reserves favors at least one minority student. They also provide strong restrictions on priorities and

preferences such that all minority students are better off when reserves are introduced. Lemma 1 thus

complements these result.

Our main results explore the impact of minority reserves on the overall efficiency of the assignment.

We thus define the total cumulative rank distribution as

F (q, ρ1) =
1

1 + β

(
βFm(q, ρ1) + Fr(q, ρ1)

)
which measures the fraction of students assigned to one of their top q schools. Determining the impact

of ρ1 on F (q, ρ1) is not obvious since Lemma 1 shows that reserves favor minorities but hurt regular

students. The following is the first main result in the paper.

Proposition 2. a. Assume that Er[lr | lr ≥ 1] > Em[lm | lm ≥ 1] and define

K̄ = max
{
K ∈ [0, 1] | Er[lr(1−

K

1− πr(0)
)lr | lr ≥ 1] ≥ Em[lm | lm ≥ 1]

}
∈]0, 1− πr(0)[.

Then, for all nk1 < K̄ and all ρ1 ∈ R:

∂F

∂ρ1
(1, ρ1) > 0.

b. There exists K̂ = K̂(Πr,Πm, β) < (1− πr(0)) + β(1− πm(0)) such that for all nk1 > K̂ and all

ρ1 ∈ R:
∂F

∂ρ1
(1, ρ1) < 0.

c. Assume that Lr > Lm. Then, for all q ≥ Lm + 1:

∂F

∂ρ1
(q, ρ1) < 0.

Proposition 2 describes the impact of minority reserves on the rank distribution. In particular, it

shows that the impact of minority reserves on the fraction of students assigned to their top schools

depends critically on the specifics of the market.

Proposition 2 part a shows that in markets where popular schools have relatively few seats (nk1

is below a threshold K̄) and minority students apply less frequently to these popular schools (Er[lr |

lr ≥ 1] > Em[lm | lm ≥ 1]), increasing minority reserves results in more students assigned to their

top-choice schools: ∂F
∂ρ1

(1, ρ1) > 0.
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As Example 2 below shows, even when we assume condition (3.1), the assumption Er[lr | lr ≥ 1] >

Em[lm | lm ≥ 1] is critical to establish Proposition 2. Naturally, this condition is motivated by Figure

4.

In contrast, Proposition 2 part b shows that in markets with abundant capacity (nk1 > K̂), raising

reserves decreases the mass of students assigned to their first preferences. Recall that our working

assumption is that popular schools are congested so that nk1 ≤ (1 − πr(0)) + β(1 − πm(0)). Since

K̂ < (1− πr(0)) + β(1− πm(0)), Proposition 2 part b applies to a non empty set of capacities where

popular schools are congested.

Finally, Proposition 2 part c shows that increasing ρ1 also increases the mass of students assigned

to schools that are not highly ranked.

Proposition 2 parts a and b show that the total capacity of popular schools, by determining market

congestion, has important consequences for the impact of minority reserves on the fraction of students

assigned to their top schools. To grasp intuition, consider first the case in which capacity is abundant

(as in part b) so that most regular students are assigned to their top schools. The marginal student

assigned to each popular school has a relatively low score. Ann is a marginal regular student in some

popular school c. After increasing the minority reserve in c, Ann will be displaced from c by some

minority student and will compete for seats in her second school c′ ̸= c. In school c′, Bob is the

marginal regular student and probablu school c′ was his top school. Since scores are independent and

Bob has a low score in c′, Ann has a significant probability of replacing Bob in c′.21 After Ann replaces

Bob in c′, Bob will apply to his second school c′′. In that school, he has a significant probability of

displacing the marginal regular student who with significant probability ranked c′′ in the top. An so

on. All in all, increasing the minority reserve in c triggers competition in all other schools and causes

a chain of rejections and new applications that reduces the number of regular students assigned to

their top schools.

Consider now the case in which capacity is scarce (as in part a) so that the scores of regular

students accepted to popular schools are relatively high. Suppose Ann is a marginal regular student

in a popular school c. Ann is a regular student applying to many popular schools and, since cutoffs in

popular schools are high, school c is probably not her top choice. After increasing the minority reserve

in c, Ann will be displaced from c by some minority student. The minority student replacing Ann in

c applies to popular schools with low intensity and thus he is more likely to rank c as his top school

than Ann. Ann, in turn, will compete for a seat in c′. If c′ is a popular school, the marginal student

in c′ has a relatively high score. As a result, Ann is unlikely to get accepted to c′ by displacing a

21The probability that Ann has a higher score than Bob approaches 1/2 as nk1 → (1 − πr(0)) + β(1 − πm(0)). Thus, a
fraction approaching 1/2 of all regular students displaced from c gets accepted to their second school.
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student who ranked c′ first.22 All in all, increasing the minority reserve in c impacts the total number

of students assigned to their top school by replacing Ann (who does not rank c top) by a student for

whom c is the top school.

We now provide intuition for Proposition 2 part c. To see why increasing ρ1 decreases F (q) for

q ∈ {Lm+1, . . . , Lr} , note that all minority students are assigned to one of their top Lm+1 schools.

As Lemma 1 shows, the cumulative rank distribution for regular students is decreasing in ρ1. As

a result, for q ∈ {Lm + 1, . . . , Lr}, as ρ1 raises, more students are assigned to schools they rank q

or worse. Example 1 shows that when Lr = Lm = L, the fraction of students assigned to schools

ranked L or worse may be decreasing in ρ1. However, in the Appendix we extend Proposition 2 part

c and show that even when Lr = Lm = L, F (L) is decreasing in ρ1 provided πm(L) is small enough.

See Proposition 6 in Appendix A. Thus, the main driver of this comparative statics result is the fact

that minorities are much less likely than regular students to apply to popular schools with very large

intensities.

Efficiency. We now discuss the efficiency impact of minority reserves. Increasing reserves does not

Pareto improve the assignment. A higher minority reserve does not improve the rank distribution of

the assignment either.23 We thus measure the efficiency of the assignment by the number of students

in Pareto improving pairs.

Given a matching µ, students s = (t, x) and s′ = (t′, x′) form a Pareto improving pair if c′ =

µ(s′) ≻s c = µ(s) and c ≻s′ c
′. In this case, we say that s is in a Pareto improving pair. Let P (ρ1)

be the total measure of students s that are in a Pareto improving pair. Arguably, P (ρ1) measures

the inefficiency of the matching. The following proposition shows that minority reserves have an

unambiguous effect on P (ρ1).

Proposition 3 (Pareto improvements). Under the conditions of Proposition 2 part a (resp. part b),

P (ρ1) is decreasing (resp. increasing) in ρ1.

When ρ1 increases and the capacity of tier 1 schools is low enough, fewer students are in a Pareto

improving pair. Thus, a higher reserve increases the efficiency of the matching in congested markets.

In the proof, we show that a student s can Pareto improve by switching school iff s is assigned to a

tier 1 school that is not her top choice. Thus, Proposition 3 follows immediately from Proposition 2.

Our characterization also implies that the set of students in a Pareto improving pair coincides with

the set of students in Pareto improving cycles.

22The probability with which Ann displaces the marginal student in c′ goes to 0 as k1 → 0.
23Featherstone (2020) explores rank efficiency in assignment problems.
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Examples. To conclude this Section, we provide two examples showing that our main comparative

statics results do not hold if we relax some of the assumptions in Propositions 2.

We first show that Proposition 2 part c need not hold when Lr = Lm.

Example 1. Consider a model in which β = 1, Gr(x) = Gm(x) = x and for L ≥ 3

πr(0) = . . . ,= πr(L− 2) = 0 πr(L− 1) = πr(L) = 1/2

πm(0) = 0 πm(1) = πm(L) = 1/2 πm(2) = · · · = πm(L− 1) = 0.

In this model, regular students include more popular schools in their applications than minorities, but

Lr = Lm = L. We show that when minority reserves increase, more students are assigned to schools

they rank L or worse.

The market clearing cutoffs for regular and minority students solve:

1− 1

2

(
pL−1
r + pLr

)
= n(k1 − ρ1) 1− 1

2

(
pm + pLm

)
= nρ1

In this model, all agents are asigned to one of their top L+ 1 schools so F (L+ 1) = 1. The fraction

of agents assigned to one of their top L preferences is

F (L) = 1− 1

2
(pLr + pLm).

It is simple to see that ∂F (L)
∂ρ1

> 0 if and only if24

(L− 1)πr(L− 1)pL−1
r + Lπr(L)p

L
r > πmpm + Lπm(L)pLr (4.3)

When ρ1 ∈ R is close to 1
nEm[1 − p̄lm ] (where p̄ is the market clearing cutoff in the model without

cutoffs), pr is close to pm (and close to p̄) and (4.3) holds for all L ≥ 3. It follows that more students

are assigned to one of their top L schools when ρ1 increases, for all ρ1 ∈ R close to 1
nEm[1− p̄lm ].

We now show that the assumption that the conditional expectation of the application intensities

is higher for regular students is key for Proposition 2 part a.

Example 2 (Expected number of popular schools). Consider β = 1 and the following distributions

of application intensities:

πm(0) = α, πm(1) = · · · = πm(L− 2) = 0, πm(L− 1) = 1− α

24This expression follows immediately from the proof of Proposition 2.
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and

πr(0) = 0, πr(1) = α, πr(2) = · · · = πr(L− 1) = 0, πr(L) = 1− α.

A fraction α of minority students ranks first a tier 2 school, while a fraction (1 − α) lists L − 1

randomly chosen tier 1 schools. Analogously, a fraction α of regular students rank first one tier 1

school followed by a tier 2 school, and a fraction (1 − α) lists L tier 1 schools. We assume L ≤ n.

Clearly, Πr dominates Πm. When α > 1
L−1 , L− 1 = Em[lm | lm ≥ 1] > Er[lr | lr ≥ 1] = α+(1−α)L.

Morever, using equation (A.2) in the Appendix, it is relatively simple to show that ∂F (1)
∂ρ1

< 0 when

α + (1 − α)L < (L − 1)(1 − ρ1n). When nk1 < 1 − (1−α)L+α
L−1 ∈]0, 1[, it follows that for all ρ1 ∈ R,

∂F (1)
∂ρ1

< 0.

4.4 Extensions

We now discuss variations of our model and results. Subsection 4.4.1 explores a model in which pref-

erences are polarized in the sense that minorities and regular students concentrate their applications

over different sets of popular schools. We show that polarized preferences result in segregation, but

the comparative statics with respect to reserves is different from our main model. Subsection 4.4.2

explores a model in which regular students rejected from popular schools get admission to an under-

demanded school minority students cannot afford. For example, if regular students are rejected, then

they could attend a private school outside the centralized system. We prove that even in this scenario,

our main results hold.

We also explore some alternative algorithmic decisions. In Subsection 4.4.3, we introduce a double

reserve policy (Echenique and Yenmez 2015) and argue that, while this policy promotes inclusion with

polarized preferences, it has no impact in our main model. Subsection 4.4.4 shows how our results

apply when the affirmative action policy is implemented by setting aside seats (Dur, Kominers, Pathak,

and Sönmez 2018).

4.4.1 Polarized preferences

In our main model, regular students concentrate their applications on high demand schools, while

minority students apply with lower intensity to overdemanded schools. In theory (but not in our field

data), segregation could arise because minorities and regular students concentrate their applications

on different sets of overdemanded schools. The following example shows that under this type of

preferences, our comparative statics results need not hold. Indeed, we show that the number of

students assigned to their top school need not increase with reserves. As a result, for minority reserves

to improve efficiency, it is not enough that distinct groups have different preferences.
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Example 3 (Polarized prefences). We restrict our main model to n = 2, β = 1, k1 ≤ 1, k2 = 2, but

now we assume preferences are given by

r : c1 ≻ c2 ≻ c3 m : c2 ≻ c1 ≻ c3.

Schools rank students uniformly and independently. In this setup, while all students prefer tier 1

schools over the tier 2 school (school c3), minority students prefer c2 to c1 while regular students

prefer c1 to c2.

When no reserve is imposed, it is relatively simple to find the cutoff p̄ =
√
1− k1 for each tier 1

school. In the stable matching without reserves, minority students are underrepresented in c1, and a

fraction F (1) = 1−
√
1− k1 of all students are assigned to their top school.

Now, we impose a reserve ρ1 ∈ [
√
1− k1

(
1−

√
1− k1

)
, k1]. We can characterize the stable matching

by solving the market clearing conditions:

k1 − ρ1 = 1− pr1 ρ1 = p2(1− pm1 ) k1 = 1− p2 + pr1(1− p2)

where pr1 (resp. pm1 ) is the cutoff faced by regular (resp. minority) students in school c1. Solving the

system of equations, we deduce that the fraction of students assigned to their top school is

F (1, ρ1) =
k1 − ρ1

2
+

1

2

k1
2− k1 + ρ1

.

The function F (1, ρ1) is decreasing in ρ1.

The example shows that when both groups of students concentrate their applications in different

schools, imposing a reserve reduces the number of students assigned to their top schools.25 There are

two forces behind this result. First, after the reserve is imposed in c1, regular students are replaced by

minority students for whom c1 is not their most preferred school. Second, displaced regular students

demand school c2 and thus 1 − p2 decreases. As a result, fewer minority students are assigned to

school c2.

A model with polarized preferences is not a good description of application patterns in Chile.

When preferences are polarized as in Example 3, in a stable matching (without reserves) minority

students should be overrepresented in many popular schools. While it is true that in the data some

popular schools are particularly attractive for minorities, those schools are the exception. Indeed,

Appendix C shows that popular schools tend to have a low fraction of minority students.26

25Note that this holds for all k1 ≤ 1. In particular, it holds even if the market is slack.
26Additionally, the comparative statics of a model with polarized preferences does not match the simulations using Chilean

data, as shown in Sections 4 and 4.4.3.
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4.4.2 Polarized preferences II

Our main model assumes that regular and minority students rejected in tier 1 schools apply uniformly

to tier 2 schools. However, it is possible that some regular students that do not get into an overde-

manded school may choose a private school that minorities cannot afford. We use our setup to explore

this possibility.

We now assume there are only two tier 2 schools, cm and cr (so N = 2). Both cr and cm have

excess capacity. A type t student with a preference profile in Z(l) will rank school ct in the l + 1

position. All the other details of the models are unchanged. School ct is an undersubscribed school

that is demanded exclusively by type t students. We thus interpret cr as a private undersubscribed

school only regular students can afford.

The introduction of reserves moves minority students from cm to tier 1 schools, while regular

students move from tier 1 schools to cr. As a result of a reserve policy, minorities will increase their

under-representation in tier 1 schools, while reduce their over-representation in school cm. Regular

students will decrease their over-representation in tier 1 schools, but increase even more their over-

representation in school cr. Thus, it is not immediately obvious what impact minority reserves have

on segregation. However, for ρ1 ∈ R, the Duncan index can be computed as

D(ρ1) =
1

2

{
n|k1 − ρ1 −

ρ1
β
|+ |1− (k1 − ρ1)n|+ |β − nρ1

β
|
}
.

and is minimized at ρ1 = β
1+βk1.

27 Proposition 1 and all the main results in Section 4.3 also hold in

this model.

4.4.3 Double reserves

Another measure that can be used to promote integration in schools is to reserve seats for both types

of students (Echenique and Yenmez 2015). We consider a double reserve policy such that in each tier

1 school, β
1+βk1 seats are reserved to minority students and 1

1+β seats are reserved to regular students.

The double reserve policy will promote integration in Example 3. Indeed, the Duncan index

with minority reserves β
1+βk1 will be higher than the Duncan index under the double reserve policy.

Intuitively, a double reserve policy allows regular students to get accepted in the popular school c2

where minorities are overrepresented.

In contrast, moving from a minority reserve of β
1+βk1 to a double reserve policy does not change

the assignment in our main model. It is relatively simple to show that given a minority reserve β
1+βk1,

27This need not be the case for other segregation measures since reserves exacerbate the representation of regular students
in cr.
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in each school the fraction of regular students equals 1
1+β and thus introducing an additional reserve

for regular students does not give any advantage to them. Importantly, Section 5.1.1 confirms this

theoretical finding using our field data.

4.4.4 Set asides

We have interpreted the affirmative action policy as a minimum guarantee for minority students. As

noted by Dur, Kominers, Pathak, and Sönmez (2018), an alternative interpretation of an affirmative

action policy is to set aside seats for minority students. Under a set aside policy, a school assigns first

the k1 − ρ1 open seats and reserves the remaining ρ1 seats for minority students. In this Subsection,

we extend our results to this alternative affirmative action implementation.

To characterize a stable matching under set asides, we again consider cutoffs pSAr and pSAm that

apply to regular and minority students in tier 1 schools under the set aside policy. The market clearing

and reserve conditions for a set aside policy are

1

n
Er[1−Gr(p

SA
r )lr ] +

β

n
Em[1−Gm(pSAm )lm ] = k1

and
β

n
Em[Gm(pSAr )lm −Gm(pSAm )lm ] = ρ1. (4.4)

Equation (4.4) is the set aside condition. Motivated by Dur, Kominers, Pathak, and Sönmez (2018),

the set aside condition says that the number of minority students with scores below the regular cutoff

pSAr and that get admitted to a school should equal the reserve ρ1. In contrast to minority reserves,

under this interpretation of the affirmative action policy, the number of minority students effectively

admitted to a tier 1 school exceeds the reserve ρ1. We define by FSA(q, ρ1) as the fraction of students

assigned to a school ranked q or better under a set aside affirmative action policy ρ1. Analogously,

we define PAS(ρ1) as the total measure of students than can Pareto improve in the matching with set

aside reserves ρ1.

As Dur, Kominers, Pathak, and Sönmez (2018) show, in terms of the final assignment of students,

the precedence order with which reserves are processed has an impact similar to adjusting reserve

sizes. We derive a similar result in our framework. In contrast to the analysis by Dur, Kominers,

Pathak, and Sönmez (2018), our focus is on the proportion of students assigned to their top schools

and the number of students in Pareto improving pairs.

Proposition 4. Under the conditions of Proposition 2, FSA(1, ρ1) > F (1, ρ1) and PSA(ρ1) < P (ρ1).

Fewer minority students are assigned to tier 1 schools under minority reserves than under set
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aside. Changing the interpretation of the affirmative action policy from minority reserves to set asides

increases the number of students assigned to their top schools and reduces the number of students

who can Pareto improve by switching schools. Obviously, compared to the minority reserve policy,

the set aside policy may or may not reduce segregation by placing more minority students in tier 1

schools.

The following result shows that the main insights from Propositions 2 and 3 extend to the set aside

policy.

Proposition 5. There exists k̄ ∈]0, 1[ such that for all k1 < k̄ and all ρ1 < k̄,

∂FSA(1, ρ1)

∂ρ1
> 0 and

∂PSA(ρ1)

∂ρ1
< 0.

The main intuitions and arguments behind this result are similar to the ones in Subsection 4.3 and

are therefore omitted. Section 5.1.2 simulates the set-aside policy and confirms all these theoretical

predictions.

5 Discussion

Our results are relevant for policy discussion. For each of our cities (Valparaiso, Concepción, Santiago),

Table 3 reports outcomes with no reserves, reserves equal to 15% (as currently determined by the

Law), 75%, 100% and equal to the fraction of minority students in the market.28 As can be seen, the

simulations confirm each of our theoretical results in Section 4. The simulations also confirm the most

subtle theoretical prediction from the model, Proposition 2 and Proposition 3.29 Table 3 shows that

the total number of student assigned to their top school and the total number of students assigned

to schools that are not very attractive (ranked fourth or below) move precisely as predicted by our

theory.30

The simulations thus show that policymakers may integrate schools, increase the proportion of

applicants obtaining their top choices, reduce the number of students in Pareto improving pairs,

but incur the costs of leaving more students to relatively unattractive schools. In our quantitative

exercise, minority reserves can reduce segregation by more than 20% in each of the three cities. At

28The reserve policy of 15% has been in place and never modified since the inception of the centalized system in 2016.
29Even though in our theoretical framework all the students are assigned, in the simulations we have computed the fraction

of unassigned students as a measure of students whose assignment is unattractive. The fact that more students are unassigned
as we increase the reserve is related to the result in Proposition 2 that the fraction of students assigned to schools that are
not highly ranked increases with the reserve.

30In Appendix D.1, we expand capacities and drop students to obtain a slack market. As predicted by Proposition 2 part
b, in a slack market reserves decrease the number of students assigned to top schools.
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the same time, increasing minority reserves leaves slightly more students assigned to their top schools

and reduces the proportion of students in Pareto improving pairs by close to 15%. The main cost

of a reduction in segregation is an increase in the number of unassigned students. For example,

Table 3 shows that in Valparáıso, the Duncan index can be reduced from 0.316 to 0.247, while the

proportion of unassigned students increases from 9.46% to 9.81% and the proportion of students in

Pareto improving pairs reduces from 7.81% to 6.68%. How society weights all these outcomes will

determine the optimal minority reserve.31 More generally, our simulations show that the minority

reserve is a significant policy decision that has sizable impact on important market outcomes and its

size should be carefully evaluated in practical implementations.

31The social welfare functionW = W (D,T, P, U) is likely to be decreasing in the proportion of students in Pareto improving
pairs P , and in the proportion of unassigned students U . The function W will be increasing in the proportion of students
assigned to their top schools T . The dependence of W on D will capture how educational outcomes depend on peer effects
and how society values integration. For discussion on peer effects and educational outcomes, see Hoxby (2000), Hanushek,
Kain, Markman, and Rivkin (2003), Angrist and Lang (2004), and Rao (2019). At least in some nontrivial range, W should
be decreasing in D.
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Valparáıso f = 0% f = 15% f = 44% f = 75% f = 100%

Duncan index (Proposition 1) 0.316 (0.005) 0.312 (0.005) 0.247 (0.003) 0.311 (0.003) 0.317 (0.002)

Minority students assigned to their top choice (Lemma 1) 71.73 (0.52) 72.05 (0.4) 78.89 (0.38) 88.69 (0.29) 89.54 (0.25)

Regular students assigned to their top choice (Lemma 1) 63.67 (0.37) 63.45 (0.48) 59.88 (0.35) 56.25 (0.35) 55.96 (0.27)

Students assigned to their top choice (Proposition 2 a) 67.21 (0.23) 67.23 (0.33) 68.23 (0.25) 70.49 (0.22) 70.7 (0.21)

Students assigned to their fourth choice or worst (Proposition 2 c) 7.32 (0.21) 7.29 (0.17) 7.6 (0.17) 8.24 (0.16) 8.31 (0.16)

Students unassigned (Proposition 2 c) 9.46 (0.16) 9.48 (0.19) 9.81 (0.14) 10.56 (0.13) 10.63 (0.13)

Students in Pareto improving pairs (Proposition 3) 7.81 (0.53) 7.9 (0.51) 6.68 (0.57) 3.66 (0.26) 3.3 (0.33)

Concepción f = 0% f = 15% f = 43% f = 75% f = 100%

Duncan index (Proposition 1) 0.353 (0.004) 0.342 (0.005) 0.264 (0.003) 0.355 (0.003) 0.358 (0.003)

Minority students assigned to their top choice (Lemma 1) 67.77 (0.43) 68.57 (0.44) 76.74 (0.37) 88.01 (0.2) 88.46 (0.22)

Regular students assigned to their top choice (Lemma 1) 58.06 (0.47) 57.4 (0.46) 54.11 (0.39) 50.68 (0.33) 50.5 (0.27)

Students assigned to their top choice (Proposition 2 a) 62.23 (0.29) 62.2 (0.33) 63.84 (0.26) 66.73 (0.24) 66.81 (0.17)

Students assigned to their fourth choice or worst (Proposition 2 c) 11.42 (0.21) 11.41 (0.25) 11.46 (0.21) 11.95 (0.15) 11.97 (0.16)

Students unassigned (Proposition 2 c) 12.65 (0.16) 12.75 (0.13) 13.08 (0.15) 13.61 (0.1) 13.63 (0.1)

Students in Pareto improving pairs (Proposition 3) 12.31 (0.41) 12.34 (0.54) 10.25 (0.44) 5.64 (0.37) 5.35 (0.3)

Santiago f = 0% f = 15% f = 37% f = 75% f = 100%

Duncan index (Proposition 1) 0.312 (0.002) 0.303 (0.002) 0.246 (0.001) 0.328 (0.001) 0.331 (0.001)

Minority students assigned to their top choice (Lemma 1) 70.86 (0.19) 71.58 (0.17) 77.81 (0.16) 90.79 (0.08) 91.35 (0.07)

Regular students assigned to their top choice (Lemma 1) 56.48 (0.17) 56.15 (0.19) 54.05 (0.12) 50.29 (0.11) 50.1 (0.1)

Students assigned to their top choice (Proposition 2 a) 61.87 (0.12) 61.93 (0.13) 62.95 (0.09) 65.46 (0.08) 65.55 (0.07)

Students assigned to their fourth choice or worst (Proposition 2 c) 12.3 (0.09) 12.32 (0.1) 12.49 (0.09) 13.14 (0.07) 13.19 (0.06)

Students unassigned (Proposition 2 c) 12.49 (0.06) 12.49 (0.05) 12.67 (0.06) 13.1 (0.05) 13.13 (0.04)

Students in Pareto improving pairs (Proposition 3) 9.5 (0.2) 9.43 (0.19) 8.06 (0.16) 4.52 (0.13) 4.39 (0.12)

Table 3: Average impact of minority reserves on market outcomes. Excluding the Duncan index, all values
are percentages. Simulation standard deviations inside parentheses.

5.1 Other algorithmic decisions

To put the design of the minority reserves in perspective, we now discuss the impact of other algorith-

mic decisions on market outcomes. We only report results for Santiago (similar results are obtained

for Valparáıso and Conception).

5.1.1 Double reserve policy

We now simulate the double reserve policy (Section 4.4.3). We compare minority reserves to a double

reserve policy, where we reserve a fraction of seat equals to the proportion of the group in the market.
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Minority reserve Double reserve

Santiago

Duncan index 0.246 (0.001) 0.232 (0.001)

Students assigned to their top choice 62.95 (0.09) 62.89 (0.12)

Students assigned to their fourth choice or worst 12.49 (0.09) 12.37 (0.08)

Students unassigned 12.67 (0.06) 12.66 (0.05)

Students in Pareto improving pairs 8.06 (0.16) 8.06 (0.17)

Table 4: Average impact of single and double reserves on market outcomes. Excluding the Duncan index,
all values are percentages. Simulation standard deviations inside parentheses.

Table 4 shows that moving from (single) minority reserves to a double reserve policy has a much

smaller impact than moving from no reserve to minority reserve. This is precisely what our theory

predicts. Note that the introduction of the ideal point policy reduces the number of students assigned

to their top schools, similar to the model with polarized preferences in Example 3.

5.1.2 Set asides

We also simulated each of the markets using the set aside affirmative action policy. Consistent with

Proposition 5, increasing the magnitude of the affirmative action policy has similar impacts under

minority reserves and set asides. Tables 3 and 5 also confirm the prediction of Proposition 4 that fixing

the reserves ρ, changing the interpretation of the affirmative action policy from minority reserves to

set asides increases the number of students assigned to top schools and reduces the number of Pareto

improving pairs. Under set asides, segregation is minimized for a reserve below the proportion of

minority students in the population.

Santiago f = 0% f = 15% f = 37% f = 75% f = 100%

Duncan index 0.312 (0.002) 0.279 (0.001) 0.308 (0.001) 0.331 (0.001) 0.331 (0.001)

Minority students assigned to their top choice 70.91 (0.19) 80.22 (0.18) 88.35 (0.12) 91.33 (0.08) 91.34 (0.06)

Regular students assigned to their top choice 56.5 (0.16) 52.75 (0.14) 50.78 (0.12) 50.12 (0.12) 50.13 (0.1)

Students assigned to their top choice 61.9 (0.11) 63.05 (0.1) 64.85 (0.09) 65.56 (0.08) 65.57 (0.07)

Students assigned to their fourth choice or worst 12.3 (0.08) 12.7 (0.08) 13.04 (0.07) 13.2 (0.08) 13.19 (0.06)

Students unassigned 12.49 (0.05) 12.71 (0.05) 13.01 (0.05) 13.13 (0.04) 13.13 (0.05)

Students in Pareto improving pairs 9.46 (0.2) 8.09 (0.18) 5.53 (0.15) 4.38 (0.13) 4.35 (0.14)

Table 5: Average impact of set asides on market outcomes. Excluding the Duncan index, all values are
percentages. Simulation standard deviations inside parentheses.
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5.1.3 Single tie-breaking

When considering lotteries over students using the deferred acceptance algorithm, whether the lottery

is run school-by-school (multiple tie-breaking) or system-wide (single tie-breaking) makes a difference

in outcomes (Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu, Pathak, and Roth 2009, De Haan,

Gautier, Oosterbeek, and Van der Klaauw 2015, Ashlagi and Nikzad 2020). Theoretical results and

practical experience show that moving from multiple to single tie-breaking increases the number of

students assigned to their first preferences, but more students are unassigned. These results are also

confirmed by the simulations reported in Table 6.

In terms of the cumulative rank distribution, our theoretical results and simulations show that

increasing reserves has an impact similar to moving from multiple to single lottery. Notably, moving

from multiple to single tie-breaking has almost no impact on segregation. Minortity reserves are thus

an important and distinctive policy decision.

Santiago f = 15%

Duncan index 0.302 (0.002)

Minority students assigned to their top choice 75.69 (0.19)

Regular students assigned to their top choice 61.8 (0.14)

Students assigned to their top choice 67 (0.08)

Students assigned to their fourth choice or worst 12.04 (0.06)

Students unassigned 13.12 (0.05)

Students in Pareto improving pairs 1.06 (0.09)

Table 6: Impact of single-tie breaking on market outcomes. Excluding the Duncan index, all values are
percentages. Simulation standard deviations inside parentheses.

6 Conclusions

In this paper, we have examined the influence of minority reserves on segregation and efficiency within

school choice programs. Our findings highlight the significant role of minority reserves in mitigating

segregation in schools. While minority reserves improve overall efficiency, they also lead to more

students assigned to unattractive schools. This paper contributes to the field of market design by

describing the impacts of minority reserves on important market outcomes.

Our model illustrates basic forces that govern the effect of minority reserves on the final assign-

ments. Specifically, our theoretical analysis reveals that the qualitative impact of minority reserves on
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matching efficiency hinges on the dissimilarity of preferences among distinct groups and the tightness

of the market. Our analysis has practical relevance. The simulations using data from a large-scale

implementation show that minority reserves represent an important and distinct policy choice.

An important driver of our results is the observation that low-income groups tend to apply less

frequently to high-demand institutions. Similar patterns have been observed in various contexts,

including school choice programs in Boston and Amsterdam (Laverde 2020, Oosterbeek, Sóvágó, and

van der Klaauw 2021) and college admission in the United States (Hoxby and Avery 2013). We hope

our findings hold relevance for discussions on strategies to reduce segregation in different settings.

As the literature shows, it is hard to obtain general comparative statics results in matching models

(Hafalir, Yenmez, and Yildirim 2013, Dur, Kominers, Pathak, and Sönmez 2018). Our main compar-

ative statics result, Proposition 2, leverage the large market assumption to quantify the winners and

losers created by minority reserves. Extending our results to more general setups is an interesting

theoretical question.

In our theoretical framework, the DA algorithm is strategy-proof. We therefore assume –as

do Abdulkadiroğlu, Pathak, and Roth (2009) and Che and Tercieux (2019), among others– that

students do not alter their applications following a change in a strategy-proof mechanism. How-

ever, minority reserves could change application patterns as a result of location decisions or in re-

action to school compositions (Epple and Romano 2003, Baum-Snow and Lutz 2011, Avery and

Pathak 2021, Calsamiglia, Mart́ınez-Mora, and Miralles 2021, Akbarpour, Kapor, Neilson, van Dijk,

and Zimmerman 2022). Application patterns may also be influenced by behavioral economics forces

(Rees-Jones and Shorrer 2023). These questions warrant exploration in future research.32
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Pathak, P., T. Sönmez, M. Ünver, and M. Yenmez (2020): “Fair Allocation of Vaccines,

Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in Health Care Rationing,”

Discussion paper, Boston College.

Rao, G. (2019): “Familiarity Does Not Breed Contempt: Generosity, Discrimination, and Diversity

in Delhi Schools,” American Economic Review, 109(3), 774–809.

Rees-Jones, A., and R. Shorrer (2023): “Behavioral economics in education market design: a

forward-looking review,” Journal of Political Economy Microeconomics, 1(3), 557–613.

Rios, I., T. Larroucau, G. Parra, and R. Cominetti (2021): “Improving the Chilean college

admissions system,” Operations Research, 69(4), 1186–1205.

Roth, A., and M. Sotomayor (1990): Two-Sided Matching: A Study in Game-Theoretic Modeling

and Analysis. Cambridge Univ, Press.

Son, S. (2020): “Distributional Impacts of Centralized School Choice,” Discussion paper, Yale.

35



Sönmez, T., and M. Yenmez (2022): “Affirmative Action in India via Vertical, Horizontal, and

Overlapping Reservations,” Econometrica, 90(3), 1143–1176.

Westkamp, A. (2013): “An Analysis of the German University Admissions System,” Economic

Theory, 53(3), 561–589.

APPENDIX

Appendix A contains proofs and complementary results. Appendix B provides details about our field

data. Appendix C desagregates the impact of minority reserves on segregation. Appendix D explores

simulations with abundant capacity and shows the empirical relevance of Proposition 2 part b. The

Online Appendix provides additional details.

A Proofs and complementary results

Proof of Proposition 1. Note that for ρ1 ∈ R, each tier 1 school has k1 − ρ1 regular students and ρ1

minority students, while a tier 2 school has (1 − n(k1 − ρ1))/N regular students and (β − nρ1)/N

minority students.33 Therefore,

D(ρ) =
1

2

{
n|k1 − ρ1

1
− ρ1

β
|+N |(1− (k1 − ρ1)n)/N

1
− (β − nρ1)/N

β
|
}
.

The first (resp. second) term inside the bracket captures the summation defining D(ρ) over tier 1

schools (resp. tier 2 schools). Thus, for ρ1 ∈ R,

D(ρ) =
1

2

{
n|k1 − ρ1(1 +

1

β
)|+ n|k1 − ρ1(1 +

1

β
)|
}
.

Note that for ρ1 /∈ R, D(ρ) is flat. The result follows.

Proof of Proposition 2. (a) We first note that for q ≤ Lt, Ft(q) = 1−Gt(pt)
q(1−Πt(q − 1)). Thus,

(1 + β)
∂F

∂ρ1
(q, ρ1)

=− qGr(pr)
q−1gr(pr)(1−Mr(q − 1))

∂pr
∂ρ1

− βqGm(pm)q−1gm(pm)(1−Mm(q − 1))
∂pm
∂ρ1

.

33To see the distribution of students in tier 2 schools, note that 1− n(k1 − ρ1) regular students are not assigned to tier 1
schools. Regular students that are not assigned to tier 1 schools demand tier 2 schools uniformly.
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Now, recall that Er[1−Gr(pr)
lr ] = (k1 − ρ1)n βEm[1−Gm(pm)lm ] = ρ1n. Taking derivatives

βgm(pm)
∂pm
∂ρ1

=
−n

Em[lmGm(pm)lm−1]
gr(pr)

∂pr
∂ρ1

=
n

Er[lrGr(pr)lr−1]

We deduce that for q ≤ Lm

∂F

∂ρ1
(q) < 0 (resp. > 0) iff

Gm(pm)q−1(1−Πm(q − 1))

Em[lmGm(pm)lm−1]
<

Gr(pr)
q−1(1−Πr(q − 1))

Er[lrGr(pr)lr−1]
(resp. >).

(A.1)

In particular,
∂F

∂ρ1
(1, ρ1) > 0 iff

Er[lrGr(pr)
lr−1]

1−Πr(0)
>
Em[lmGm(pm)lm−1]

1−Πm(0)
. (A.2)

To derive a sufficient condition for the condition on the right in (A.2), we note that

Em[lmGm(pm)lm−1]

1−Πm(0)
<

Em[lm]

1−Πm(0)
= Em[lm | lm ≥ 1]. (A.3)

Also,

πr(0) + (1− πr(0))Gr(pr) > Er[Gr(pr)
lr ] = 1− n(k1 − ρ1) > 1− nk1

and therefore

Gr(pr) > 1− nk1
1− πr(0)

As a result,

Er[lrGr(pr)
lr−1] > Er[lr

(
1− nk1

1− πr(0)
)lr−1

)
] = Er[lr

(
1− nk1

1− πr(0)
)lr−1

)
| lr ≥ 1](1−Πr(0)). (A.4)

Using (A.2), (A.3) and (A.4), it follows that ∂F (1,ρ1)
∂ρ1

> 0 when

Er[lr
(
1− nk1

1− πr(0)
)lr−1

)
| lr ≥ 1] ≥ Em[lm | lm ≥ 1].

By assumption, Er[lr | lr ≥ 1] > Em[lm | lm ≥ 1]. As a result, we can define

K̄ = max
{
K ∈ [0, 1] | Er[lr(1−

K

1− πr(0)
)lr | lr ≥ 1] ≥ Em[lm | lm ≥ 1]

}
∈]0, 1− πr(0)[

and for all nk1 ≤ K̄, ∂F
∂ρ1

(1) > 0 for all ρ1.

(b) Following the proof of part (a), it follows that

∂F

∂ρ1
(1, ρ1) < 0 iff Er[lrGr(pr)

lr−1 | lr ≥ 1] < Em[lmGm(pm)lm−1 | lm ≥ 1].
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For x ∈ [0, 1] and t ∈ {r,m}, define Φt(x) = Et[lrx
lt−1 | lt ≥ 1]. Since Φt(0) = πt(1)

1−Πt(0)
and Πr

dominates Πm, it follows that Φr(0) < Φm(0). Take x̄ > 0 such that Φr(x) < Φm(0) for all x < x̄.

Now, the market clearing condition for regular students is given by

(1− πr(0))−
Lr∑
lr=1

πr(lr)Gr(pr)
lr = n(k1 − ρ1).

In particular, there exists ȳ = ȳ(Πr,Πm) > πr(0) such that for all n(k1 − ρ1) > 1 − ȳ, Gr(pr) < x̄.

Therefore, for nk1 > 1− ȳ + β(1− πm(0)) and ρ1 ∈ R, Gr(pr) < x̄. Thus

Φr(Gr(pr)) < Φm(0) < Φm(Gm(pm)).

Defining K̂ = 1− ȳ + β(1− πm(0)) < 1− πr(0) + β(1− πm(0)), the result follows.

(c) From Lemma 1, for q ∈ {Lm + 1, . . . , Lr},

∂F

∂ρ1
(q) =

∂

∂ρ1

(β + Fr(q)

1 + β

)
< 0.

We thus deduce Proposition 2.

Proof of Proposition 3. Consider any student s who is assigned to a tier 1 school c = µρ(s) that is

not her top choice . Let c̄ be the top choice of student s. Consider the (positive measure) set S̄ ⊂ S

of all students such that they rank school c first, and school c̄ second. Define Ŝ ⊆ S̄ by Ŝ = {s′ ∈ S̄,

ωs′
c < pρ < ωs′

c̄ }. By construction, Ŝ has positive measure. For any s′ ∈ Ŝ, c ≻s′ µρ(s
′) = c̄. As a

result, s can Pareto improve by switching school with s′ ∈ Ŝ.

If s is assigned to a tier 1 school that is her top choice, then it is clear that s cannot Pareto improve

by switching school.

If s is assigned to a tier 2 school, then s is either assigned to her top choice or s would prefer a

tier 1 school. If s is assigned to her top choice, then s cannot Pareo improve by switching school. If s

would like to move to some tier 1 school, then all students assigned to that tier 1 school prefer their

current school to the tier 2 school s is assigned to. So, s cannot Pareto improve by switching school.

It thus follows that a student s can Pareto improve by switching school iff s is assigned to a tier 1

school that is not her top choice. It thus follows that

P (ρ1) = 1− F (1, ρ1)−
∑Lr

lr=1 πr(l)Gr(pr)
lr + β

∑Lm
lm=1 πm(l)Gm(pm)lm

1 + β

= 1− F (1, ρ1)−
(1− πr(0)) + β(1− πm)− nk1

1 + β
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which is decreasing in ρ1 under the conditions of Proposition 2.

Proof of Proposition 5. The proof is identical to the proof of Proposition 2.

Proof of Proposition 4. The cutoffs pSAm and pSAr are entirely determined by the intersection of the

market clearing (4.1) and set aside (4.4) conditions. The set aside condition is to the left of the

minority reserve condition (see also Figure 6) and therefore pSAr > pr and pSAm < pm. By increasing

ρ1, the minority reserve condition (4.2) moves to the left. As a result, we can find ρ′1 > ρ1 such that

the cutoffs p′m and p′r under minority reserves ρ′1 satisfy pSAm = p′m and pSAr = p′r. Proposition 2 implies

that for a fixed ρ1 more students are assigned to their top school under set asides than under minority

reserves.

pm

Market clearing (4.1)

Minority reserve (4.2)

Set aside (4.4)

pr

(pm, pr)

(p̄, p̄)

(pSAm , pSAr )

Figure 6: The market clearing condition and the set aside condition determine cutoffs pSAr and pSAm . For a
given ρ1, the set aside condition is to the left of the minority reserve condition.

Proposition 6. Assume that Lr = Lm = L. If

L∑
l=1

πr(l)l
(
1− n(k1 − ρ1)

1− πr(0)

)l−L ≤ πr(L)

πm(L)
(1− πm(0))

then ∂F
∂ρ1

(L, ρ1) < 0.
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Proof. Following the proof of Proposition 2, it follows that ∂
∂ρ1

F (q = L) < 0 iff

∑L
l=1 πr(l)lG

l−L
r∑L

l=1 πm(l)lGl−L
m

<
πr(L)

πm(L)
.

Since Gr ≥ 1− n(k1−ρ1)
1−πr(0)

,

L∑
l=1

πr(l)lG
l−L
r ≤

L∑
l=1

πr(l)l
(
1− n(k1 − ρ1)

1− πr(0)

)l−L

As Gm ≤ 1,
L∑
l=1

πm(l)lGl−L
m ≥ (1− πm(0)).

Therefore, ∑L
l=1 πr(l)lG

l−L
r∑L

l=1 πm(l)lGl−L
m

≤
∑L

l=1 πr(l)l
(
1− n(k1−ρ1)

1−πr(0)

)l−L

1− πm(0)
≤ πr(L)

πm(L)
.

B Field data

B.1 Markets

The Chilean centralized system runs nationwide. While any student could apply to any school in

the country, virtually all students apply exclusively within their provinces or districts. The system is

thus composed of several isolated markets. We show that each of our marketsis indeed isolated and

virtually independent from the rest of the markets in the country.

We first define our markets. The Valparaiso market includes each school located in the provincial

department of Valparaiso. The Concepcion market includes each school located in the provincial

department of Concepcion. The Santiago market includes each school located in the Metropolitan

Region of Santiago.34 So, the boundary of each of our markets follows administrative definitions.

For each market, we consider all students that apply exclusively within the market. Thus a student

with a rank order list including some schools in Valparaiso and others outside Valparaiso is excluded

from our exercise. This set of students is small as big urban centers heavily concentrate applications.

In our database, 99.76% of all nationwide applications listing some school in the Santiago market list

34As Santiago is the main urban center in Chile the country, the provincial department of Santiago excludes several towns
close to Santiago whose students apply to schools in the city. We thus work with the Metropolitan Region of Santiago.
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exclusively schools in Santiago. The numbers for Valparaiso and Concepcion are 98.85% and 99.66%,

respectively. The following table shows the characterization for each market:

Table 7: Valparaiso, Concepcion and Santiago markets

Valparáıso Concepción Santiago

Number of provincial departments 1 1 7

Number of counties 10 12 52

Number of schools 275 250 1,214

Applicants to the market 98.85% 99.66% 99.76%

applying exclusively inside the market

Thus, in practical terms, each of our markets is isolated and independent from all other markets

in the country.

B.2 Alternative popularity definitions

We explore an alternative definition of popularity. A school is ν-popular if it is oversubscribed after

running the DA algorithm (with no reserves) with probability at least ν (since schools define priorities

using random inputs, a school may be oversuscribed for some but not all realizations of the lottery

numbers). Clearly, a school c with pop(c) ≥ 1 will be ν-popular for all ν ∈ [0, 1]. For concreteness, set

ν = 0.9.

We construct the empirical distribution of application intensities for ν-popular schools. As shown

below, we obtain the exact same results reported in Section 2.3.2. This shows the robustness of our

claim that minority students apply with less intensity to high demand schools.
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Figure 7: Empirical distributions of application intensities to ν-popular schools for each group t.
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Figure 8: Empirical distributions of application intensities to ν-popular schools, conditional on applying
to at least one ν-popular school.

C Segregation in schools

In the main body of the paper, we have explored how an aggregate segregation index (the Dun-

can index) changes as minority reserves increase. Figure 9 shows how segregation in each school is

determined by its popularity and by the minority reserve. Each school is an observation. As can

be seen popular schools tend to have a lower fraction of minority students. The upper graphs are

derived without any minority reserve. The upper graphs show that few popular schools have overrep-

resented minority students. The lower graphs are derived with minority reserves equal to the fraction

of minority students in the population.
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Figure 9: Schools composition. Minority students are under-represented in popular schools.

D Other markets

D.1 A slack market

Proposition 2 part b shows that when the market is not tight, increasing reserves reduces the fraction

of students assigned to their top schools. To validate this claim empirically, we have built a slack

market using the Santiago data as follows. First, we have dropped all regular students with application

intensity less than or equal to 1 (that is, we dropped all regular students applying first to a non-popular

school or applying first to a popular schools followed by a non-popular school). We recompute the

popularity of schools and obtain a smaller set of popular schools. We again dropped students who place

first a non popular school (this does not change the number of popular schools). The resulting market

has 16,814 students (10,376 regular and 6,438 minority) and the percentage of minority students is
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38.3%.

For each x ∈ [0, 1], we expand capacities as follows:

– If pop(c) < 1, then the number of seats of the school equals the number of students in the market.

– If pop(c) ≥ 1, then the number of seats of the school equals nr(c) + xnm(c) (approximated to

the lowest integer), where nt(x) is the number of type t students applying first to c.

For any given x ∈ [0, 1], the resulting market is more slack than the original Santiago market. As

shown in Table 8, when x = 0.6, the market is slack and the fraction of students assigned to top schools

decreases as reserves increase (when x = 0.2, the market is not slack enough). This is consistent with

our theoretical results.

Table 8: Percentage of students assigned to their top choices in a fictitious slack market

Value of x f = 0% f = 15% f = 40% f = 50% f = 60% f = 75% f = 100%

0.2 66.28 (0.29) 66.31 (0.26) 66.21 (0.23) 66.27 (0.24) 66.62 (0.26) 67.27 (0.24) 68.02 (0.21)

0.6 88.61 (0.25) 88.63 (0.24) 88.57 (0.23) 88.44 (0.26) 88.26 (0.25) 87.98 (0.21) 88.04 (0.22)

D.2 Simulations for 9th grade

The centralized system in Chile operates across all school levels, as documented in (Correa, Epstein,

Escobar, Rios, Bahamondes, Bonet, Epstein, Aramayo, Castillo, and Cristi 2022). This implies that,

except for PreK, a significant portion of students already have their assignments determined and do

not engage with the centralized platform. We report simulations for the 9th grade in Santiago. While

the 9th grade has a smaller student population compared to PreK, it boasts a substantially larger

enrollment compared to all other levels.

Table 9: Santiago 9th grade

Category Value

Number of schools 808

Total capacity 91,119

Available seats 49,116

Number of students in the centralized system 37,548

Regular 18,821 (50.13%)

Minority 18,727 (49.87%)

Mean number of submited preferences 4.1
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Figure 10: Application intensities. Santiago 9th grade.

Figure 10 shows that regular students apply to popular schools with higher intensity. As a result,

Table 10 also show that our main simulation results hold for this grade: As reserves increase, the

Duncan index is U-shaped and the number of students assigned to top schools increases.35

Table 10: Results summary

Reserve f = 0% f = 15% f = 35% f = 40% f = 75% f = 100%

Duncan index 0.234 (0.002) 0.23 (0.002) 0.218 (0.002) 0.22 (0.002) 0.309 (0.001) 0.316 (0.001)

Minority students assigned to their top choice 61.02 (0.17) 61.4 (0.17) 63.91 (0.19) 64.97 (0.16) 73.73 (0.1) 74.21 (0.1)

Regular students assigned to their top choice 50.28 (0.18) 49.84 (0.18) 47.8 (0.16) 47.09 (0.15) 41.75 (0.13) 41.54 (0.13)

Students assigned to their top choice 55.63 (0.11) 55.61 (0.11) 55.83 (0.11) 56 (0.1) 57.7 (0.08) 57.83 (0.09)

Students assigned to their fourth choice or worst 12.5 (0.08) 12.5 (0.08) 12.46 (0.08) 12.46 (0.08) 12.68 (0.07) 12.68 (0.07)

Students unassigned 7.89 (0.07) 7.9 (0.07) 7.98 (0.06) 8.04 (0.07) 8.43 (0.06) 8.44 (0.05)

Students in Pareto improving pairs 8.35 (0.23) 8.39 (0.24) 8.13 (0.23) 7.94 (0.22) 5.63 (0.18) 5.39 (0.17)

35We report the Duncan index for the final assignment, which includes students that did not participate in the centralized
system.

45



ONLINE APPENDIX

This Online Appendix contains further supportive results. Online Appendix E provides a version of

Proposition 1 for alternative segregation indexes. Online Appendix F details application patterns in

schools. Online Appendix G provides some evidence about the impact of the centralized platform in

Chile on segregation.

E Other segregation indexes

We adapt Proposition 1 for the Hutchens index (Hutchens 2004):

Hµ = 1−
∑
c∈C

√
ηrµ(c) ·

ηmµ (c)

β

Note first that Hµ does not depend on ρ1 when ρ1 /∈ [αmβ
n (1−Gm(p̄m))lm,min{αmβ

n , k1}].

Recall that for ρ1 ∈ [αmβ
n (1 − Gm(p̄m))lm,min{αmβ

n , k1}], each tier 1 school has k1 − ρ1 regular

students and ρ1 minority ones. Each tier 2 school has 1−n(k1−r1)
N regular students and β−nr1

N minority

ones. Thus, for ρ1 in this range, the H-index is computed as:

Hµ = 1− n

√
ρ1(k1 − ρ1)

β︸ ︷︷ ︸
H1

−m

√
(1− n(k1 − ρ1))(β − nρ1)

m2β︸ ︷︷ ︸
H2

where the terms H1 and H2 correspond to the sum across tier 1 and tier 2 schools respectively.

Taking derivatives we get that:

∂Hµ

∂ρ1
= − n

2
√
β

(
k1 − 2ρ1√
ρ1(k1 − ρ1)

+
β − 1 + n(k1 − 2ρ1)√

(1− n(k1 − ρ1))(β − nρ1)

)

And also that:

∂2Hµ

∂ρ21
=

n

4
√
β

(
k21

[ρ1(k1 − ρ1)]3/2
+

n(β + 1− nk1)
2

[(1− n(k1 − ρ1))(β − nρ1)]3/2

)
> 0

So we deduce that Hµ is a strictly convex function. Since
∂Hµ

∂ρ1
= 0 when ρ1 = β

1+βk1, the result

follows.
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The Atkinson index (Frankel and Volij 2011) can be defined in our setup as:

Aµ = 1−

[∑
c∈C

ηrµ(c)
δ ·
(
ηmµ (c)

β

)1−δ
] 1

1−δ

Where δ ∈ (0, 1) is a fixed weight. In the symmetric case in which both types are treated equally in

the segregation index, δ = 1
2 and thus the Atkinson index is obtained by an increasing transformation

of the Hutchens index. The result follows.

F Application patterns, standardized tests, and location

Understanding why minority students apply less to popular schools is beyond the scope of this paper.

We observe that distance may be playing a role because minority students tend to live farther away

from popular schools. To see this, in each market, we restrict our set of students to those that are

market as properly georeferenced by the Chilean Ministry of Education36. For these set of students, we

compute the distance to the closest popular school (pop(c) > 1) using the Vincenty (ellipsoid) method

provided by the geosphere package from the R Statistical Software. The resulting distributions are

presented below:

Valparáıso Concepción Santiago

Regular Minority Regular Minority Regular Minority

Sample (number of students) 2494 1833 2907 2029 22508 13089

First quartile 0.47 0.52 0.42 0.48 0.38 0.42

Median 0.81 0.92 0.70 0.82 0.63 0.69

Mean 2.86 1.37 1.13 1.27 0.97 1.19

Third quartile 1.36 1.59 1.16 1.38 1.02 1.07

Table 11: Distance (Km.) to the closest popular school

36Students that shared their location when applying on the platform or those whose location held a unique response and
was marked as “rooftop” or “range interpolated” in the “location type” variable of Google’s Geocoding API.
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Figure 11: Distance to closest popular school. Minority students live farther away from popular schools
than regular students.

As discussed in the text, popular schools tend to perform better in standardized tests. For each

market, we restrict our set of schools to those such that: (1) took part in SIMCE 2015 test37 (2)

reported valid SIMCE scores. This slightly decreases the set of schools we considered (so Table 12

has fewer schools than Table 7). We only use data from the Language test of second degree students

in 2015. Popular schools are those such that pop(c) > 1.

Table 12: SIMCE scores

Valparáıso Concepción Santiago

Not popular Popular Not popular Popular Not popular Popular

Sample (number of schools) 200 61 185 53 884 302

First quartile 222 244 224 259 223.75 248.00

Median 239 259 239 269 236 260

Mean 234.84 254.21 239.21 267.47 236.87 259.10

Third quartile 250 269 252 277 251 271

37SIMCE is a standardized test taken to all students in the country
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Figure 12: Popular schools tend to have higher SIMCE scores
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These results show that popular schools have better performance in standardized tests. Obviously,

this exercise is just illustrative and we are not claiming any causal effect.

G Centralized platform and its impact on segregation

We now present some evidence about the impact of the centralized system on segregation in Chilean

cities. Our main data set is built using 3 sources of information:

� Student enrollment, available at:

http://datos.mineduc.cl/dashboards/19776/descarga-bases-de-datos-de-matricula-por-estudiante/

� Disadvantaged students, available at:

http://datos.mineduc.cl/dashboards/19939/bases-de-datos-alumnos-prioritarios/
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� SAE’s supply 2020, available at:

http://datos.mineduc.cl/dashboards/20514/descarga-bases-de-datos-de-los-proceso-de-admision-

escolar-anos-2016-y-2017/

We consider data from 2013 onward. For each year and each of the 16 regions in Chile, we define

a market by selecting every school located in the main provincial department of the region. We

consider every student enrolled in Pre Kinder in schools that were part of SAE in 2020 (this excludes

private schools). We build a dummy variable (has saei,t) if the assignment in region i and year t was

centralized using SAE. As discussed in the main body of the paper, SAE was gradually introduced

in the country. For each region i and year t, we also compute the fraction of disadvantaged students

(disad fraci,t) and the Duncan index (seg indexi,t).

The following are the main regression results. For different specifications, the introduction of

SAE results in a relatively modest reductions of the Duncan index. This shows that the impact that

minority reserves have on segregation is relatively important.

Table 13: Regression results

Dependent variable:

seg index

OLS

(1) (2) (3) (4) (5)

has sae1 −0.012 (0.011) −0.005 (0.012) −0.012 (0.009) −0.034 (0.023) −0.017∗ (0.010)

disad frac 0.075 (0.057) −0.002 (0.083)

Region fixed effect Yes Yes

Year fixed effect Yes Yes

Constant 0.313∗∗∗ (0.006) 0.269∗∗∗ (0.034) 0.241∗∗∗ (0.049) 0.292∗∗∗ (0.013) 0.221∗∗∗ (0.009)

Observations 122 122 122 122 122
R2 0.009 0.024 0.717 0.191 0.893
Adjusted R2 0.001 0.007 0.671 0.134 0.868
Residual Std. Error 0.056 (df = 120) 0.056 (df = 119) 0.032 (df = 104) 0.052 (df = 113) 0.020 (df = 98)
F Statistic 1.112 (df = 1; 120) 1.438 (df = 2; 119) 15.535∗∗∗ (df = 17; 104) 3.339∗∗∗ (df = 8; 113) 35.700∗∗∗ (df = 23; 98)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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